Methods to Enable the Coexistence of Diverse Cotton Production Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gossypium Barbadense: an Approach for in Situ Conservation in Cerrado, Brazil
Journal of Agricultural Science; Vol. 8, No. 8; 2016 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Gossypium barbadense: An Approach for in Situ Conservation in Cerrado, Brazil Andrezza Arantes Castro1, Lúcia Vieira Hoffmann2, Thiago Henrique Lima1, Aryanny Irene Domingos Oliveira1, Rafaela Ribeiro Brito1, Letícia de Maria Oliveira Mendes1, Caio César Oliveira Pereira1, Guilherme Malafaia1 & Ivandilson Pessoa Pinto de Menezes1 1 Genetic Molecular Laboratory, Instituto Federal Goiano, Urutaí, Goiás, Brazil 2 Embrapa Algodão, Campina Grande, Paraíba, Brazil Correspondence: Ivandilson Pessoa Pinto de Menezes, School Genetic Molecular Laboratory, Instituto Federal Goiano, Urutaí, Brazil. Tel: 55-64-9279-9708. E-mail: [email protected] Received: May 27, 2016 Accepted: June 16, 2016 Online Published: July 15, 2016 doi:10.5539/jas.v8n8p59 URL:http://dx.doi.org/10.5539/jas.v8n8p59 Abstract Abandonment of planting of Gossypium barbadense has endangered its existence. The objective was to determine the characteristicof the maintenance of Gossypium barbadense in the Central-West Region of Brazil, with the aim to foster the conservation of the species. Expeditions were conducted in 2014-2015 in Southeast Goiás, where cotton collection has not been reported before. Data from previous collections in Goiás, Mato Grosso, Mato Grosso do Sul and Distrito Federal available in Albrana database were considered this study. In the Central-West Region of Brazil, 466 accesses of G. barbadense were recorded, found most frequently in backyards (91.4%), but also spontaneous plants (7.5%), farm boundary (0.8%) and commercial farming (0.2%) have also been found. The main use indicated by VDU was as medicinal plant (0.66), therefore this is the main reason for in situ preservation. -
Characterization of Some Common Members of the Family Malvaceae S.S
Indian Journal of Plant Sciences ISSN: 2319–3824(Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jps.htm 2014 Vol. 3 (3) July-September, pp.79-86/Naskar and Mandal Research Article CHARACTERIZATION OF SOME COMMON MEMBERS OF THE FAMILY MALVACEAE S.S. ON THE BASIS OF MORPHOLOGY OF SELECTIVE ATTRIBUTES: EPICALYX, STAMINAL TUBE, STIGMATIC HEAD AND TRICHOME *Saikat Naskar and Rabindranath Mandal Department of Botany, Barasat Govt. College, Barasat, Kolkata- 700124, West Bengal, India *Author for Correspondence: [email protected] ABSTRACT Epicalyx, staminal tube, stigma and trichome morphological characters have been used to characterize some common members of Malvaceae s.s. These characters have been analyzed following a recent molecular phylogenetic classification of Malvaceae s.s. Stigmatic character is effective for segregation of the tribe Gossypieae from other tribes. But precise distinction of other two studied tribes, viz. Hibisceae and Malveae on the basis of this character proved to be insufficient. Absence of epicalyx in Malachra has indicated an independent evolutionary event within Hibisceae. Distinct H-shaped trichome of Malvastrum has pointed out its isolated position within Malveae. Staminal tube morphological similarities of Abutilon and Sida have suggested their closeness. A key to the genera has been provided for identification purpose. Keywords: Malvaceae s.s., Epicalyx, Staminal Tube, Stigma, Trichome INTRODUCTION Epicalyx and monadelphous stamens are considered as key characters of the family Malvaceae s.s. Epicalyx was recognized as an important character for taxonomic value by several authors (Fryxell, 1988; Esteves, 2000) since its presence or absence was employed to determine phylogenetic interpretation within the tribes of Malvaceae s.s. -
Polyploidy and the Evolutionary History of Cotton
