Supporting Information

Total Page:16

File Type:pdf, Size:1020Kb

Supporting Information Supporting Information Piperno et al. 10.1073/pnas.0812525106 SI Materials and Methods structures which are homologous to each other, have been shown Modern Reference Collections and Microfossil Identification. Our to be controlled primarily by tga1, a major domestication gene reference collections of phytoliths and starch grains include with significant effects (10, 17, 18). tga1 underwrites the degree more than 2,000 and about 500 species, respectively, and include of silicification of the glumes and rachids (cupules) of the many wild taxa of economic importance, most of the known fruitcases and cobs. In teosinte, the entire epidermis, consisting domesticated plants native to Central and South America, and of both the long and short cells, is silicified, whereas in maize wild progenitors and other close wild relatives of the crop plants. (which requires less natural protection from its herbivores), Investigating the history of maize and squash in the study region silicification is greatly reduced, and only the short epidermal was one of our priorities; therefore, our reference collections cells (which produce the phytoliths called rondels) are filled with include all known species and subspecies of teosinte; 24 maize silica. In addition, the rondels produced in teosinte are more races from Central and South America, including 10 traditional highly decorated than those in maize (a result also of more Mexican land races; and all domesticated and most known wild extensive lignification in teosinte), and the rondel phytoliths in species of Cucurbita, including all those found in Mesoamerica, maize cobs have a more diverse morphology and are in forms not such as C. argyrosperma ssp. sororia, which is native to the study found in teosinte. These differences result in the formation of region and is the wild ancestor of C. argyrosperma (the silver- distinct and identifiable phytoliths in maize and teosinte that seeded squash or cushaw pumpkin) (1). allow them to be distinguished from each other and from With regard to starch grain identification, previous research non-Zea wild grasses, including the genus Tripsacum (10–16). has demonstrated that starch grains in maize commonly range from about 8 to 26 ␮m in maximum length and from 12 to 16 ␮m Other (Non-Maize) Starch Grains Present on the Stone Tools. Four in mean length (2–8). In non-Zea grasses, grain size typically yam grains (Dioscorea sp.), 3 legume grains, and 1 Marantaceae ranges from about 2 to 18 ␮m in maximum length and from 3 to grain occurred on tool 316d, a large, preceramic grinding stone 11 ␮m in mean length. In many wild species, the maximum grain base recovered from 60–67 cm b.s. of unit 1. The yam grains size is only 6–9 ␮m (2, 4–8). Often these grains are too small to cannot be identified as belonging to either a wild or domesticated allow confident discernment of surface features, but species with species, because considerable work is needed on wild Dioscorea larger grains have been found to have dissimilar morphological species native to Mexico to rule out possible confusion with characteristics to maize (4–7). In this study, we examined cultivated/domesticated taxa. This is the first empirical indica- additional species of non-Zea grasses common in the Mexican tion of yam usage in tropical Mexico during the pre-Columbian flora (Table S1), including a putative early cultivar from high- era, however. The legume grains are similar to some that occur land Mexico, Setaria parvifolia (Poiert) (formerly S. geniculata) in Phaseolus, but they lack some attributes common in P. vulgaris (9). As in other non-Zea grasses, starch grain size is considerably and P. lunatus, such as the presence of lamellae and fissures; thus, smaller than in maize, and morphological characteristics also we cannot unequivocally assign them to a specific legume taxon serve as distinguishing criteria. at this time. Similarly, the Marantaceae grain cannot be assigned With regard to the differentiation of maize and teosinte on the to a specific genus. One unknown grain occurred on tool 365a. basis of starch grain size (see Table S2), mean grain length in teosinte ranges from 9.5 ␮m (Race Balsas) to 11.9 ␮m(Z. Other Types of Phytoliths Present in the Sediments. Marantaceae luxurians, endemic to Guatemala). Maximum grain length varies seed phytoliths, probably from either Maranta or Stromanthe, from 2 ␮mto28␮m; the latter was represented by a single grain were well-represented throughout the sedimentary sequence. observed in a specimen of Chalco teosinte (Z. mexicana), a race These phytoliths are not like those from arrowroot (M. arundi- that commonly hybridizes with maize (7). Maximum grain size nacea L.). A type of phytolith produced in the foliage and does not exceed 20 ␮m in non-Chalco teosintes and 18 ␮min sometimes the wood of various tree species also was common. Balsas teosinte. In contrast, in maize, mean length varies from Also persistently present in lower frequencies were phytoliths 11.4 to 15.8 ␮m, and in most races, mean length is 12.5 ␮m and from palms, Cyperaceae, and