Gossypium Barbadense: an Approach for in Situ Conservation in Cerrado, Brazil
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Materials for the Textile Industry Alain Stout
English by Alain Stout For the Textile Industry Natural Materials for the Textile Industry Alain Stout Compiled and created by: Alain Stout in 2015 Official E-Book: 10-3-3016 Website: www.TakodaBrand.com Social Media: @TakodaBrand Location: Rotterdam, Holland Sources: www.wikipedia.com www.sensiseeds.nl Translated by: Microsoft Translator via http://www.bing.com/translator Natural Materials for the Textile Industry Alain Stout Table of Contents For Word .............................................................................................................................. 5 Textile in General ................................................................................................................. 7 Manufacture ....................................................................................................................... 8 History ................................................................................................................................ 9 Raw materials .................................................................................................................... 9 Techniques ......................................................................................................................... 9 Applications ...................................................................................................................... 10 Textile trade in Netherlands and Belgium .................................................................... 11 Textile industry ................................................................................................................... -
Complete Sequence of Kenaf (Hibiscus Cannabinus)
www.nature.com/scientificreports OPEN Complete sequence of kenaf (Hibiscus cannabinus) mitochondrial genome and comparative analysis Received: 2 November 2017 Accepted: 27 July 2018 with the mitochondrial genomes of Published: xx xx xxxx other plants Xiaofang Liao1,2,3, Yanhong Zhao3, Xiangjun Kong2, Aziz Khan2, Bujin Zhou 2, Dongmei Liu4, Muhammad Haneef Kashif2, Peng Chen2, Hong Wang5 & Ruiyang Zhou2 Plant mitochondrial (mt) genomes are species specifc due to the vast of foreign DNA migration and frequent recombination of repeated sequences. Sequencing of the mt genome of kenaf (Hibiscus cannabinus) is essential for elucidating its evolutionary characteristics. In the present study, single- molecule real-time sequencing technology (SMRT) was used to sequence the complete mt genome of kenaf. Results showed that the complete kenaf mt genome was 569,915 bp long and consisted of 62 genes, including 36 protein-coding, 3 rRNA and 23 tRNA genes. Twenty-fve introns were found among nine of the 36 protein-coding genes, and fve introns were trans-spliced. A comparative analysis with other plant mt genomes showed that four syntenic gene clusters were conserved in all plant mtDNAs. Fifteen chloroplast-derived fragments were strongly associated with mt genes, including the intact sequences of the chloroplast genes psaA, ndhB and rps7. According to the plant mt genome evolution analysis, some ribosomal protein genes and succinate dehydrogenase genes were frequently lost during the evolution of angiosperms. Our data suggest that the kenaf mt genome retained evolutionarily conserved characteristics. Overall, the complete sequencing of the kenaf mt genome provides additional information and enhances our better understanding of mt genomic evolution across angiosperms. -
Characterization of Some Common Members of the Family Malvaceae S.S
Indian Journal of Plant Sciences ISSN: 2319–3824(Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jps.htm 2014 Vol. 3 (3) July-September, pp.79-86/Naskar and Mandal Research Article CHARACTERIZATION OF SOME COMMON MEMBERS OF THE FAMILY MALVACEAE S.S. ON THE BASIS OF MORPHOLOGY OF SELECTIVE ATTRIBUTES: EPICALYX, STAMINAL TUBE, STIGMATIC HEAD AND TRICHOME *Saikat Naskar and Rabindranath Mandal Department of Botany, Barasat Govt. College, Barasat, Kolkata- 700124, West Bengal, India *Author for Correspondence: [email protected] ABSTRACT Epicalyx, staminal tube, stigma and trichome morphological characters have been used to characterize some common members of Malvaceae s.s. These characters have been analyzed following a recent molecular phylogenetic classification of Malvaceae s.s. Stigmatic character is effective for segregation of the tribe Gossypieae from other tribes. But precise distinction of other two studied tribes, viz. Hibisceae and Malveae on the basis of this character proved to be insufficient. Absence of epicalyx in Malachra has indicated an independent evolutionary event within Hibisceae. Distinct H-shaped trichome of Malvastrum has pointed out its isolated position within Malveae. Staminal tube morphological similarities of Abutilon and Sida have suggested their closeness. A key to the genera has been provided for identification purpose. Keywords: Malvaceae s.s., Epicalyx, Staminal Tube, Stigma, Trichome INTRODUCTION Epicalyx and monadelphous stamens are considered as key characters of the family Malvaceae s.s. Epicalyx was recognized as an important character for taxonomic value by several authors (Fryxell, 1988; Esteves, 2000) since its presence or absence was employed to determine phylogenetic interpretation within the tribes of Malvaceae s.s. -