POLYPLOIDY AND THE EVOLUTIONARY HISTORY OF COTTON Jonathan F. Wendel1 and Richard C. Cronn2 1Department of Botany, Iowa State University, Ames, Iowa 50011, USA 2Pacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, Oregon 97331, USA I. Introduction II. Taxonomic, Cytogenetic, and Phylogenetic Framework A. Origin and Diversification of the Gossypieae, the Cotton Tribe B. Emergence and Diversification of the Genus Gossypium C. Chromosomal Evolution and the Origin of the Polyploids D. Phylogenetic Relationships and the Temporal Scale of Divergence III. Speciation Mechanisms A. A Fondness for Trans-oceanic Voyages B. A Propensity for Interspecific Gene Exchange IV. Origin of the Allopolyploids A. Time of Formation B. Parentage of the Allopolyploids V. Polyploid Evolution A. Repeated Cycles of Genome Duplication B. Chromosomal Stabilization C. Increased Recombination in Polyploid Gossypium D. A Diverse Array of Genic and Genomic Interactions E. Differential Evolution of Cohabiting Genomes VI. Ecological Consequences of Polyploidization VII. Polyploidy and Fiber VIII. Concluding Remarks References The cotton genus (Gossypium ) includes approximately 50 species distributed in arid to semi-arid regions of the tropic and subtropics. Included are four species that have independently been domesticated for their fiber, two each in Africa–Asia and the Americas. Gossypium species exhibit extraordinary morphological variation, ranging from herbaceous perennials to small trees with a diverse array of reproductive and vegetative -
Invasive Aphids Attack Native Hawaiian Plants
Biol Invasions DOI 10.1007/s10530-006-9045-1 INVASION NOTE Invasive aphids attack native Hawaiian plants Russell H. Messing Æ Michelle N. Tremblay Æ Edward B. Mondor Æ Robert G. Foottit Æ Keith S. Pike Received: 17 July 2006 / Accepted: 25 July 2006 Ó Springer Science+Business Media B.V. 2006 Abstract Invasive species have had devastating plants. To date, aphids have been observed impacts on the fauna and flora of the Hawaiian feeding and reproducing on 64 native Hawaiian Islands. While the negative effects of some inva- plants (16 indigenous species and 48 endemic sive species are obvious, other species are less species) in 32 families. As the majority of these visible, though no less important. Aphids (Ho- plants are endangered, invasive aphids may have moptera: Aphididae) are not native to Hawai’i profound impacts on the island flora. To help but have thoroughly invaded the Island chain, protect unique island ecosystems, we propose that largely as a result of anthropogenic influences. As border vigilance be enhanced to prevent the aphids cause both direct plant feeding damage incursion of new aphids, and that biological con- and transmit numerous pathogenic viruses, it is trol efforts be renewed to mitigate the impact of important to document aphid distributions and existing species. ranges throughout the archipelago. On the basis of an extensive survey of aphid diversity on the Keywords Aphid Æ Aphididae Æ Hawai’i Æ five largest Hawaiian Islands (Hawai’i, Kaua’i, Indigenous plants Æ Invasive species Æ Endemic O’ahu, Maui, and Moloka’i), we provide the first plants Æ Hawaiian Islands Æ Virus evidence that invasive aphids feed not just on agricultural crops, but also on native Hawaiian Introduction R. -
*Wagner Et Al. --Intro
NUMBER 60, 58 pages 15 September 1999 BISHOP MUSEUM OCCASIONAL PAPERS HAWAIIAN VASCULAR PLANTS AT RISK: 1999 WARREN L. WAGNER, MARIE M. BRUEGMANN, DERRAL M. HERBST, AND JOEL Q.C. LAU BISHOP MUSEUM PRESS HONOLULU Printed on recycled paper Cover illustration: Lobelia gloria-montis Rock, an endemic lobeliad from Maui. [From Wagner et al., 1990, Manual of flowering plants of Hawai‘i, pl. 57.] A SPECIAL PUBLICATION OF THE RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1998 Research publications of Bishop Museum are issued irregularly in the RESEARCH following active series: • Bishop Museum Occasional Papers. A series of short papers PUBLICATIONS OF describing original research in the natural and cultural sciences. Publications containing larger, monographic works are issued in BISHOP MUSEUM four areas: • Bishop Museum Bulletins in Anthropology • Bishop Museum Bulletins in Botany • Bishop Museum Bulletins in Entomology • Bishop Museum Bulletins in Zoology Numbering by volume of Occasional Papers ceased with volume 31. Each Occasional Paper now has its own individual number starting with