Asteraceae. maximum length is 20 ␮m, reaching 26 ␮m in some cases (7). Differences in such features as grain shape and surface Discriminating Phytoliths from Maize and Teosinte Culms (Stalks). sculptoring also provide clear morphological contrasts between Culms or stalks of grasses produce various idiosyncratic forms teosinte and maize (7) (Table S2). For example, nearly every race that do not occur in the leaves and inflorescences of the plants of maize studied has dominant proportions of ‘‘irregular’’ grains (19). Culm phytoliths in maize often are thick and irregularly (those without a clearly describable shape), and many have cross or bilobate in shape with unusual, deeply notched bases. defined (deeply impressed) compression facets, which develop These are distinct from phytoliths produced in leaves and cobs. when the grains are packed together during their formation in A stalk of Z. mays ssp. parviglumis from Guerrero state sampled the cellular organelles called amyloplasts. In contrast, teosinte from the herbarium folders at the U.S. National Museum of exhibits significant percentages of oval and bell-shaped grains, Natural History (NMNH 3123148) produced the same types of which are nearly absent in maize, and has far fewer irregular phytoliths, as well as other phytoliths not seen in the maize stalks grains. Most teosinte grains also lack defined compression facets studied. Although further work is needed to more robustly assess and have different types of fissures (i.e, cracks at the hilum, the whether the maize and teosinte phytoliths are diagnostic to Zea botanical center of the grain). or to the subspecies level, these phytoliths can be used to identify With regard to phytolith identification, criteria for the iden- stalk deposition. To be confident that young maize stalks, which tification of maize and teosinte phytoliths developed by ourselves presumably would have been used because they contain the and other investigators, including with the use of large blind highest quantity of sugar, produce phytoliths, we grew maize studies, are well described elsewhere (10–16). Importantly, the from seed at the Smithsonian Tropical Research Institute in considerable differences in morphological attributes of phyto- Panama. Stalks were harvested 53 days after they were planted liths formed in the fruitcases of teosinte and cobs of maize, and investigated for silica content and phytolith morphological Piperno et al. www.pnas.org/cgi/content/short/0812525106 1of10 attributes. The phytolith content was high, and the diagnostic dominate wild fruits (Fig. S5). The incompletely silicified phy- phytoliths produced by mature stalks were commonly present in toliths also commonly form as half-spheres (10, 20). All of these the young stalks. features are linked to the suppression of lignification and We restudied phytolith samples from important sites in Pan- silicification under artificial selection for softer rinds. ama containing starch grain and phytolith evidence for prece- We explored this issue in greater detail by examining 100 ramic maize (4, 10). No Zea-type stalk phytoliths were observed. phytoliths from each of 4 different fruits representing 3 different populations of C. argyrosperma ssp. sororia, the wild ancestor of Presence of Preceramic Phytoliths Indicative of Human Selection at C. argyrosperma. The fruits are homozygous at the Hr locus. In the Hr Genetic Locus. In modern domesticated species and the F 2 of these fruits, only 3 phytoliths with surface features (e.g., 1 marks or holes) characteristic of incomplete silicification were and F progeny of hybrids made between C. sororia and C. 2 recorded. In the other 2 fruits, 1 and 0 phytoliths of this type argyrosperma and between C. sororia and other domesticated occurred. Scans of phytolith preparations made from other fruits species, many phytoliths from plants that are heterozygous at the of C. sororia and other wild species further indicate that these Hr locus (Hr hr), and thus exhibit softer rinds than typically occur characteristics are rare in wild Cucurbita. in wild plants, acquire characteristic surface features, such as In preceramic samples 319d, 325 h, 316c, 318d, and 318e, in incompletely formed and fainter scalloped impressions and even which numerous squash phytoliths occurred, Ͼ 73% of the holes at the surface (Fig. S4B). These patterns may result from phytoliths (a far greater amount than in any wild species) the influence of modifier genes or incomplete dominance of the exhibited surface features like those in modern specimens with Hr locus (20). In any case, the types of phytoliths produced domesticated germ plasm heterozygous for Hr. Half-spheres also significantly outnumber the completely silicified forms that were routinely recorded. 1. Sanjur OI, Piperno DR, Andres TC, Wessel-Beaver L (2001) Phylogenetic relationships 13. Mulholland SC (1993) in Current Research in Phytolith Analysis: Applications in among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a Archaeology and Paleoecology, eds Pearsall DM, Piperno DR (MASCA, University mitochondrial gene: Implications for crop plant evolution and areas of origin.
