PRA Report of Mango, SPCBP, PQW, DAE.Pdf
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Insert Report Title Here
Vegetable biosecurity & quarantine gap analysis Prue McMichael Scholefield Robinson Horticultural Services Pty Ltd Project Number: VG07087 VG07087 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the vegetable industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the vegetable industry. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 1849 X Published and distributed by: Horticulture Australia Ltd Level 7 179 Elizabeth Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 E-Mail: [email protected] © Copyright 2008 FINAL REPORT Vegetable Biosecurity and Quarantine Gap Analysis VG07087 Prepared for : Horticulture Australia Ltd HAL Project No. VG07087 Prepared by : Prue McMichael Completion Date : September 2008 SCHOLEFIELD ROBINSON HORTICULTURAL SERVICES PTY LTD 118A Glen Osmond Road, Parkside SA 5063 Australia ACN 008 199 737 PO Box 650, Fullarton SA 5063 Ph: (08) 8373 2488 ABN 63 008 199 737 Fax: (08) 8373 2442 Email: [email protected] Web Site: www.srhs.com.au Offices in Adelaide and Mildura Scholefield Robinson Horticultural Services Pty Ltd HAL Project No. VG 07087 PROJECT LEADER Dr Prue McMichael Senior Consultant/Plant Pathologist Scholefield Robinson Horticultural Services Pty Ltd PO Box 650 Fullarton SA 5063 PURPOSE OF REPORT This Final Report has been prepared to document information acquired, analysed and considered during the review undertaken for HAL, into all aspects of the biosecurity of Australia’s vegetable industries that are members of AUSVEG. -
Mapping Resistance to Stem Rust, Stripe Rust, and Powdery Mildew, and Genotype Screening of Breeding Germplasm for Disease Resistance
ABSTRACT VANGESSEL, CARL JOSEPH. Disease Resistance in Winter Wheat: Mapping Resistance to Stem Rust, Stripe Rust, and Powdery Mildew, and Genotype Screening of Breeding Germplasm for Disease Resistance. (Under the direction of Dr. David Marshall). Wheat production worldwide faces many challenges including fungal pathogens which can reduce growth, nutrient content, and yield. As the global population continues to increase, it is important to maximize production of wheat which provides a significant proportion of the human diet. Wheat breeders and pathologists are addressing the pathogen threat to wheat by breeding cultivars with improved resistance. However, as pathogen populations mutate and overcome resistance, it is important to identify sources of resistance to new pathogen races and understand the genetics of resistance in commercial cultivars. Stem rust (Puccinia graminis), stripe rust (Puccinia striiformis), and powdery mildew (Blumeria graminis) are among the most common and aggressive pathogens of wheat occurring worldwide. The stem rust resistance gene Sr31 was reliably effective until being overcome in 1999 by the race Ug99. This new race of stem rust has since evolved to include 12 related races and are potentially virulent to a majority of commercially produced wheat globally. The soft red winter wheat (SRWW) line, MD01W28- 08-11, was identified as having adult plant resistance (APR) to Ug99 in Njoro, Kenya. This line was crossed with the susceptible SRWW cultivar Coker 9553 and the subsequent 279 doubled haploid (DH) population used for linkage mapping analysis to better characterize the source of stem rust APR. A linkage map with 3,159 SNPs was produced that identified a significant quantitative trait loci (QTL) on the short arm of chromosome 6D and two QTL on the long arms of chromosomes 2B and 4B. -
Distribution and Frequency of Wheat Stem Rust Races (Puccinia Graminis F