Polyploidy and the Evolutionary History of Cotton
POLYPLOIDY AND THE EVOLUTIONARY HISTORY OF COTTON Jonathan F. Wendel1 and Richard C. Cronn2 1Department of Botany, Iowa State University, Ames, Iowa 50011, USA 2Pacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, Oregon 97331, USA I. Introduction II. Taxonomic, Cytogenetic, and Phylogenetic Framework A. Origin and Diversification of the Gossypieae, the Cotton Tribe B. Emergence and Diversification of the Genus Gossypium C. Chromosomal Evolution and the Origin of the Polyploids D. Phylogenetic Relationships and the Temporal Scale of Divergence III. Speciation Mechanisms A. A Fondness for Trans-oceanic Voyages B. A Propensity for Interspecific Gene Exchange IV. Origin of the Allopolyploids A. Time of Formation B. Parentage of the Allopolyploids V. Polyploid Evolution A. Repeated Cycles of Genome Duplication B. Chromosomal Stabilization C. Increased Recombination in Polyploid Gossypium D. A Diverse Array of Genic and Genomic Interactions E. Differential Evolution of Cohabiting Genomes VI. Ecological Consequences of Polyploidization VII. Polyploidy and Fiber VIII. Concluding Remarks References The cotton genus (Gossypium ) includes approximately 50 species distributed in arid to semi-arid regions of the tropic and subtropics. Included are four species that have independently been domesticated for their fiber, two each in Africa–Asia and the Americas. Gossypium species exhibit extraordinary morphological variation, ranging from herbaceous perennials to small trees with a diverse array of reproductive and vegetative -
Genetic Variability Studies in Gossypium Barbadense L
Electronic Journal of Plant Breeding, 1(4): 961-965 (July 2010) Research Article Genetic variability studies in Gossypium barbadense L. genotypes for seed cotton yield and its yield components K. P. M. Dhamayanathi , S. Manickam and K. Rathinavel Abstract A study was carried out during kharif 2006-07 with twenty five Gossypium barbadense L genotypes to obtain information on genetic variability, heritability and genetic advance for seed cotton yield and its yield attributes. Significant differences were observed for characters among genotypes. High genetic differences were recorded for nodes/plant, sympodia, bolls as well as fruiting points per plant, seed cotton yield, lint index indicating ample scope for genetic improvement of these characters through selection. Results also revealed high heritability coupled with high genetic advance for yield and most of the yield components as well as fibre quality traits. Sympodia/plant, fruiting point /plant, number of nodes/plant, number of bolls per plant, and lint index were positively correlated with seed cotton yield per plant and appeared to be interrelated with each other. It is suggested that these characters could be considered as selection criteria in improving the seed cotton yield of G. barbadense , L genotypes. Key words : Gossypium barbadense , genetic variability, heritability, genetic advance, lint index, selection criteria Introduction Seed cotton yield is a complex trait governed by Cotton is the most widely used vegetable fibre and several yield contributing characters such as plant also the most important raw material for the textile height, number of monopodia, number of industry, grown in tropical and subtropical regions sympodia, number of bolls, number of fruiting in more than 80 countries all over the world. -
Methods to Enable the Coexistence of Diverse Cotton Production Systems
AGRICULTURAL BIOTECHNOLOGY IN CALIFORNIA SERIES PUBLICATION 8191 Methods to Enable the Coexistence of Diverse Cotton Production Systems ROBERT B. HUTMACHER, Extension Agronomist, University of California Shafter Research and Extension Center and University of California, Davis, Department of Plant Science; RON N. VARGAS, County Director and Farm Advisor, University of California Cooperative UNIVERSITY OF Extension, Madera and Merced Counties; STEVEN D. WRIGHT, Farm Advisor, University of CALIFORNIA California Cooperative Extension, Tulare and Kings Counties Division of Agriculture Upland cotton (Gossypium hirsutum) and Pima cotton (G. barbadense) are the two and Natural Resources types of cotton produced commercially in California. In acreage as well as crop http://anrcatalog.ucdavis.edu value, over the past 5 years cotton has typically ranked in the top three in agronomic field crops grown in California. During that period, plantings of upland cotton in California have ranged from about 400,000 to over 650,000 acres (160,000 to 260,000 ha), while Pima plantings have ranged from about 140,000 to over 250,000 acres (56,000 to 101,000 ha). Does cross-pollination occur in cotton? Both upland and Pima cotton are variously referred to as “largely self-pollinated” or “partially cross-pollinated.” These descriptions acknowledge that these types of cotton are mostly self-pollinated but some cross-pollination can occur, albeit at relatively low incidence rates, through activity of pollinating insects or by wind dispersion. The pol- len of both wild and cultivated Gossypium species is large in size and among the heaviest among angiosperms, the group of plants that produces flowers, fruit, and seeds. -
