Mnesithea Granularis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Density, Distribution and Habitat Requirements for the Ozark Pocket Gopher (Geomys Bursarius Ozarkensis)
DENSITY, DISTRIBUTION AND HABITAT REQUIREMENTS FOR THE OZARK POCKET GOPHER (Geomys bursarius ozarkensis) Audrey Allbach Kershen, B. S. Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS May 2004 APPROVED: Kenneth L. Dickson, Co-Major Professor Douglas A. Elrod, Co-Major Professor Thomas L. Beitinger, Committee Member Sandra L. Terrell, Interim Dean of the Robert B. Toulouse School of Graduate Studies Kershen, Audrey Allbach, Density, distribution and habitat requirements for the Ozark pocket gopher (Geomys bursarius ozarkensis). Master of Science (Environmental Science), May 2004, 67 pp., 6 tables, 6 figures, 69 references. A new subspecies of the plains pocket gopher (Geomys bursarius ozarkensis), located in the Ozark Mountains of north central Arkansas, was recently described by Elrod et al. (2000). Current range for G. b. ozarkensis was established, habitat preference was assessed by analyzing soil samples, vegetation and distance to stream and potential pocket gopher habitat within the current range was identified. A census technique was used to estimate a total density of 3, 564 pocket gophers. Through automobile and aerial survey 51 known fields of inhabitance were located extending the range slightly. Soil analyses indicated loamy sand as the most common texture with a slightly acidic pH and a broad range of values for other measured soil parameters and 21 families of vegetation were identified. All inhabited fields were located within an average of 107.2m from waterways and over 1,600 hectares of possible suitable habitat was identified. ACKNOWLEDGMENTS Appreciation is extended to the members of my committee, Dr. Kenneth Dickson, Dr. Douglas Elrod and Dr. -
(Poaceae: Paniceae), with Lectotypification of Panicum Divisum
Phytotaxa 181 (1): 059–060 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Correspondence ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.181.1.5 A new combination in Cenchrus (Poaceae: Paniceae), with lectotypification of Panicum divisum FILIP VERLOOVE1, RAFAËL GOVAERTS2 & KARL PETER BUTTLER3 1Botanic Garden of Meise, Nieuwelaan 38, B-1860 Meise, Belgium [[email protected]] 2Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, England [[email protected]] 3Orber Straße 38, D-60386 Frankfurt am Main, Germany [[email protected]] Abstract The new combination, Cenchrus divisus (J.F. Gmelin) Verloove, Govaerts & Buttler, is proposed for the species widely known as Pennisetum divisum (J.F. Gmelin) Henrard, and a lectotype for Panicum divisum J.F. Gmelin is designated. Key words: Cenchrus, lectotypification, nomenclature, Panicum As a result of recent molecular phylogenetic studies the generic boundaries of Cenchrus L. and related genera have considerably changed. Donadio et al. (2009) found that Cenchrus and Pennisetum Rich. are very closely related and demonstrated that most species of Cenchrus are in fact nested in Pennisetum. Chemisquy et al. (2010) confirmed these results and recommended merging both genera. The generic name Cenchrus having priority, all species of Pennisetum needed to be transferred to Cenchrus. Morrone (in Chemisquy et al., 2010) published new combinations in Cenchrus for most of the species and Symon (2010) made some additional name changes for a few Australian taxa. The correct names in Cenchrus for all but one of the 15 Pennisetum species in Europe and the Mediterranean area, including four new combinations, were given in Verloove (2012). -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Indigenous Knowledge of Local Communities of Malwa Region on Soil and Water Conservation