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Tripsacum Dactyloides Scientific Name  Tripsacum Dactyloides (L.) L
    Tropical Forages Tripsacum dactyloides Scientific name Tripsacum dactyloides (L.) L. Subordinate taxa: Perennial clump grass, Texas, USA Tripsacum dactyloides (L.) L. var. dactyloides Tiller base with short, knotty rhizome and developing prop roots (ILRI 15488) Tripsacum dactyloides (L.) L. var. hispidum (Hitchc.) de Wet & J.R. Harlan Tripsacum dactyloides (L.) L. var. meridonale de Wet & Timothy Tripsacum dactyloides (L.) L. var. mexicanum de Wet & J.R. Harlan Synonyms Single raceme with white stigmas emerging from ♀ spikelets at base of var. dactyloides: basionym Coix dactyloides L.; raceme; purplish stems Tripsacum dactyloides (L.) L. var. occidentale H.C. Single racemes and subdigitate panicle; Cutler & E.S. Anderson anthers emerging from ♂ apical flowers, stigmas on ♀ basal flowers already var. hispidum (Hitchc.) de Wet & J.R. Harlan: senescent Basionym: Tripsacum dactyloides subsp. hispidum Hitchc. Family/tribe Family: Poaceae (alt. Gramineae) subfamily: Panicoideae tribe: Andropogoneae subtribe: Tripsacinae. Morphological description Seed unit with caryopsis Seed units An extremely variable perennial clump grass, with short, fibrous, knotty rhizomes and deep hollow roots. Culms 1‒2.5 (‒4 m) tall, and 3‒5 cm thick at base, branching, prop-rooting from lower nodes; stems purplish, glabrous. Leaf sheath glabrous, often purplish; leaf-blade lanceolate-acuminate, to 30‒75 (‒1.5) cm long and 9‒35 (‒45) mm wide, mostly glabrous, sometimes hairy at the base of the upper blade surface; prominent midrib; Seed production area, Knox margin scabrous; ligule a fringed membrane, 1‒1.5 mm County, Texas, USA (PI 434493) long. Inflorescence 10‒20 (‒30) cm long, terminal and axillary, commonly a single raceme, or subdigitate panicle comprising 2‒3 (‒6) racemes of usually A.
    [Show full text]
  • New National and Regional Vascular Plant Records, 9
    Turkish Journal of Botany Turk J Bot (2020) 44: 455-480 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1908-41 Contribution to the flora of Asian and European countries: new national and regional vascular plant records, 9 1, 2 2 3 4 Marcin NOBIS *, Jolanta MARCINIUK , Paweł MARCINIUK , Mateusz WOLANIN , Gergely KIRÁLY , 5,6 7 1 8 Arkadiusz NOWAK , Beata PASZKO , Ewelina KLICHOWSKA , Gonzalo MORENO-MORAL , 9 10 1 11 12 Renata PIWOWARCZYK , Óscar SÁNCHEZ-PEDRAJA , Anna WRÓBEL , Irina N. EGOROVA , Pavol Eliaš JUN. , 11 13 14 15 1 Denis A. KRIVENKO , Igor V. KUZMIN , Georgy A. LAZKOV , Giacomo MEI , Agnieszka NOBIS , 16 17 18 19 13 Marina V. OLONOVA , Robert J. SORENG , Adriano STINCA , Vladimir M. VASJUKOV , Nikita A. VERSHININ 1 Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland 2 Institute of Biology, Faculty of Natural Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland 3 Department of Botany, Institute of Biology and Biotechnology, University of Rzeszów, Rzeszów, Poland 4 Institute of Silviculture and Forest Protection, Faculty of Forestry, University of Sopron, Hungary 5 Botanical Garden-Center for Biological Diversity Conservation, Polish Academy of Sciences, Warsaw, Poland 6 Opole University, Opole, Poland 7 Department of Vascular Plants, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland 8 Santa Clara, Santander (Cantabria), Spain 9 Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski
    [Show full text]
  • (Poaceae: Panicoideae) in Thailand