©2018 Scienceweb Publishing Journal of Agricultural and Crop Research Vol. 6(5), pp. 88-96, November 2018 ISSN: 2384-731X Research Paper Distribution and frequency of wheat stem rust races (Puccinia graminis f. sp. tritici) in Ethiopia Netsanet Bacha Hei1* • Tsegaab Tesfaye1 • Getaneh Woldeab1 • Endale Hailu1 • Bekele Hundie2 • Daniel Kassa2 • Fikirte Yirga2 • Fufa Anbessa3 • Wubishet Alemu4 • Teklay Abebe5 • Miruts Legesse5 • Alemar Seid6 • Tesfaye Gebrekirstos7 1Ethiopian Institute of Agricultural Research, Ambo Plant Protection Research Center, Ambo, Ethiopia. 2Ethiopian Institute of Agricultural Research, Kulumsa Agricultural Research Center, Assela, Ethiopia. 3Oromia Agricultural Research Institute, Bore Agricultural Research Center, Bore, Ethiopia. 4Oromia Agricultural Research Institute, Sinana Agricultural Research Center, Bale Robe, Ethiopia. 5Tigray Agricultural Research Institute, Alamata Agricultural Research Center, Alamata, Ethiopia. 6Southern Agricultural Research Institute, Areka Agricultural Research Center, Ethiopia. 7Tigray Agricultural Research Institute, Mekele Agricultural Research Center, Mekele, Ethiopia. *Corresponding author. E-mail: [email protected]. Accepted 6th July, 2018 Abstract. Stem rust caused by Puccinia graminis f. sp. tritici (Pgt) is one of the most important diseases of wheat in Ethiopia. The stem rust pathogen is capable to rapidly develop new virulence to resistance genes owing to mutation and genetic recombination. Ethiopian highlands are known hot spots for the rapid evolution and spread of new rust races. The present study was conducted to investigate the virulence diversity and spatial distribution of races of Pgt in the major wheat growing areas of Ethiopia. The physiologic races of the rust fungus were determined on seedlings of the standard wheat stem rust differentials following the international system of nomenclature. Three hundred and forty- seven samples were analyzed in 2014 and 2015 cropping seasons from Oromia, Amhara, Tigray and Southern Nations and Nationalities Peoples’ regions. -
Ecological Studies on Mango Leaf Webber (Orthaga Exvinaceahamp.)
Internat. J. agric. Sci. Vol.2 No.2 July 2006 : (308-311) 308 Ecological studies on mango leaf webber (Orthaga exvinacea Hamp.) in Andhra Pradesh as a basis for IPM M. Kannan*1 and N. Venugopala Rao Department of Entomology, S.V. Agricultural College, TIRUPATI (A.P.) INDIA ABSTRACT The influence of ecological factors viz., biotic (Host plant) and abiotic factors (weather parameters) on the abundance and population fluctuation of leaf webber, Orthaga exvinacea (Hamp.) on mango under the conditions of Chittoor district were worked out. Peak incidence was observed during first fortnight of November (19.4 webs/tree). However, gradual increase was observed from the first fortnight of July (2.6 webs/tree) and declined during second fortnight of January (3.2 webs/tree). Correlation studies between incidence and weather parameters showed positive relationship with minimum temperature, relative humidity and rainfall and negative relationship with maximum temperature. None of the varieties was free from infestation. The infestation ranged from 7.80 to 29.47 webs/tree, 5.82 to 22.55 leaves/web and 1.92 to 29.47 larvae/tree. Variety Neelum showed less infestation, while Bangalore showed severe infestation and other varieties viz., Neeleghan, Cherakurasam, Mulgova, Rumani, Baneshan and Swarnajahangir have moderate infestation. Result of the study also revealed that older mango trees (15 and above years old) were more susceptible (18.26, 348.75, 121.61 webs/tree, webbed leaves/tree and larva/ tree, respectively) to leaf webber damage than young trees (0-5 years old). Key Words: Mango leaf webber, Ecological studies, Varietal susceptibility, Abiotic factors INTRODUCTION Impact of abiotic factors on population dynamics of leaf webber Mango, Mangifera indica is an important fruit crop of India. -
An Endemic Wild Silk Moth from the Andaman Islands, India
©Entomologischer Verein Apollo e.V. Frankfurt am Main; download unter www.zobodat.at Nadir entomol. Ver. Apollo, N.F. 17 (3): 263—274 (1996) 263 Cricula andamanica Jordan, 1909 (Lepidoptera, Saturnüdae) — an endemic wild silk moth from the Andaman islands, India KamalanathanV e e n a k u m a r i, P r a s h a n t h M o h a n r a j and Wolfgang A. N ä s s ig 1 Dr. KamalanathanV eenakumari and Dr. Prashanth Mohanraj, Central Agricultural Research Institute, P.B. No. 181, Port Blair 744 101, Andaman Islands, India Dr. Wolfgang A. Nässig, Entomologie II, Forschungsinstitut und Naturmuseum Senckenberg, Senckenberganlage 25, D-60325 Frankfurt/Main, Germany Abstract: Cricula andamanica Jordan, 1909, a wild silk moth endemic