CHEMISTRY and HISTOLOGY of the GLANDS of the COTTON PLANT, with NOTES on the OCCURRENCE of SIMILAR GLANDS in RELATED Plantsl
CHEMISTRY AND HISTOLOGY OF THE GLANDS OF THE COTTON PLANT, WITH NOTES ON THE OCCURRENCE OF SIMILAR GLANDS IN RELATED PLANTSl By ERNEST E. STANFORD, Scientific Assistant, and ARNO VIEHOEVER, Pharmacog- nosist in Charge, Pharmacognosy Laboratory, Bureau of Chemistry, United States Department of Agriculture INTRODUCTION The work herein reported forms a portion of a chemical and biological investigation of the cotton plant (Gossypium spp.), the purpose of which is to isolate and determine the substance or substances which attract the boll weevil. A previous paper (77)2 discusses the isolation of certain glucosids and the products of their hydrolysis, as well as preliminary studies of an ethereal oil which manifested some attraction for the boll weevil. Both the glucosids and this oil, as well as several other sub- stances, are largely localized in prominent internal glands which are very numerous in nearly all parts of the cotton plant. The main purpose of this paper is to discuss the occurrence, formation, structure, and con- tents of these glands. Glands of another type, more properly referred to as "nectaries/' also occur in the cotton plant. These are superficial in position and definitely localized. The internal glands have nothing in common with these nectaries save the function of secretion. In certain taxonomic and other literature, however, either or both types are referred to indis- criminately simply as "glands." Therefore, it seems advisable also to discuss briefly in this paper the nature and occurrence of the nectaries, in order to distinguish them clearly from the internal secretory organs, which form the main subject of the present study. -
FIBRE YIELDING PLANTS of INDIA Genetic Resources, Perspective for Collection and Utilisation
Article FIBRE YIELDING PLANTS OF INDIA Genetic resources, perspective for collection and utilisation Anjula Pandey and Rita Gupta National Bureau of Plant Genetic Resources, New Delhi-110012, India (excluding wood fibres) are grouped into Abstract soft fibres/ bast fibres, hard fibres or structural fibres and surface fibres. Bast The paper provides a brief overview of the major fibre yielding plants and fibres are exogenous in origin and are their uses in India. This account includes data mainly based on field experience, generally more durable, resistant to market surveys, ethnobotanical information and other relevant literature retting, bleaching and other processing available on this account. The enumeration of the species listed under various treatments. They are associated with plant families provides ready reference for use and commercial names of vascular tissues, such as phloem, pericycle important fibre types. The analysis provides the untapped wealth under this and cortex. Examples of bast fibres are category for widening the base of fibre genetic resources, future collections jute, hemp, flax, roselle, ramie, etc. and utilisation. The promising species thus indicated may provide scope for Structural fibres primarily associated with domestication and future cultivation. monocotyledonous plants are shorter, lignified cells surrounding vascular tissue. Introduction Gradual depletion of forest They are endogenous in nature, coarse, resources of plant based material resulted weaker, hard and brittle and thus less Among the plant species in loss of important diversity. The plant durable than the bast fibres. The common commonly used by man the fibre yielding fibres have specific qualities such as examples include Manila hemp, Sisal and plants hold the second position after the thermal insulation, resistance to water and Kittul fibres. -
The Value Chain of Native and Organic Cotton in the Lambayeque Region
The value chain of native and organic cotton in the Lambayeque Region of Peru In the Lambayeque Region of Peru a strategic plan to recover the native cotton and promote its territorial organic production chain is being implemented. Since 2016 the Government of Lambayeque, through a regional regulation, declared the native cotton as a natural product of Lambayeque and had implemented a Concertation Table involving public and private sector organizations, universities, farmers and craftsmen local associations. In 2019 the new Board of Directors and the Technical Commissions of the Native Cotton Concertation Table were established, strengthening ongoing strategic alliances in order to develop the whole production chain of the native cotton, including initiatives of sowing and cultivation, production and marketing. The Gossypium barbadense species of the native cotton that is cultivated in the Lambayeque Region is characterized by a natural pigmentation of different colours. This native cotton comes in myriad of colour-grown hues, including russet, light and dark brown, copper, light and dark lilac, beige, pale yellow, cream and light white, as well as other colours to be rescued. The plants of this species, cultivated for millennia in small plots, orchards and gardens, also have other important properties: they are resistant to pests, bacterial and fungal diseases, insects. They are also resistant to high concentrations of soil salinity and they are able to survive in sandy areas for up to five years without the need for irrigation. Despite the great potential advantages of this native cotton, representing a biodiversity heritage of the country, its cultivation and use remained limited in the practices of small agricultural producers and artisans, meanwhile the big industry was producing the white cotton. -