    Systematics of Arundinelleae and Andropogoneae, subtribes Chionachninae, Dimeriinae and Germainiinae (Poaceae: Panicoideae) in Thailand Thesis submitted to the University of Dublin, Trinity College for the Degree of Doctor of Philosophy (Ph.D.) by Atchara Teerawatananon 2009 Research conducted under the supervision of Dr. Trevor R. Hodkinson School of Natural Sciences Department of Botany Trinity College University of Dublin, Ireland I Declaration I hereby declare that the contents of this thesis are entirely my own work (except where otherwise stated) and that it has not been previously submitted as an exercise for a degree to this or any other university. I agree that library of the University of Dublin, Trinity College may lend or copy this thesis subject to the source being acknowledged. _______________________ Atchara Teerawatananon II Abstract This thesis has provided a comprehensive taxonomic account of tribe Arundinelleae, and subtribes Chionachninae, Dimeriinae and Germainiinae of the tribe Andropogoneae in Thailand. Complete floristic treatments of these taxa have been completed for the Flora of Thailand project. Keys to genera and species, species descriptions, synonyms, typifications, illustrations, distribution maps and lists of specimens examined, are also presented. Fourteen species and three genera of tribe Arundinelleae, three species and two genera of subtribe Chionachninae, seven species of subtribe Dimeriinae, and twelve species and two genera of Germainiinae, were recorded in Thailand, of which Garnotia ciliata and Jansenella griffithiana were recorded for the first time for Thailand. Three endemic grasses, Arundinella kerrii, A. kokutensis and Dimeria kerrii were described as new species to science. Phylogenetic relationships among major subfamilies in Poaceae and among major tribes within Panicoideae were evaluated using parsimony analysis of plastid DNA regions, trnL-F and atpB- rbcL, and a nuclear ribosomal DNA region, ITS.
    [Show full text]
  • Mnesithea Granularis
    Check List 10(2): 374–375, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N Mnesithea granularis ISTRIBUTIO (L.) Koning & Sosef: A New Record to D the flora of the Malwa Region, India RAPHIC G K. L. Meena EO [email protected] Department of Botany, MLV Government College, Bhilwara (Rajasthan) - 311 001. G N E- mail: O Abstract: A new record of Mnesithea granularis OTES N (L.) Koning & Sosef (Poaceae), collected for the first time from Malwa region (Madhya Pradesh and Rajasthan) India is presented. A detail description, up to date nomenclature, phenology, ecological notes and illustrations of this species have been presented. Between 2008 and 2012 botanical surveys were polystachya Hackelochloa granularis collections were acquired from the Malwa region, India. P. Beauv., Fl. Owar & Benin.Mnisuris 1: 24,porifera t. 14. 1805.Hack. undertaken in southern Rajasthan, where significant plant (L.) O. Ktze. Rev. Hook, Gen. f. op. Pl. cit 2: 776. Hackelochloa1891; Bor, Grass porifera Ind. 159. 1960. Geographically, the Malwa region is situated between in Oesterr. op.Bot. cit. Zeitschr.Rytilix 41: 48. granularis 1891; . 160. and21°10′N south-eastern to 25°09′ Rajasthan.N Latitude After and 73°45′a thorough E to survey79°13′ ofE (Hack.) Rhind, Grass. Burma 77. theLongitude literature, and critical a plateau examination in western of collectedMadhya materialPradesh 1945; Bor, 160. (L.) Skeels in U. S. Dept. Agric., Bur. Pl. Indus. 282: 20. 1913. (Figures 1 and 2). determinedand with expert as Mnesithea advice fromgranularis authorities of the Indian Annual, erect, up to 30 cm high; culms much branched Association of Angiosperm Taxonomy, several specimens from base, nodes hairy.