to the Andaman islands, has so far been known from a few adult specimens. For the first time we detail the life history and describe and illustrate in colour the preimaginal stages of this moth. The following species of plants were used as host plants by the larvae: Pometia pinnata (Sapindaceae), Anacardium occi dental (Anacardiaceae), and Myristica sp. (Myristicaceae). The mature lar vae are similar to those of the related C. trifenestrata (Helfer, 1837), aposem- atic in black and reddish, but exhibiting a larger extent of red colour pattern and less densely covered with secondary white hairs. A species of the genus Xanthopimpla (Hymenoptera, Ichneumonidae) and an unidentified tachinid (Diptera) were found to parasitize the pupae. Cricula andamanica Jordan 1909 (Lepidoptera, Saturnüdae) — eine endemische Saturniidenart von den Andamanen (Indien) Zusammenfassung: Cricula andamanica J ordan 1909, eine endemische Sa- turniide von den Andamanen, war bisher nur von wenigen Museumsbeleg tieren bekannt. -
Hemiptera: Miridae: Deraeocorinae) from India with Biological Note
J. Entomol. Res. Soc., 20(3): 67-73, 2018 Research Article Print ISSN:1302-0250 Online ISSN:2651-3579 First Record of Termatophylum orientale Poppius (Hemiptera: Miridae: Deraeocorinae) from India with Biological Note Richa VARSHNEY1* Yeshwanth H. M.2 1 ICAR-National Bureau of Agricultural Insect Resources, P.B. No. 2491, H.A. Farm Post, Bellary Road, Hebbal, Bangalore-560024, INDIA. e-mail: *[email protected] 2 Department of Entomology, University of Agricultural Sciences, GKVK, Bangalore-560065 INDIA. e-mail: [email protected] ABSTRACT Termatophylum orientale Poppius is being reported for the first time from India. It was collected from Mangifera indica (Mango, Anacardiaceae), Carica papaya (Papaya, Caricaceae) and Peltophorum pterocarpum (Copperpod, Fabaceae) where it shares niche along with other predators like anthocorids, geocorids and pests like thrips, mites and lepidopteran larvae. For the first time rearing protocol and biology has been given for this mirid. Key words: Mango, Miridae, Deraeocorinae, Termatophylini, Termatophylum orientale, Thrips. Varshney, R., Yeshwanth, H.M. (2018). First record of Termatophylum orientale Poppius (Hemiptera: Miridae: Deraeocorinae) from India with biological note. Journal of the Entomological Research Society, 20(3), 67-73. 68 VARSHNEY, R., H. M., Y. INTRODUCTION Mirid bugs of the tribe Termatophylini are known to inhabit inflorescences, moth larval galleries or rolled bark. They are known to feed on thrips, besides feeding on nectar and pollen (Cassis, 1995; Cassis et al., 2011; Yasunaga et al., 2001). Three species of the genus Termatophylidea Reuter and Poppius were reported to attack on the cacao thrips, occupying the niche shared by anthocorids. It is assumed that these mirids are obligate predators and feed exclusively on thrips. -
RENATA RODRIGUES GOMES.Pdf
UNIVERSIDADE FEDERAL DO PARANÁ RENATA RODRIGUES GOMES FILOGENIA E TAXONOMIA DO GÊNERO Diaporthe E A SUA APLICAÇÃO NO CONTROLE BIOLÓGICO DA MANCHA PRETA DOS CITROS CURITIBA 2012 RENATA RODRIGUES GOMES FILOGENIA E TAXONOMIA DO GÊNERO Diaporthe E A SUA APLICAÇÃO NO CONTROLE BIOLÓGICO DA MANCHA PRETA DOS CITROS Tese apresentada ao Programa de Pós- graduação em Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, como requisito parcial a obtenção do título de Doutor em Ciências Biológicas, Área de Concentração: Genética. Orientadores: Prof. a Dr. a ChirleiGlienke Phd Pedro Crous Co-Orientador: Prof. a Dr. a Vanessa Kava Cordeiro CURITIBA 2012 Dedico A minha família, pelo carinho, apoio, paciência e compreensão em todos esses anos de distância dedicados a realização desse trabalho. “O Sertanejo é antes de tudo um forte” Euclides da Cunha no livro Os Sertões Agradecimentos À minha orientadora, Profª Drª Chirlei Glienke, pela oportunidade, ensinamentos, inestimáveis sugestões e contribuições oferecidas, as quais, sem dúvida, muito enriqueceram o trabalho. Sobretudo pelo exemplo de dedicação à vida acadêmica. À minha co-orientadora Profª Drª Vanessa Kava-Cordeiron e a minha banca de acompanhamento, Lygia Vitória Galli-Terasawa pelas sugestões e contribuições oferecidas, cooperando para o desenvolvimento desse trabalho e pela convivência e auxílio no LabGeM. To all people at CBS-KNAW Fungal Biodiversity Centre in Holland who cooperated with this study and for all the great moments together, in special: I am heartily thankful to PhD Pedro Crous, whose big expertise and understanding were essential to this study. I thank you for giving me the great opportunity to work in your "Evolutionary Phytopathology” research group and for the enormous dedication, excellent supervision, ideas and guidance throughout all stages of the preparation of this thesis. -