Int.J.Curr.Microbiol.App.Sci (2016) 5(2): 830-835 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 5 Number 2(2016) pp. 830-835 Journal homepage: http://www.ijcmas.com Original Research Article doi: http://dx.doi.org/10.20546/ijcmas.2016.502.094 Indigenous Knowledge of Local Communities of Malwa Region on Soil and Water Conservation Manohar Pawar1*, Nitesh Bhargava2, Amit Kumar Uday3 and Munesh Meena3 Society for Advocacy & Reforms, 32 Shivkripa, SBI Colony, Dewas Road Ujjain, India *Corresponding author ABSTRACT After half a century of failed soil and water conservation projects in tropical K e yw or ds developing countries, technical specialists and policy makers are Malwa, reconsidering their strategy. It is increasingly recognised in Malwa region Indigenous, that the land users have valuable environmental knowledge themselves. This Soil and Water review explores two hypotheses: first, that much can be learned from Conservation previously ignored indigenous soil and water conservation practices; second, Article Info that can habitually act as a suitable starting point for the development of technologies and programmes. However, information on ISWC (Indigenous Accepted: 10 January 2016 Soil and Water Conservation) is patchy and scattered. Total 14 indigenous Available Online: Soil and water Conservation practises have been identified in the area. 10 February 2016 Result showed that these techniques were more suitable accord to geographic location. Introduction Soil and water are the basic resources and their interactions are major factors affecting these must be conserved as carefully as erosion-sedimentation processes. possible. The pressure of increasing population neutralizes all efforts to raise the The semi–arid regions with few intense standard of living, while loss of fertility in rainfall events and poor soil cover condition the soil itself nullifies the value of any produce more sediment per unit area. -
Grass Genera in Townsville
Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers. -
Published Vestigations Together Study Existing Accept Arrangements
Notes on the Nomenclature of some grasses II by Dr. J.Th. Henrard (Rijksherbarium, Leiden) (Issued September 10th, 1941). In a former article new combinations and critical observa- 1) many all the world. New in- tions were published on various grasses over vestigations in critical genera together with the study of the existing literature made it necessary to accept various other arrangements in this important family. The old system of Bentham, once the basis for a total is and modified and review, now more more many tribes are and limited. The have purified more exactly most recent system we at the moment, is Hubbard’s treatment of this family in the work of Hutchinson: The families of flowering plants. Vol. II. Monocotyle- dons. The grasses are divided there into 26 tribes. We have here the great advantage that aberrant which are into genera, not easy to place one of the formerly accepted tribes, are given as representatives of distinct new tribes. The curious tropical genus Streptochaeta f.i. con- stitutes the tribe of the Streptochaeteae. It is quite acceptable that tribes consist of but may one genus, especially when such a genus is a totally deviating one and cannot be inserted into one of the already existing ones. Such tribes are f.i. the Nardeae with the only northern genus Nardus, and the Mediterranean tribe of the Lygeeae with the only genus Lygeum, one of the Esparto grasses. It is therefore wonder no that Hubbard creates a new tribe, the Anomochloeae, for one of the most curious tropical grasses of the world. -
(Gramineae) Background Concerned, It
BLUMEA 31 (1986) 281-307 Generic delimitationof Rottboelliaand related genera (Gramineae) J.F. Veldkamp R. de Koning & M.S.M. Sosef Rijksherbarium,Leiden, The Netherlands Summary Generic delimitations within the Rottboelliastrae Stapf and Coelorachidastrae Clayton (for- mal name) are revised. Coelorachis Brongn., Hackelochloa O. Ktze, Heteropholis C.E. Hubb., in Ratzeburgia Kunth, and Rottboellia formosa R. Br, are to be included Mnesithea Kunth. Heteropholis cochinchinensis (Lour.) Clayton and its variety chenii (Hsu) Sosef & Koning are varieties of Mnesithea laevis (Retz.) Kunth. Robynsiochloa Jacq.-Félix is to be included in Rottboellia L.f. The necessary new combinations, a list of genera and representative species, and a key to the genera are given. In the Appendix a new species of Rottboellia, R. paradoxa Koning & Sosef, is described from the Philippines. The enigmatic species Rottboellia villosa Poir. is transferred to Schizachyrium villosum (Poir.) Veldk., comb. nov. Introduction Historical background The of the within the of taxa delimitation genera group represented by Rottboel- lia L. f. and its closest relatives, here taken in the sense of Clayton (1973), has always posed a considerable problem. former In times Rottboellia contained many species. It was divided up in various the of Hackel seemed most ways, but system 5 subgenera as proposed by (1889) authoritative: Coelorachis (Brongn.) Hack., Hemarthria (R. Br.) Hack., Peltophorus (Desv.) HackPhacelurus (Griseb.) Hack., and Thyrsostachys Hack. When at the end of the last century and in the beginning of the present one many large grass genera were split up, e.g. Andropogon, Panicum, Stapf (1917) raised Hackel's subgenera to generic rank, reviving some old names formerly treated as synonyms, and created several new of the of other unable finish his ones. -
Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017
Broadleaf Woodoats (Chasmanthium latifolia) Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017 1 Introduction This 5 hour workshop is an introduction to the identification of grasses using hands- on dissection of diverse species found within the Texas middle Gulf Coast region (although most have a distribution well into the state and beyond). By the allotted time period the student should have acquired enough knowledge to identify most grass species in Texas to at least the genus level. For the sake of brevity grass physiology and reproduction will not be discussed. Materials provided: Dried specimens of grass species for each student to dissect Jewelry loupe 30x pocket glass magnifier Battery-powered, flexible USB light Dissecting tweezer and needle Rigid white paper background Handout: - Grass Plant Morphology - Types of Grass Inflorescences - Taxonomic description and habitat of each dissected species. - Key to all grass species of Texas - References - Glossary Itinerary (subject to change) 0900: Introduction and house keeping 0905: Structure of the course 0910: Identification and use of grass dissection tools 0915- 1145: Basic structure of the grass Identification terms Dissection of grass samples 1145 – 1230: Lunch 1230 - 1345: Field trip of area and collection by each student of one fresh grass species to identify back in the classroom. 1345 - 1400: Conclusion and discussion 2 Grass Structure spikelet pedicel inflorescence rachis culm collar internode ------ leaf blade leaf sheath node crown fibrous roots 3 Grass shoot. The above ground structure of the grass. Root. The below ground portion of the main axis of the grass, without leaves, nodes or internodes, and absorbing water and nutrients from the soil. -
IAPT Chromosome Data 28
TAXON 67 (6) • December 2018: 1235–1245 Marhold & Kučera (eds.) • IAPT chromosome data 28 IAPT CHROMOSOME DATA IAPT chromosome data 28 Edited by Karol Marhold & Jaromír Kučera DOI https://doi.org/10.12705/676.39 Julio Rubén Daviña & Ana Isabel Honfi* Chromosome numbers counted by L. Delgado and ploidy level estimated by B. Rojas-Andrés and N. López-González; collectors: Programa de Estudios Florísticos y Genética Vegetal, Instituto AA = Antonio Abad, AT = Andreas Tribsch, BR = Blanca Rojas- de Biología Subtropical CONICET-Universidad Nacional de Andrés, DGL = David Gutiérrez Larruscain, DP = Daniel Pinto, JASA Misiones, nodo Posadas, Rivadavia 2370, 3300 Posadas, Argentina = José Ángel Sánchez Agudo, JPG = Julio Peñas de Giles, LMC = * Author for correspondence: [email protected] Luz Mª Muñoz Centeno, MO = M. Montserrat Martínez-Ortega, MS = María Santos Vicente, NLG = Noemí López-González, NPG = This study was supported by Agencia Nacional de Promoción Nélida Padilla-García, SA = Santiago Andrés, SB = Sara Barrios, VL Científica y Técnica (ANPCyT) grant nos. PICT-2014-2218 and PICT- = Víctor Lucía, XG = Ximena Giráldez. 2016-1637, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). This work has been supported by the Spanish Ministerio de Economía y Competitividad (projects CGL2009-07555, CGL2012- All materials CHN; collectors: D = J.R. Daviña, H = A.I. Honfi, 32574, Flora iberica VIII [CGL2008-02982-C03-02/CLI], Flora L = B. Leuenberger. iberica IX [CGL2011-28613-C03-03], Flora iberica X [CGL2014- 52787-C3-2-P]); the Spanish Ministerio de Ciencia e Innovación AMARYLLIDACEAE (Ph.D. grants to BR and NLG), and the University of Salamanca Habranthus barrosianus Hunz. -
CASTE SYSTEM in INDIA Iwaiter of Hibrarp & Information ^Titntt
