Rottboellia Cochinchinensis)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Gossypium Barbadense: an Approach for in Situ Conservation in Cerrado, Brazil
Journal of Agricultural Science; Vol. 8, No. 8; 2016 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Gossypium barbadense: An Approach for in Situ Conservation in Cerrado, Brazil Andrezza Arantes Castro1, Lúcia Vieira Hoffmann2, Thiago Henrique Lima1, Aryanny Irene Domingos Oliveira1, Rafaela Ribeiro Brito1, Letícia de Maria Oliveira Mendes1, Caio César Oliveira Pereira1, Guilherme Malafaia1 & Ivandilson Pessoa Pinto de Menezes1 1 Genetic Molecular Laboratory, Instituto Federal Goiano, Urutaí, Goiás, Brazil 2 Embrapa Algodão, Campina Grande, Paraíba, Brazil Correspondence: Ivandilson Pessoa Pinto de Menezes, School Genetic Molecular Laboratory, Instituto Federal Goiano, Urutaí, Brazil. Tel: 55-64-9279-9708. E-mail: [email protected] Received: May 27, 2016 Accepted: June 16, 2016 Online Published: July 15, 2016 doi:10.5539/jas.v8n8p59 URL:http://dx.doi.org/10.5539/jas.v8n8p59 Abstract Abandonment of planting of Gossypium barbadense has endangered its existence. The objective was to determine the characteristicof the maintenance of Gossypium barbadense in the Central-West Region of Brazil, with the aim to foster the conservation of the species. Expeditions were conducted in 2014-2015 in Southeast Goiás, where cotton collection has not been reported before. Data from previous collections in Goiás, Mato Grosso, Mato Grosso do Sul and Distrito Federal available in Albrana database were considered this study. In the Central-West Region of Brazil, 466 accesses of G. barbadense were recorded, found most frequently in backyards (91.4%), but also spontaneous plants (7.5%), farm boundary (0.8%) and commercial farming (0.2%) have also been found. The main use indicated by VDU was as medicinal plant (0.66), therefore this is the main reason for in situ preservation. -
(Gramineae) Background Concerned, It
BLUMEA 31 (1986) 281-307 Generic delimitationof Rottboelliaand related genera (Gramineae) J.F. Veldkamp R. de Koning & M.S.M. Sosef Rijksherbarium,Leiden, The Netherlands Summary Generic delimitations within the Rottboelliastrae Stapf and Coelorachidastrae Clayton (for- mal name) are revised. Coelorachis Brongn., Hackelochloa O. Ktze, Heteropholis C.E. Hubb., in Ratzeburgia Kunth, and Rottboellia formosa R. Br, are to be included Mnesithea Kunth. Heteropholis cochinchinensis (Lour.) Clayton and its variety chenii (Hsu) Sosef & Koning are varieties of Mnesithea laevis (Retz.) Kunth. Robynsiochloa Jacq.-Félix is to be included in Rottboellia L.f. The necessary new combinations, a list of genera and representative species, and a key to the genera are given. In the Appendix a new species of Rottboellia, R. paradoxa Koning & Sosef, is described from the Philippines. The enigmatic species Rottboellia villosa Poir. is transferred to Schizachyrium villosum (Poir.) Veldk., comb. nov. Introduction Historical background The of the within the of taxa delimitation genera group represented by Rottboel- lia L. f. and its closest relatives, here taken in the sense of Clayton (1973), has always posed a considerable problem. former In times Rottboellia contained many species. It was divided up in various the of Hackel seemed most ways, but system 5 subgenera as proposed by (1889) authoritative: Coelorachis (Brongn.) Hack., Hemarthria (R. Br.) Hack., Peltophorus (Desv.) HackPhacelurus (Griseb.) Hack., and Thyrsostachys Hack. When at the end of the last century and in the beginning of the present one many large grass genera were split up, e.g. Andropogon, Panicum, Stapf (1917) raised Hackel's subgenera to generic rank, reviving some old names formerly treated as synonyms, and created several new of the of other unable finish his ones. -
Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017