Biodiversity of Sericigenous Insects in Assam and Their Role in Employment Generation
Journal of Entomology and Zoology Studies 2014; 2 (5): 119-125 ISSN 2320-7078 Biodiversity of Sericigenous insects in Assam and JEZS 2014; 2 (5): 119-125 © 2014 JEZS their role in employment generation Received: 15-08-2014 Accepted: 16-09-2014 Tarali Kalita and Karabi Dutta Tarali Kalita Cell and molecular biology lab., Abstract Department of Zoology, Gauhati University, Assam, India. Seribiodiversity refers to the variability in silk producing insects and their host plants. The North – Eastern region of India is considered as the ideal home for a number of sericigenous insects. However, no Karabi Dutta detailed information is available on seribiodiversity of Assam. In the recent times, many important Cell and molecular biology lab., genetic resources are facing threats due to forest destruction and little importance on their management. Department of Zoology, Gauhati Therefore, the present study was carried out in different regions of the state during the year 2012-2013 University, Assam, India. covering all the seasons. A total of 12 species belonging to 8 genera and 2 families were recorded during the survey. The paper also provides knowledge on taxonomy, biology and economic parameters of the sericigenous insects in Assam. Such knowledge is important for the in situ and ex- situ conservation program as well as for sustainable socio economic development and employment generation. Keywords: Conservation, Employment, Seribiodiversity 1. Introduction The insects that produce silk of economic value are termed as sericigenous insects. The natural silk producing insects are broadly classified as mulberry and wild or non-mulberry. The mulberry silk moths are represented by domesticated Bombyx mori. -
Species Accounts
Species accounts The list of species that follows is a synthesis of all the botanical knowledge currently available on the Nyika Plateau flora. It does not claim to be the final word in taxonomic opinion for every plant group, but will provide a sound basis for future work by botanists, phytogeographers, and reserve managers. It should also serve as a comprehensive plant guide for interested visitors to the two Nyika National Parks. By far the largest body of information was obtained from the following nine publications: • Flora zambesiaca (current ed. G. Pope, 1960 to present) • Flora of Tropical East Africa (current ed. H. Beentje, 1952 to present) • Plants collected by the Vernay Nyasaland Expedition of 1946 (Brenan & collaborators 1953, 1954) • Wye College 1972 Malawi Project Final Report (Brummitt 1973) • Resource inventory and management plan for the Nyika National Park (Mill 1979) • The forest vegetation of the Nyika Plateau: ecological and phenological studies (Dowsett-Lemaire 1985) • Biosearch Nyika Expedition 1997 report (Patel 1999) • Biosearch Nyika Expedition 2001 report (Patel & Overton 2002) • Evergreen forest flora of Malawi (White, Dowsett-Lemaire & Chapman 2001) We also consulted numerous papers dealing with specific families or genera and, finally, included the collections made during the SABONET Nyika Expedition. In addition, botanists from K and PRE provided valuable input in particular plant groups. Much of the descriptive material is taken directly from one or more of the works listed above, including information regarding habitat and distribution. A single illustration accompanies each genus; two illustrations are sometimes included in large genera with a wide morphological variance (for example, Lobelia). -