Number 32. Each paper is separately paginated. The Museum also publishes Bishop Museum Technical Reports, a series containing information relative to scholarly research and collections activities. Issue is authorized by the Museum’s Scientific Publications Committee, but manuscripts do not necessarily receive peer review and are not intended as formal publications. Institutions and individuals may subscribe to any of the above or pur- chase separate publications from Bishop Museum Press, 1525 Bernice Street, Honolulu, Hawai‘i 96817-0916, USA. Phone: (808) 848-4135; fax: (808) 841-8968; email: [email protected]. Institutional libraries interested in exchanging publications should write to: Library Exchange Program, Bishop Museum Library, 1525 Bernice Street, Honolulu, Hawai‘i 96817-0916, USA; fax: (808) 848-4133; email: [email protected]. -
Cotton Facts
CottonFacts M. Rafiq Chaudhry Andrei Guitchounts International Cotton Advisory Committee CottonFacts CottonFacts Technical Paper No. 25 of the Common Fund for Commodities M. Rafiq Chaudhry Andrei Guitchounts International Cotton Advisory Committee Cotton Producing Areas in the World Europe Americas iv Asia Africa Oceania by Carmen S. León v Copyright © 2003 Common Fund for Commodities International Cotton Advisory Committee All rights are reserved. "Fair use" of the information in this book is permitted provided the reference is properly acknowledged. For additional permission contact the International Cotton Advisory Committee at [email protected]. First Edition 2003 ISBN 0-9704918-3-2 Library of Congress Control No. 2003107604 Contents Cotton Map . .iv Foreword . .xi Introduction . .xiii Acknowledgements . .xv 1. The Cotton Plant and its Organs . .1 The Plant . .1 Taxonomy . .1 Nodes . .3 Branches . .3 Flower . .4 Root . .5 Seed . .6 Leaf . .10 Boll . .13 Yield . .14 Production Technology . .15 Organic Cotton . .15 Precision Agriculture . .16 2. Breeding . .17 Breeding Methods . .18 Hybrid Cotton . .22 Biotechnology . .25 Genetic Engineering . .25 Milestones in Genetic Engineering of Cotton . .31 Natural Outcrossing . .32 Gossypol . .33 Colored Cotton . .34 Contents vii 3. Agronomy and Physiology . .35 Growth and Fruit Formation . .35 Nutrition . .40 Weed Control . .43 4. Diseases . .45 5. Insects . .57 Insect Identification, Biology and Nature of Damage . .57 Sucking Insects . .57 Feeders . .62 Bollworms . .68 Natural Enemies (Beneficials) . .73 Insect Parasites . .76 Pathogens . .77 Insecticide Resistance . .77 Insect Control Methods . .79 Commonly Used Terms in Insect Pest Control . .83 6. Fiber Quality . .85 Fiber Formation . .85 Fiber Quality Parameters . .87 Machine Picking . .90 Ginning . .92 Cotton Cleaning . -
Origin and Evolution of Hawaiian Endemics: New Patterns Revealed by Molecular Phylogenetic Studies
4 Origin and evolution of Hawaiian endemics: new patterns revealed by molecular phylogenetic studies S t e r l i n g C . K e e l e y a n d V i c k i A . F u n k The current high islands of the Hawaiian archipelago are among the most remote land masses in the world. They lie 3500 km from California, the nearest contin- ental source, and approximately 2300 km from the Marquesas , the nearest islands ( Fig. 4.1 ). They are the southernmost islands in the Hawaiian Ridge , formed succes- sively over a ‘hot spot’ that has allowed magma to penetrate the Pacifi c Plate. The plate has moved gradually north and northwestwards over the past 85 Ma, leaving the previously formed islands to gradually erode and subside (Clague, 1996 ). The current high islands ( Fig. 4.1 , inset) range in age from Kauai /Niihau (5.1–4.9 Ma), to Oahu (3.7–2.6 Ma), to Maui Nui (2.2–1.2 Ma), during the Pleistocene compris- ing several islands – West Maui (1.3 Ma), East Maui (0.75 Ma), Molokai (1.76–1.90 Ma), Lanai (1.28 Ma) and Kaho’olawe (1.03 Ma) – and Hawaii (0.5 Ma to present) (Price & Clague, 2002 ). Important for the establishment and evolution of the extant Hawaiian fl ora is the historic pattern of island formation within the archipelago. For example, islands with elevations greater than 1000 m did not exist from 30 to 23 Ma and from c . 8 to 5 Ma when the current high islands began to emerge (Clague, 1996 ; Price & Clague, 2002 ; Clague et al ., 2010 ). -