Broadleaf Woodoats (Chasmanthium latifolia) Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017 1 Introduction This 5 hour workshop is an introduction to the identification of grasses using hands- on dissection of diverse species found within the Texas middle Gulf Coast region (although most have a distribution well into the state and beyond). By the allotted time period the student should have acquired enough knowledge to identify most grass species in Texas to at least the genus level. For the sake of brevity grass physiology and reproduction will not be discussed. Materials provided: Dried specimens of grass species for each student to dissect Jewelry loupe 30x pocket glass magnifier Battery-powered, flexible USB light Dissecting tweezer and needle Rigid white paper background Handout: - Grass Plant Morphology - Types of Grass Inflorescences - Taxonomic description and habitat of each dissected species. - Key to all grass species of Texas - References - Glossary Itinerary (subject to change) 0900: Introduction and house keeping 0905: Structure of the course 0910: Identification and use of grass dissection tools 0915- 1145: Basic structure of the grass Identification terms Dissection of grass samples 1145 – 1230: Lunch 1230 - 1345: Field trip of area and collection by each student of one fresh grass species to identify back in the classroom. 1345 - 1400: Conclusion and discussion 2 Grass Structure spikelet pedicel inflorescence rachis culm collar internode ------ leaf blade leaf sheath node crown fibrous roots 3 Grass shoot. The above ground structure of the grass. Root. The below ground portion of the main axis of the grass, without leaves, nodes or internodes, and absorbing water and nutrients from the soil. -
The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014
The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014 In the pages that follow are treatments that have been revised since the publication of the Jepson eFlora, Revision 1 (July 2013). The information in these revisions is intended to supersede that in the second edition of The Jepson Manual (2012). The revised treatments, as well as errata and other small changes not noted here, are included in the Jepson eFlora (http://ucjeps.berkeley.edu/IJM.html). For a list of errata and small changes in treatments that are not included here, please see: http://ucjeps.berkeley.edu/JM12_errata.html Citation for the entire Jepson eFlora: Jepson Flora Project (eds.) [year] Jepson eFlora, http://ucjeps.berkeley.edu/IJM.html [accessed on month, day, year] Citation for an individual treatment in this supplement: [Author of taxon treatment] 2014. [Taxon name], Revision 2, in Jepson Flora Project (eds.) Jepson eFlora, [URL for treatment]. Accessed on [month, day, year]. Copyright © 2014 Regents of the University of California Supplement II, Page 1 Summary of changes made in Revision 2 of the Jepson eFlora, December 2014 PTERIDACEAE *Pteridaceae key to genera: All of the CA members of Cheilanthes transferred to Myriopteris *Cheilanthes: Cheilanthes clevelandii D. C. Eaton changed to Myriopteris clevelandii (D. C. Eaton) Grusz & Windham, as native Cheilanthes cooperae D. C. Eaton changed to Myriopteris cooperae (D. C. Eaton) Grusz & Windham, as native Cheilanthes covillei Maxon changed to Myriopteris covillei (Maxon) Á. Löve & D. Löve, as native Cheilanthes feei T. Moore changed to Myriopteris gracilis Fée, as native Cheilanthes gracillima D. -
Genetic Variability Studies in Gossypium Barbadense L