Annals of Basic and Applied Sciences December 2015, Volume 6, Number 1, (ISSN 2277-8756)
6 December 2015 Volume 6 SI.No 1 A Facile Spectrophotometric Determination of Osmium(VIII) in very low 1 - 6 concentrations using DL-Pencillamine as Chromogenic Reagent Bincy Joseph and Abraham Joseph 2 Evaluation of insecticidal and larvicidal activity and the detection of lipase 7 - 14 from Eupatorium odoratum leaf extracts. Soniya P.A., Navia Sebastian and Dr. Deepa G Muricken 3 Biosynthesis of Gold Nanoparticles using Bacteria and Fungi 15 - 21 Nivea Wilson, Nileena PV, Dhanya KC 4 Comparative Study on Antibacterial profiles of Kanakasava 22 - 25 Elizabeth P Thomas, Uma V Menon P, Afeeda Beegum M K, Athira MR, Darsana NC, and KS Dhaneesha Sivadas 5 Antibacterial effect of citrus fruit juice against enteric and non enteric 26 - 33 pathogenic bacteria Geenat Paul , Rigi George A , Rahima N A 6 Hydrogen Peroxide Scavenging Ability of Scoparia Dulci&Piper Longum Linn 34 - 40 ABAS Geetha T December 2015 7 Effect of plant growth promoting Proteus spp.on fenugreek 41 - 49 Vol. 6, No.1 Jimtha John C, Mrudula M M, Anisha C, and Radhakrishnan EK 8 A study on the antibiotic sensitivity test of selected isolates from facial 50 - 60 microflora and their susceptibility to commercial face washes Femina K K, Finciya A T, Hanna T V, Jasira V, Jini Joy P & Mabel Merlen Jacob 9 Bioactive peptides derived from milk: a review 61 - 65 Reshma Chandran P 5 1 0 2 Annals of Basic and Applied Sciences December 2015, Volume 6, Number 1, (ISSN 2277-8756). (Official publication of St Mary's College, Trichur - 680020, Kerala, India) Editor Dr Meera C R Department of Microbiology, St. -
Cytogenetics of Four Species of Genus Berberis L
© 2014 The Japan Mendel Society Cytologia 79(1): 111–117 Cytogenetics of Four Species of Genus Berberis L. (Berberidaceae Juss.) from the Western Himalayas Syed M. Jeelani1*, Sanjeev Kumar2, Savita Rani3, Santosh Kumari2, and Raghbir C. Gupta2 1 Division of Floriculture, Medicinal and Aromatic Plants (FMAP), Shere-e- Kashmir University of Agricultural Sciences and Technology of Kashmir, (SKUAST-K), Shalimar, Srinagar (Jammu & Kashmir) 190025 2 Department of Botany, Punjabi University, Patiala, Punjab 147 002, India 3 Department of Agricultural Biotechnology CSK HPKV Palampur-176062 Received August 8, 2013; accepted January 12, 2014 Summary The genus Berberis belongs to the family Berberidaceae and includes mostly wild, important medicinal plants. Meiotic studies have been carried out for analyzing the genetic diversity in 11 populations covering four species from different selected parts of the Western Himalayas, such as Kashmir (Jammu and Kashmir) and the districts of Kangra and Sirmaur (Himachal Pradesh). The species being cytologically worked out for the first time worldwide include B. ceratophylla (2n = 28). Similarly, B. vulgaris (2n = 28), although worked out earlier from other countries, is being reported cytologically for the first time from India. The meiotic course in most of these populations has been observed to be normal except for a single population each of B. asiatica, B. ceratophylla and B. vulgaris marked with abnormal meiosis. Out of these three species, two (B. asiatica and B. vulgaris) are marked with cytomixis. These meiotic abnormalities lead to the production of heterogenous-sized fertile pollen grains and reduced pollen fertility. Key words Berberis, Chromosome number, Meiotic abnormality, Western Himalayas. Berberis is popularly known as barberry and is the largest genus of the family containing about 500 species native to the temperate and subtropical regions of Europe, Asia, Africa, and North and South America (Ahrendt 1961). -
Citrus Industry Biosecurity Plan 2015
Industry Biosecurity Plan for the Citrus Industry Version 3.0 July 2015 PLANT HEALTH AUSTRALIA | Citrus Industry Biosecurity Plan 2015 Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2004 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2004) Industry Biosecurity Plan for the Citrus Industry (Version 3.0 – July 2015). Plant Health Australia, Canberra, ACT. Disclaimer: The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific and independent professional advice.