Thespesia Populnea (L
SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 7 F. R. Fosberg Thespesia Populnea (L. ) and M.-H. Sachet Solander ex Correa and Thespesia populneoides (Roxburgh) Kosteletsky (Malvaceae) SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1972 ABSTRACT Fosberg, F. R. and M.-H. Sachet. Thespesia populnea (L.) Solander ex Correa and Thespesia populneoides (Roxburgh) Kosteletsky (Malvaceae) . Smithsonian Con- tributions to Botany, number 7, 13 pages, 6 figures. 1972.-The pantropical Thespesia populnea (Malvaceae) is shown to be clearly separable into two species : T. popul- nea, which is pantropical on seashores, and T. populneoides of the Indian Ocean area, extending to Hainan Island, usually, but not always, somewhat inland. Hybrids between the two species occur where their ranges touch, and in Ceylon some of these hybrids have been widely propagated vegetatively as ornamentals and “living fence-posts.” Library of Congress Cataloging in Publication Data Fosberg, Francis Raymond, 1908- Thespesia populnea (L.) Solander ex Correa and Thespesia populneoides (Roxburgh) Kosteletsky (Malvaceae) (Smithsonian contributions to Botany, no. 7) Bibliography: p. 1. Thespesia populnea. 2. Thespesia populneoides. I. Sachet, Marie-HCkne, joint author. 11. Title. 111. Series: Smithsonian Institution. Smithsonian contributions to Botany, no. 7. QKlS2747 no. 7 [QK495.M27] 581’ .08s 1583’ ,171 70-39683 Oficial publication date is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. For sale by the -
Alpaca and Pima Cotton in a Very Interesting Paper
Info Premiere in the TMC Fashion Square (Textile and Mode Centre) For the first time the opportunity arose for SIPPO to present products and grades of material from firms in Peru and Bolivia in collaboration with the TMC Fashion Square Zurich at the trend exhibition in the foyer of the Textile and Mode Centre. The models on show were kindly provided to us for this event by various companies. We will be pleased to establish contacts for you with the manufacturers we know in the Andes region. During the Trend-Info day of the Info Premiere on January 21, 2002, SIPPO expert Brigitte Heuser presented these excellent grades of alpaca and pima cotton in a very interesting paper. She provided the numerous buyers and agents with useful information which we would also like to make available to you. We therefore decided to prepare a summary of the paper delivered by Brigitte Heuser. We are pleased at SIPPO to be able to familiarise you with these outstanding grades of material and hope to attract the attention of the market with this con- tribution. If you have any questions about this brochure or would like further in- formation about SIPPO activities please get in touch with us. Eve Bächtold, Project Manager Myrijam Fuchs, Project Assistant Tel: +41 1 365 5247 Tel: +41 1 365 5298 Email: [email protected] Email: [email protected] We hope you enjoy reading the brochure. Lecture Presented by SIPPO expert Brigitte Heuser Exhibition in the Textile and Mode Centre Zurich, 21.-23.01.2002 Organised by SIPPO, Eve Bächtold, in collaboration with TMC Fashion Square Zurich ALPACA - THE ORIGIN The Andes cultures of the Incas and their predecessors had to evolve in discouraging conditions – deserts, highlands, hilly pampas and tropical rainforest. -
Influência De Fertilizantes Foliares, Na Eficácia Do
Revista Brasileira de Herbicidas, v.15, n.1, p.89-96, jan./mar. 2016 (ISSN 2236-1065) DOI: http://dx.doi.org/10.7824/rbh.v15i1.437 www.rbherbicidas.com.br Biology and management of Rottboellia cochinchinensis1 Biologia e manejo de Rottboellia cochinchinensis Núbia Maria Correia2 Abstract - Rottboellia cochinchinensis (Lour.) Clayton, popularly known as itchgrass is the main weed of at least 18 crops grown in many countries. Therefore, it is proposed, in this review, to present biological and management aspects of this important weed species. It is an annual or perennial plant reproduced by seeds or from pieces of stems, reaching up to 4.0 m high. The seeds can remain dormant in the soil for up to four years and the light is not a limiting factor for germination. Although with the system clear/dark there is stimulating seed germination. The rapid development of the root system, with subsequent formation of the aerial part, favors the space occupation by plants. Furthermore, the decomposing plant waste of that species release to soil phytotoxic compounds which can inhibit germination and growth of adjacent or species, whether harmful or cultured. In rural workers, it cause skin irritation by contact, with rigid trichomes of leaf sheaths. There is little information in the literature on the chemical control of this species, especially for pre-emergence herbicides applied. This can be attributed to the difficulty of the product crossing the structure surrounding the seeds and thus reaching the embryo. In sugarcane, clomazone + imazapyr, clomazone + isoxaflutole and sulfomethuron + diuron + hexazinone, sprayed pre-emergence resulted in satisfactory controlling R.