    [Show full text]
  • Native Plants for Wildlife Habitat and Conservation Landscaping Chesapeake Bay Watershed Acknowledgments
    U.S. Fish & Wildlife Service Native Plants for Wildlife Habitat and Conservation Landscaping Chesapeake Bay Watershed Acknowledgments Contributors: Printing was made possible through the generous funding from Adkins Arboretum; Baltimore County Department of Environmental Protection and Resource Management; Chesapeake Bay Trust; Irvine Natural Science Center; Maryland Native Plant Society; National Fish and Wildlife Foundation; The Nature Conservancy, Maryland-DC Chapter; U.S. Department of Agriculture, Natural Resource Conservation Service, Cape May Plant Materials Center; and U.S. Fish and Wildlife Service, Chesapeake Bay Field Office. Reviewers: species included in this guide were reviewed by the following authorities regarding native range, appropriateness for use in individual states, and availability in the nursery trade: Rodney Bartgis, The Nature Conservancy, West Virginia. Ashton Berdine, The Nature Conservancy, West Virginia. Chris Firestone, Bureau of Forestry, Pennsylvania Department of Conservation and Natural Resources. Chris Frye, State Botanist, Wildlife and Heritage Service, Maryland Department of Natural Resources. Mike Hollins, Sylva Native Nursery & Seed Co. William A. McAvoy, Delaware Natural Heritage Program, Delaware Department of Natural Resources and Environmental Control. Mary Pat Rowan, Landscape Architect, Maryland Native Plant Society. Rod Simmons, Maryland Native Plant Society. Alison Sterling, Wildlife Resources Section, West Virginia Department of Natural Resources. Troy Weldy, Associate Botanist, New York Natural Heritage Program, New York State Department of Environmental Conservation. Graphic Design and Layout: Laurie Hewitt, U.S. Fish and Wildlife Service, Chesapeake Bay Field Office. Special thanks to: Volunteer Carole Jelich; Christopher F. Miller, Regional Plant Materials Specialist, Natural Resource Conservation Service; and R. Harrison Weigand, Maryland Department of Natural Resources, Maryland Wildlife and Heritage Division for assistance throughout this project.
    [Show full text]
  • Survey of Mammals at Appomattox Court House National Historical Park
    National Park Service U.S. Department of the Interior Northeast Region Philadelphia, Pennsylvania Survey of Mammals at Appomattox Court House National Historical Park Technical Report NPS/NER/NRTR--2005/030 ON THE COVER Golden mouse (Ochrotomys nuttalli) at Appomattox Court House National Historical Park, VA. Photograph by: A. M. Roder and A. D. Chupp, Virginia Commonwealth University. Survey of Mammals at Appomattox Court House National Historical Park Technical Report NPS/NER/NRTR--2005/030 Pagels, J. F., A. D. Chupp, and A. M. Roder Department of Biology Virginia Commonwealth University 1000 W. Cary Street Richmond, VA 23284 December 2005 U.S. Department of the Interior National Park Service Northeast Region Philadelphia, Pennsylvania The Northeast Region of the National Park Service (NPS) comprises national parks and related areas in 13 New England and Mid-Atlantic states. The diversity of parks and their resources are reflected in their designations as national parks, seashores, historic sites, recreation areas, military parks, memorials, and rivers and trails. Biological, physical, and social science research results, natural resource inventory and monitoring data, scientific literature reviews, bibliographies, and proceedings of technical workshops and conferences related to these park units are disseminated through the NPS/NER Technical Report (NRTR) and Natural Resources Report (NRR) series. The reports are a continuation of series with previous acronyms of NPS/PHSO, NPS/MAR, NPS/BSO-RNR, and NPS/NERBOST. Individual parks may also disseminate information through their own report series. Natural Resources Reports are the designated medium for information on technologies and resource management methods; "how to" resource management papers; proceedings of resource management workshops or conferences; and natural resource program descriptions and resource action plans.