Electronic Journal of Plant Breeding, 1(4): 961-965 (July 2010) Research Article Genetic variability studies in Gossypium barbadense L. genotypes for seed cotton yield and its yield components K. P. M. Dhamayanathi , S. Manickam and K. Rathinavel Abstract A study was carried out during kharif 2006-07 with twenty five Gossypium barbadense L genotypes to obtain information on genetic variability, heritability and genetic advance for seed cotton yield and its yield attributes. Significant differences were observed for characters among genotypes. High genetic differences were recorded for nodes/plant, sympodia, bolls as well as fruiting points per plant, seed cotton yield, lint index indicating ample scope for genetic improvement of these characters through selection. Results also revealed high heritability coupled with high genetic advance for yield and most of the yield components as well as fibre quality traits. Sympodia/plant, fruiting point /plant, number of nodes/plant, number of bolls per plant, and lint index were positively correlated with seed cotton yield per plant and appeared to be interrelated with each other. It is suggested that these characters could be considered as selection criteria in improving the seed cotton yield of G. barbadense , L genotypes. Key words : Gossypium barbadense , genetic variability, heritability, genetic advance, lint index, selection criteria Introduction Seed cotton yield is a complex trait governed by Cotton is the most widely used vegetable fibre and several yield contributing characters such as plant also the most important raw material for the textile height, number of monopodia, number of industry, grown in tropical and subtropical regions sympodia, number of bolls, number of fruiting in more than 80 countries all over the world. -
Flora of China 22: 647–648. 2006. 222. OPHIUROS C. F. Gaertner
Flora of China 22: 647–648. 2006. 222. OPHIUROS C. F. Gaertner, Suppl. Carp. 3. 1805. 蛇尾草属 she wei cao shu Sun Bixing (孙必兴 Sun Bi-sin); Sylvia M. Phillips Annual or perennial. Culms robust. Leaf blades linear, flat; ligule membranous. Inflorescence of many single racemes ag- gregated into a spathate compound panicle; racemes cylindrical, fragile, transversely or slightly obliquely articulated, spikelets borne alternately on opposite sides of rachis; rachis internodes stout, semi-cylindrical, base with central peg, apex hollow. Sessile spikelet sunk into hollow in rachis; lower glume oblong, leathery, broadly convex, smooth, areolate or latticelike; marginally 2-keeled, with or without narrow wings toward apex; lower floret male with a palea; upper floret hyaline with entire awnless lemma. Pedicelled spikelet absent; pedicel linear, adnate to adjacent internode, sometimes barely distinguishable from it. Four species: NE tropical Africa, tropical Asia, Australia; one species in China. 1. Ophiuros exaltatus (Linnaeus) Kuntze, Revis. Gen. Pl. 2: 780. 1891. 蛇尾草 she wei cao Aegilops exaltata Linnaeus, Mant. Pl. 2: 575. 1771; Mnesithea exaltata (Linnaeus) Skeels; Ophiuros corymbosus (Linnaeus f.) Gaertner; Rottboellia corymbosa Linnaeus f. Perennial. Culms often bulbously swollen at base, erect, 1–2 m tall, 4–6 mm in diam., simple or branched. Leaf sheaths with tubercle-based hairs or glabrous, margins densely ciliate with rather rigid tubercle-based hairs; leaf blades broadly linear, 30–60 × 0.5–2.5 cm, midrib broad and white, margins pecti- nate, base rounded or subcordate, apex long-acuminate; ligule 1–2 mm, glabrous. Racemes often fastigiately clustered, slen- der, 0.5–1.5 cm, base enclosed by a spatheole; rachis very fra- gile, internodes ca. -
CHEMISTRY and HISTOLOGY of the GLANDS of the COTTON PLANT, with NOTES on the OCCURRENCE of SIMILAR GLANDS in RELATED Plantsl