Evolution and Natural History of the Cotton Genus
Evolution and Natural History of the Cotton Genus Jonathan F. Wendel, Curt Brubaker, Ines Alvarez, Richard Cronn, and James McD. Stewart Abstract We present an overview of the evolution and diversity in Gossypium (the cotton genus). This framework facilitates insight into fundamental aspects of plant biology, provides the necessary underpinnings for effective utilization of cotton genetic resources, and guides exploration of the genomic basis of morphological diversity in the genus. More than 50 species of Gossypium are distributed in arid to semi-arid regions of the tropics and subtropics. Included are four species that independently have been domesticated for their fiber, two each in Africa-Asia and the Americas. Gossypium species exhibit extraordin- ary morphological variation, ranging from trailing herbaceous perennials to 15 m trees with a diverse array of reproductive and vegetative characteris- tics. A parallel level of cytogenetic and genomic diversity has arisen during the global radiation of the genus, leading to the evolution of eight groups of diploid (n 13) species (genome groups A through G, and K). Data implicate an origin for¼Gossypium about 5–10 million years ago and a rapid early diversification of the major genome groups. Allopolyploid cottons appear to have arisen within the last 1–2 million years, as a consequence of trans-oceanic dispersal of an A-genome taxon to the New World followed by hybridization with an indigen- ous D-genome diploid. Subsequent to formation, allopolyploids radiated into three modern lineages, two of which contain the commercially important species G. hirsutum and G. barbadense. 1 Introduction to Gossypium diversity Because the cotton genus (Gossypium L.) is so important to economies around the world, it has long attracted the attention of agricultural scientists, taxono- mists, and evolutionary biologists. -
AFLP Mediated Genetic Diversity of Malvaceae Species
Journal of Medicinal Plants Research Vol. 4(2), pp. 148-154, 18 January, 2010 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875© 2010 Academic Journals Full Length Research Paper AFLP mediated genetic diversity of malvaceae species Nighat Shaheen1, S. R. Pearce2, Mir Ajab Khan1, Tariq Mahmood1, Ghazalah Yasmin1 and Muhammad Qasim Hayat1 1Department of Plant Sciences, Quaid-i-Azam University, Islamabad-45320, Pakistan. 2School of Life Sciences, JMS Building, University of Sussex, Falmer, Brighton, BN19QG, United Kingdom. Accepted 22 December, 2009 AFLP (Amplified fragment length polymorphism) marker system is a reliable method in the evaluation of genetic diversity among different species. It was used to explore phenetic relationships and diversity within and between 13 Malvaceae species belonging to 5 different genera. The primary objective of the study was to evaluate the taxonomic potential, usefulness and applicability of AFLP marker system to reconstruct genetic relationships at interspecific and intergeneric level in Malvaceae. In total, 28 accessions comprising 13 species were included in the study but for assorted technical reasons five profiles remained incomplete or with ambiguous banding pattern. Therefore 23 accessions comprising 12 species were included in the final analysis. Two primer pairs produced a total of 73 bands, of which 70 were polymorphic. Neighbor Joining (NJ) tree showed that all 23 accessions were basically classified in three main clusters and several sub-clusters. The tree had well supported branches especially at the level of accessions and species. However, it also had poor bootsrap support at some intermediate and deeper branches. The informative value of the technique was evaluated by comparing the current results with earlier morphological and molecular investigations. -
Downloaded from Genbank on That Full Plastid Genomes Are Not Sufficient to Reject Al- February 28, 2012