    [Show full text]
  • Plant Fact Sheet Eastern Gamagrass (Tripsacum Dactyloides)
    Plant Fact Sheet EASTERN GAMAGRASS Description and Adaptation Eastern gamagrass, is a native, warm season, perennial, Tripsacum dactyloides L. bunch grass. It is a distant relative of corn that may reach Plant Symbol = TRDA3 up to 8 feet in height. Seed is produced from May to July. The seed heads are 6 to 10 inches long and are made up of Contributed by: USDA NRCS East Texas PMC one to several spikes. The leaves are 3/8 to 3/4 inch wide and 12 to 24 inches long, with a well defined midrib. Eastern gamagrass is distributed across the eastern half of the United States in areas that receive at least 25 inches of annual rainfall. It is adapted to a wide variety of soil textures and favors moist sites. It is classified as a facultative wetland plant and will tolerate brief periods of flooding. Figure 1 Eastern gamagrass seed head during pollination Alternative Names Common Alternate Names: bullgrass, capim gigante, eastern mock gama, fakahatchee grass, Gamagrass, herbe grama, maicillo oriental, pasto Guatemala, wild corn, zacate maicero Scientific Alternate Names: Tripsacum dactyloides (L.) L. var. occidentale Cutler & Anders., Coix dactyloides L. Uses Eastern gamagrass is primarily used as livestock forage. Eastern gamagrass distribution from USDA-NRCS PLANTS Database. It is extremely palatable to all classes of livestock, and will decrease due to selective grazing if not managed For updated distribution, please consult the Plant Profile correctly. It may also be cut for hay or used as silage. It page for this species on the PLANTS Web site. is important to allow proper recovery time between grazing or cutting events to maintain stand health and Establishment longevity.
    [Show full text]
  • El Salvador Grasses: an Updated Catalogue and Nomenclator
    Menjívar Cruz, J.E., R.M. Baldini, G. Davidse, and P.M. Peterson. 2021. El Salvador grasses: An updated catalogue and nomenclator. Phytoneuron 2021-22: 1–131. Published 20 April 2021. ISSN 2153 733 EL SALVADOR GRASSES: AN UPDATED CATALOGUE AND NOMENCLATOR JENNY ELIZABETH MENJÍVAR CRUZ Museo de Historia Natural de El Salvador Ministerio de Cultura de El Salvador San Salvador, El Salvador [email protected] RICCARDO M. BALDINI Centro Studi Erbario Tropicale Dipartimento di Biologia Università di Firenze Florence, Italy [email protected] GERRIT DAVIDSE Research Department Missouri Botanical Garden St. Louis, Missouri 63110 [email protected] PAUL M. PETERSON Department of Botany National Museum of Natural History Smithsonian Institution Washington, D.C. 20013-7012 [email protected] ABSTRACT An updated catalogue and nomenclator of the grasses in the Poaceae family is presented for El Salvador. The work is based on bibliographic and herbarium research and on recent collecting trips carried out by the first author in El Salvador between 2014−2017. The catalogue reports 371 species, 10 infraspecific names, and 381 total taxa. Herbarium vouchers, bibliographic reports, and distributions within El Salvador are reported for each accepted taxon. Synonyms are included in the list and these are all directed to the accepted name. A new combination, Rugoloa pilosa var. lancifolia (Griseb.) Baldini & Menjívar, comb. nov., is provided. RESUMEN Se presenta un catálogo y nomenclador actualizado de la familia Poaceae para El Salvador. El trabajo se basa en investigaciones bibliográficas de herbario, y en viajes de recolección recientes realizados por el primer autor en El Salvador entre 2014−2017.
    [Show full text]
  • A Dissertation Submitted for Partial Fulfillment Of
    DIVERSITY OF NATURALIZED PLANT SPECIES ACROSS LAND USE TYPES IN MAKWANPUR DISTRICT, CENTRAL NEPAL A Dissertation Submitted for Partial Fulfillment of the Requirmentment for the Master‟s Degree in Botany, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal Submitted by Bhawani Nyaupane Exam Roll No.:107/071 Batch: 2071/73 T.U Reg. No.: 5-2-49-10-2010 Ecology and Resource Management Unit Central Department of Botany Institute of Science and Technology Tribhuvan University Kirtipur, Kathamndu, Nepal May, 2019 RECOMMENDATION This is to certify that the dissertation work entitled “DIVERSITY OF NATURALIZED PLANT ACROSS LAND USE TYPES IN MAKWANPUR DISTRICT, CENTRAL NEPAL” has been submitted by Ms. Bhawani Nyaupane under my supervision. The entire work is accomplished on the basis of Candidate‘s original research work. As per my knowledge, the work has not been submitted to any other academic degree. It is hereby recommended for acceptance of this dissertation as a partial fulfillment of the requirement of Master‘s Degree in Botany at Institute of Science and Technology, Tribhuvan University. ………………………… Supervisor Dr. Bharat Babu Shrestha Associate Professor Central Department of Botany TU, Kathmandu, Nepal. Date: 17th May, 2019 ii LETTER OF APPROVAL The M.Sc. dissertation entitled “DIVERSITY OF NATURALIZED PLANT SPECIES ACROSS LAND USE TYPES IN MAKWANPUR DISTRICT, CENTRAL NEPAL” submitted at the Central Department of Botany, Tribhuvan University by Ms. Bhawani Nyaupane has been accepted as a partial fulfillment of the requirement of Master‘s Degree in Botany (Ecology and Resource Management Unit). EXAMINATION COMMITTEE ………………………. ……………………. External Examiner Internal Examiner Dr. Rashila Deshar Dr. Anjana Devkota Assistant Professor Associate Professor Central Department of Environmental Science Central Department of Botany TU, Kathmandu, Nepal.