CHEMISTRY AND HISTOLOGY OF THE GLANDS OF THE COTTON PLANT, WITH NOTES ON THE OCCURRENCE OF SIMILAR GLANDS IN RELATED PLANTSl By ERNEST E. STANFORD, Scientific Assistant, and ARNO VIEHOEVER, Pharmacog- nosist in Charge, Pharmacognosy Laboratory, Bureau of Chemistry, United States Department of Agriculture INTRODUCTION The work herein reported forms a portion of a chemical and biological investigation of the cotton plant (Gossypium spp.), the purpose of which is to isolate and determine the substance or substances which attract the boll weevil. A previous paper (77)2 discusses the isolation of certain glucosids and the products of their hydrolysis, as well as preliminary studies of an ethereal oil which manifested some attraction for the boll weevil. Both the glucosids and this oil, as well as several other sub- stances, are largely localized in prominent internal glands which are very numerous in nearly all parts of the cotton plant. The main purpose of this paper is to discuss the occurrence, formation, structure, and con- tents of these glands. Glands of another type, more properly referred to as "nectaries/' also occur in the cotton plant. These are superficial in position and definitely localized. The internal glands have nothing in common with these nectaries save the function of secretion. In certain taxonomic and other literature, however, either or both types are referred to indis- criminately simply as "glands." Therefore, it seems advisable also to discuss briefly in this paper the nature and occurrence of the nectaries, in order to distinguish them clearly from the internal secretory organs, which form the main subject of the present study. -
Thespesia Populnea (L
SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 7 F. R. Fosberg Thespesia Populnea (L. ) and M.-H. Sachet Solander ex Correa and Thespesia populneoides (Roxburgh) Kosteletsky (Malvaceae) SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1972 ABSTRACT Fosberg, F. R. and M.-H. Sachet. Thespesia populnea (L.) Solander ex Correa and Thespesia populneoides (Roxburgh) Kosteletsky (Malvaceae) . Smithsonian Con- tributions to Botany, number 7, 13 pages, 6 figures. 1972.-The pantropical Thespesia populnea (Malvaceae) is shown to be clearly separable into two species : T. popul- nea, which is pantropical on seashores, and T. populneoides of the Indian Ocean area, extending to Hainan Island, usually, but not always, somewhat inland. Hybrids between the two species occur where their ranges touch, and in Ceylon some of these hybrids have been widely propagated vegetatively as ornamentals and “living fence-posts.” Library of Congress Cataloging in Publication Data Fosberg, Francis Raymond, 1908- Thespesia populnea (L.) Solander ex Correa and Thespesia populneoides (Roxburgh) Kosteletsky (Malvaceae) (Smithsonian contributions to Botany, no. 7) Bibliography: p. 1. Thespesia populnea. 2. Thespesia populneoides. I. Sachet, Marie-HCkne, joint author. 11. Title. 111. Series: Smithsonian Institution. Smithsonian contributions to Botany, no. 7. QKlS2747 no. 7 [QK495.M27] 581’ .08s 1583’ ,171 70-39683 Oficial publication date is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. For sale by the -
ITCHGRASS (Rottboellia Cochinchinensis) from COSTA RICA1
Molecular basis for resistance to fluazifop-P-butyl in itchgrass ... 143 MOLECULAR BASIS FOR RESISTANCE TO FLUAZIFOP-P-BUTYL IN ITCHGRASS (Rottboellia cochinchinensis) FROM COSTA RICA1 Base Molecular para Resistência a Fluazifop-P-Butyl em Capim-Camalote (Rottboellia cochinchinensis) da Costa Rica CASTILLO-MATAMOROS, R.2, BRENES-ANGULO, A.2, HERRERA-MURILLO, F.3, and GÓMEZ-ALPÍZAR. L.2 ABSTRACT - Rottboellia cochinchinensis is an annual grass weed species known as itchgrass, or “caminadora” in America´s Spanish speaking countries, and has become a major and troublesome weed in several crops. The application of fluazifop-P-butyl at recommended rates (125 g a.i. ha-1) was observed to be failing to control itchgrass in a field in San José, Upala county, Alajuela province, Costa Rica. Plants from the putative resistant R. cochinchinensis population survived fluazifop-P-butyl when treated with 250 g a.i. ha-1 (2X label rate) at the three- to four-leaf stage under greenhouse conditions. PCR amplification and sequencing of partial carboxyl transferase domain (CT) of the acetyl-CoA carboxylase (ACCase) gene were used to determine the molecular mechanism of resistance. A single non-synonymous point mutation from TGG (susceptible plants) to TGC (putative resistant plants) that leads to a Trp-2027-Cys substitution was found. This Trp-2027-Cys mutation is known to confer resistance to all aryloxyphenoxyproprionate (APP) herbicides to which fluazifop-P-butyl belongs. To the best of our knowledge, this is the first report of fluazifop-P-butyl resistance and a mutation at position 2027 for a Costa Rican R. cochinchinensis population. -