Ruhfel et al. BMC Evolutionary Biology 2014, 14:23 http://www.biomedcentral.com/1471-2148/14/23 RESEARCH ARTICLE Open Access From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes Brad R Ruhfel1*, Matthew A Gitzendanner2,3,4, Pamela S Soltis3,4, Douglas E Soltis2,3,4 and J Gordon Burleigh2,4 Abstract Background: Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. Results: We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. -
General View of Malvaceae Juss. S.L. and Taxonomic Revision of Genus Abutilon Mill
JKAU: Sci., Vol. 21 No. 2, pp: 349-363 (2009 A.D. / 1430 A.H.); DOI: 10.4197 / Sci. 21-2.12 General View of Malvaceae Juss. S.L. and Taxonomic Revision of Genus Abutilon Mill. in Saudi Arabia Wafaa Kamal Taia Alexandria University, Faculty of Science, Botany Department, Alexandria, Egypt [email protected] Abstract. This works deals with the recent opinions about the new classification of the core Malvales with special reference to the family Malvaceae s.l. and the morphological description and variations in the species of the genus Abutilon Mill. Taxonomical features of the family as shown in the recent classification systems, with full description of the main divisions of the family. Position of Malvaceae s.l. in the different modern taxonomical systems is clarified. General features of the genus Abutilon stated according to the careful examination of the specimens. Taxonomic position of Abutilon in the Malvaceae is given. Artificial key based on vegetative morphological characters is provided. Keywords: Abutilon, Core Malvales, Eumalvaceae, Morpholog, Systematic Position, Taxonomy. General Features of Family Malvaceae According to Heywood[1] and Watson and Dallwitz[2] the plants of the family Malvaceae s.s. are herbs, shrubs or trees with stipulate, simple, non-sheathing alternate or spiral, petiolate leaves usually with palmate vennation (often three principal veins arising from the base of the leaf blade). Plants are hermaphrodite, rarely dioecious or poly-gamo- monoecious with floral nectarines and entomophilous pollination. Flowers are solitary or aggregating in compound cymes, varying in size from small to large, regular or somewhat irregular, cyclic with distinct calyx and corolla. -
APPENDIX C-1 Botanical and Faunal Survey
APPENDIX C-1 Botanical and Faunal Survey MAUI RESEARCH & TECHNOLOGY PARK MASTER PLAN UPDATE BOTANICAL AND FAUNA SURVEYS for the MAUI RESEARCH AND TECHNOLOGY PARK PROPOSED URBAN ZONING EXPANSION PROJECT KIHEI, MAUI, HAWAII by ROBERT W. HOBDY ENVIRONMENTAL CONSULTANT Kokomo, Maui October 2008 Prepared for: Pacific Rim Land, Inc. 1 BOTANICAL AND FAUNA SURVEY MAUI RESEARCH & TECHNOLOGY PARK PROPOSED URBAN ZONING EXPANSION PROJECT INTRODUCTION The Maui Research & Technology Park Proposed Urban Zoning Expansion Project lies on approximately 356 acres of undeveloped land in upper Kihei TMK (2) 2-2-02:58 (por.) , TMK (2) 2-2-24:04,08 (por.), 14 (por.), 15,16 (por.), 17 (por.). The project area surrounds the existing facilities of Maui Research and Technology Park and is above the Elleair Maui Golf Course. This study was initiated in fulfillment of environmental requirements of the planning process. SITE DESCRIPTION The entire project area is presently dry pastureland located on the gentle slopes above Pi’ilani Highway. The area is an arid savannah with low rocky ridges and shallow gullies. Elevations range from 70 feet to 270 feet above sea level. Soils throughout the area are of the Waiakoa Extremely Stony Silty Clay Loam, 3-25 % slopes Series (WID2) which are 30-33 inches deep over hard igneous bedrock (Foote et al, 1972). This soil has moderate permeability, medium runoff and severe erosion hazard. Rainfall averages a scant 8-10 inches per year with the bulk falling during the winter months. (Armstrong,1983). This site lies in the driest part of Maui. BIOLOGICAL HISTORY Originally this area would have been a dry native forest/shrubland with such trees as wiliwili (Erythrina sandwicensis), ‘ohe makai (Reynoldsia sandwicensis) and hao (Rauvolfia sandwicensis), shrubs such as ‘a’ali’i (Dodonaea viscosa), ma’o (Gossypium tomentosum), ‘ilima (Sida fallax) and grasses and vines such as pili (Heteropogon contortus), kalamalō (Eragrostis atropioides), huehue (Cocculus orbiculatus) and ‘āwikiwiki (Canavalia pubescens).