CASTE SYSTEM IN INDIA A SELECT ANNOTATED BIBLIOGRAPHY Submitted in partial fulfilment of the requirements for the award of the degree of iWaiter of Hibrarp & information ^titntt 1994-95 BY AMEENA KHATOON Roll No. 94 LSM • 09 Enroiament No. V • 6409 UNDER THE SUPERVISION OF Mr. Shabahat Husaln (Chairman) DEPARTMENT OF LIBRARY & INFORMATION SCIENCE ALIGARH MUSLIM UNIVERSITY ALIGARH (INDIA) 1995 T: 2 8 K:'^ 1996 DS2675 d^ r1^ . 0-^' =^ Uo ulna J/ f —> ^^^^^^^^K CONTENTS^, • • • Acknowledgement 1 -11 • • • • Scope and Methodology III - VI Introduction 1-ls List of Subject Heading . 7i- B$' Annotated Bibliography 87 -^^^ Author Index .zm - 243 Title Index X4^-Z^t L —i ACKNOWLEDGEMENT I would like to express my sincere and earnest thanks to my teacher and supervisor Mr. Shabahat Husain (Chairman), who inspite of his many pre Qoccupat ions spared his precious time to guide and inspire me at each and every step, during the course of this investigation. His deep critical understanding of the problem helped me in compiling this bibliography. I am highly indebted to eminent teacher Mr. Hasan Zamarrud, Reader, Department of Library & Information Science, Aligarh Muslim University, Aligarh for the encourage Cment that I have always received from hijft* during the period I have ben associated with the department of Library Science. I am also highly grateful to the respect teachers of my department professor, Mohammadd Sabir Husain, Ex-Chairman, S. Mustafa Zaidi, Reader, Mr. M.A.K. Khan, Ex-Reader, Department of Library & Information Science, A.M.U., Aligarh. I also want to acknowledge Messrs. Mohd Aslam, Asif Farid, Jamal Ahmad Siddiqui, who extended their 11 full Co-operation, whenever I needed. -
Supporting Information
Supporting Information Piperno et al. 10.1073/pnas.0812525106 SI Materials and Methods structures which are homologous to each other, have been shown Modern Reference Collections and Microfossil Identification. Our to be controlled primarily by tga1, a major domestication gene reference collections of phytoliths and starch grains include with significant effects (10, 17, 18). tga1 underwrites the degree more than 2,000 and about 500 species, respectively, and include of silicification of the glumes and rachids (cupules) of the many wild taxa of economic importance, most of the known fruitcases and cobs. In teosinte, the entire epidermis, consisting domesticated plants native to Central and South America, and of both the long and short cells, is silicified, whereas in maize wild progenitors and other close wild relatives of the crop plants. (which requires less natural protection from its herbivores), Investigating the history of maize and squash in the study region silicification is greatly reduced, and only the short epidermal was one of our priorities; therefore, our reference collections cells (which produce the phytoliths called rondels) are filled with include all known species and subspecies of teosinte; 24 maize silica. In addition, the rondels produced in teosinte are more races from Central and South America, including 10 traditional highly decorated than those in maize (a result also of more Mexican land races; and all domesticated and most known wild extensive lignification in teosinte), and the rondel phytoliths in species of Cucurbita, including all those found in Mesoamerica, maize cobs have a more diverse morphology and are in forms not such as C. -
Only for Colleges of D.U.
1 Department of Hindi University of Delhi Delhi-110007 ADHOC LECTURER PANEL (2018-2019) (only for Colleges of D.U.) (ST CATEGORY) Sl.No. Name & Address M/F B.A. M.A. M.A. % M.Phil. Ph.D. JRF/NET Cat. Adhoc Div. Div. Cat. CATEGORY-I 1. Dr. Vinod Meena M I I CGPA 6.17 Yes Yes, JNU JRF ST I Flat No. 139, Shri Keshav Kunj (JNU) Apartment, Sector 17, Pocket D, 66.7 Dwarka, New Delhi-110075 2. Dr. Chain Singh Meena M I I 60.44 Yes Yes, DU Net ST I H. No. 623/4, Devli Village, New Delhi-110062 2 CATEGORY-II 3. Dr. Sumit Kumar Meena M II I CGPA 6.92 No Yes, CUR JRF ST II Kuagon, P - Bichpuri, (CUR) T - Bamanwas, 100 D : Sawai Madhopur Rajasthan-322212 4. Dr. Lakhima Deori M II I CGPA 9.25 Yes Yes, JNU Exempted ST II Plot No. 333, Shiv Gaurakhnath (GU) Temple, Rajpur Khurd, Chattarpur, 66.25 New Delhi-110068 5. Dr. Jai Singh Meena M II I CGPA 6.05 Yes Yes, JNU JRF ST II 819, Pocket 01, Paschim Puri, New (JNU) Delhi-110063 65.5 6. Dr. Santosh M II I 63.45 No Yes, OU Exempted ST II Assistant Professor (C), Deptt. of Hindi, University College for Women Koti, Hyderabad 500095 7. Dr. Ram Ratan Prasad M II I CGPA 5.62 Yes Yes, JNU Exempted ST II 103 Manokamna Bhawan, Gali No. (JNU) 02, Kailash Puri 61.2 Palam, New Delhi-110045 8. Dr. Ashok Kumar Meena M II I 61 Yes Yes, JNU Net ST II C/o Devender Kumar, 352-E/13, 3 Munirka Village, Near Pal Dairy, New Delhi-110067 9.