Influência De Fertilizantes Foliares, Na Eficácia Do
Revista Brasileira de Herbicidas, v.15, n.1, p.89-96, jan./mar. 2016 (ISSN 2236-1065) DOI: http://dx.doi.org/10.7824/rbh.v15i1.437 www.rbherbicidas.com.br Biology and management of Rottboellia cochinchinensis1 Biologia e manejo de Rottboellia cochinchinensis Núbia Maria Correia2 Abstract - Rottboellia cochinchinensis (Lour.) Clayton, popularly known as itchgrass is the main weed of at least 18 crops grown in many countries. Therefore, it is proposed, in this review, to present biological and management aspects of this important weed species. It is an annual or perennial plant reproduced by seeds or from pieces of stems, reaching up to 4.0 m high. The seeds can remain dormant in the soil for up to four years and the light is not a limiting factor for germination. Although with the system clear/dark there is stimulating seed germination. The rapid development of the root system, with subsequent formation of the aerial part, favors the space occupation by plants. Furthermore, the decomposing plant waste of that species release to soil phytotoxic compounds which can inhibit germination and growth of adjacent or species, whether harmful or cultured. In rural workers, it cause skin irritation by contact, with rigid trichomes of leaf sheaths. There is little information in the literature on the chemical control of this species, especially for pre-emergence herbicides applied. This can be attributed to the difficulty of the product crossing the structure surrounding the seeds and thus reaching the embryo. In sugarcane, clomazone + imazapyr, clomazone + isoxaflutole and sulfomethuron + diuron + hexazinone, sprayed pre-emergence resulted in satisfactory controlling R. -
Table E-1. Vegetation Species Found on Wake Atoll
Table E-1. Vegetation Species Found on Wake Atoll Scientific Name Common Name Abutilon albescens Sweet monkeybush Abutilon asiaticum var. albescens Indian mallow Agave americana American century plant Agave angustifolia century plant Agave sisalana Sisal Agave sp. agave sp. Aglaonema commutatum Aglaonema Allium cepa Onion Allium fistulosum Green onion Allium sp. Onion sp. Allium tuberosum Chinese chive Aloe vera Aloe Alpinia galanga Greater galangal Alpinia purpurata Pink ginger; Jungle Queen Amaranthus dubius Spleen amaranth Amaranthus graecizans Tumbleweed Amaranthus tricolor Joseph′s coat Amaranthus viridis Slender amaranth Ananas comosus Pineapple Anethum graveolens Dill Annona muricata Soursop Annona squamosa Sweetsop Apium petroselinum Garden parsley Araucaria heterophylla Norfolk Island pine Asparagus densiflorus Sprenger asparagus fern Asplenium nidus Bird’s-nest fern Barringtonia asiatica Fish poison tree Bauhinia sp. Camel’s foot tree Bidens alba white beggar-ticks Bidens pilosa var. minor Beggar-ticks Boerhavia albiflora var. powelliae -- Boerhavia diffusa Red Spiderling Boerhavia repens anena Boerhavia sp. Spiderling sp. Bothriochloa pertusa Indian blue grass Bougainvillea spectabilis bougainvillea Brassica nigra Mustard Brassica oleracea var. italica Brocolli Caesalpinia bonduc Grey nickers Caladium bicolor Caladium Calotropis gigantea Crown flower Capsicum frutescens Cayenne pepper Capsicum annuum chili pepper Table E-1. Vegetation Species Found on Wake Atoll Scientific Name Common Name Carica papaya Papaya Casuarina equisetifolia