    [Show full text]
  • Floristic Composition of the South-Central Florida Dry Prairie Landscape Steve L
    Floristic Composition of the South-Central Florida Dry Prairie Landscape Steve L. Orzell Avon Park Air Force Range, 29 South Blvd., Avon Park Air Force Range, FL 33825-5700 [email protected] Edwin L. Bridges Botanical and Ecological Consultant, 7752 Holly Tree Place NW, Bremerton, WA 98312-1063 [email protected] ABSTRACT Floristic composition of the Florida dry prairie landscape was compiled from 291 sites in nine south-central peninsular counties. Floristic lists were based upon field inventory and compilation from reliable sources to- taling 11,250 site and community type-specific observations and were analyzed by region (Kissimmee River, Desoto/Glades “Big Prairie,” and Myakka). The known vascular flora consists of 658 vascular plant taxa, rep- resenting 317 genera and 115 families. Families with the highest number of species are Poaceae (103), Asteraceae (78), Cyperaceae (76), Fabaceae (23), Scrophulariaceae (20), and Orchidaceae (18). The most diverse genera are Rhynchospora (29), Dichanthelium (17), Ludwigia (13), Xyris (12), and Andropogon (11). Of this flora 24 taxa are endemic to central or southern peninsular Florida, primarily within the pine savanna- flatwood/dry prairie landscape, and 41 taxa are of Floridian biotic affinity. Although most species are not re- gionally specific, a few (Carphephorus carnosus, Ctenium aromaticum, and Liatris spicata) appear to be ab- sent from the Myakka prairie region, while Marshallia tenuifolia appears to be absent from both the Desoto/ Glades and Myakka prairie regions. Within the dry prairie landscape Hypericum edisonianum is restricted to the Desoto/Glades region. A few other species somewhat differentiate between prairie regions; however, most occur in other habitats in the counties where they are absent or nearly absent from dry prairie.
    [Show full text]
  • EVALUATION and ENHANCEMENT of SEED LOT QUALITY in EASTERN GAMAGRASS [Tripsacum Dactyloides (L.) L.]
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2010 EVALUATION AND ENHANCEMENT OF SEED LOT QUALITY IN EASTERN GAMAGRASS [Tripsacum dactyloides (L.) L.] Cynthia Hensley Finneseth University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Finneseth, Cynthia Hensley, "EVALUATION AND ENHANCEMENT OF SEED LOT QUALITY IN EASTERN GAMAGRASS [Tripsacum dactyloides (L.) L.]" (2010). University of Kentucky Doctoral Dissertations. 112. https://uknowledge.uky.edu/gradschool_diss/112 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Cynthia Hensley Finneseth The Graduate School University of Kentucky 2010 EVALUATION AND ENHANCEMENT OF SEED LOT QUALITY IN EASTERN GAMAGRASS [Tripsacum dactyloides (L.) L.] _________________________________ ABSTRACT OF DISSERTATION _________________________________ A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Cynthia Hensley Finneseth Lexington, Kentucky Director: Dr. Robert Geneve, Professor of Horticulture Lexington, Kentucky 2010 Copyright © Cynthia Hensley Finneseth 2010 ABSTRACT OF DISSERTATION EVALUATION AND ENHANCEMENT OF SEED LOT QUALITY IN EASTERN GAMAGRASS [Tripsacum dactyloides (L.) L.] Eastern gamagrass [Tripsacum dactyloides (L.) L.] is a warm-season, perennial grass which is native to large areas across North America. Cultivars, selections and ecotypes suitable for erosion control, wildlife planting, ornamental, forage and biofuel applications are commercially available.
    [Show full text]