Table E-1. Vegetation Species Found on Wake Atoll

Total Page:16

File Type:pdf, Size:1020Kb

Table E-1. Vegetation Species Found on Wake Atoll Table E-1. Vegetation Species Found on Wake Atoll Scientific Name Common Name Abutilon albescens Sweet monkeybush Abutilon asiaticum var. albescens Indian mallow Agave americana American century plant Agave angustifolia century plant Agave sisalana Sisal Agave sp. agave sp. Aglaonema commutatum Aglaonema Allium cepa Onion Allium fistulosum Green onion Allium sp. Onion sp. Allium tuberosum Chinese chive Aloe vera Aloe Alpinia galanga Greater galangal Alpinia purpurata Pink ginger; Jungle Queen Amaranthus dubius Spleen amaranth Amaranthus graecizans Tumbleweed Amaranthus tricolor Joseph′s coat Amaranthus viridis Slender amaranth Ananas comosus Pineapple Anethum graveolens Dill Annona muricata Soursop Annona squamosa Sweetsop Apium petroselinum Garden parsley Araucaria heterophylla Norfolk Island pine Asparagus densiflorus Sprenger asparagus fern Asplenium nidus Bird’s-nest fern Barringtonia asiatica Fish poison tree Bauhinia sp. Camel’s foot tree Bidens alba white beggar-ticks Bidens pilosa var. minor Beggar-ticks Boerhavia albiflora var. powelliae -- Boerhavia diffusa Red Spiderling Boerhavia repens anena Boerhavia sp. Spiderling sp. Bothriochloa pertusa Indian blue grass Bougainvillea spectabilis bougainvillea Brassica nigra Mustard Brassica oleracea var. italica Brocolli Caesalpinia bonduc Grey nickers Caladium bicolor Caladium Calotropis gigantea Crown flower Capsicum frutescens Cayenne pepper Capsicum annuum chili pepper Table E-1. Vegetation Species Found on Wake Atoll Scientific Name Common Name Carica papaya Papaya Casuarina equisetifolia Casuarina Catharanthus roseus periwinkle Cenchrus brownii Brown’s sandbur Cenchrus echinatus Sandbur Chamaesyce hirta hairy spurge Chamaesyce hypericifolia Graceful spurge Chamaesyce prostrata Prostrate spurge Chamaesyce thymifolia Gulf sandmat Chloris barbata swollen fingergrass Chlorophytum comosum Spider plant Chrysophyllum cainito Star apple Citrus hystrix Kaffir lime Citrus sp. Citrus Cleome gynandra wild spider flower Coccinia grandis Ivy gourd Coccoloba uvifera Sea grapes Cocos nucifera coconut palm Codiaeum variegatum Croton Coleus scutellarioides Common coleus Colocasia esculenta Taro Conyza bonariensis Hairy horseweed Conyza canadensis var. pusilla Canada horseweed Cordia subcordata Cordia Cordyline fruticosa Ti Cordyline terminalis Coco yam Coriandrum sativum Chinese parsley Corymbia citriodora Lemon-scented gum Crassula ovata Jade plant Crinum amabile Sumatran giant-lily Crinum angustum Queen Emma-lily Crinum sp. Lily sp. Crinum asiaticum Giant lily Cucumis melo Cantaloupe Cucumis sativus Cucumber Cucurbita pepo Squash Cuscuta pentagona Fiveangled dodder Cymbopogon citratus lemon grass Cynodon dactylon Bermuda grass Cyperus pumilus Low flatsedge Cyperus rotundus nutgrass Cyperus involucratus Umbrella plant Dactyloctenium aegyptium crowfoot grass Table E-1. Vegetation Species Found on Wake Atoll Scientific Name Common Name Delonix regia royal poinciana Desmanthus pernambucanus slender mimosa Dieffenbachia seguine Dumb cane Digitaria ciliaris Henry’s crabgrass Digitaria gaudichaudii -- Digitaria insularis Sourgrass Digitaria setigera Itchy crabgrass Digitaria sp. crabgrass species Digitaria bicornis Asian crabgrass Dracaena marginata Money tree Eichhornia crassipes Water hyacinth Eleusine indica goosegrass Epipremnum pinnatum Taro vine Eragrostis amabilis Japanese love grass Eragrostis minor little lovegrass Eragrostis scabriflora Fijian lovegrass Eryngium foetidum False Chinese parsley Erythrina variegata var. orientalis Indian coral tree Euphorbia cyathophora wild poinsettia Euphorbia lactea Mottled candlestick tree Euphorbia milii Crown of thorns Euphorbia pulcherrima Poinsettia Euphorbia tirucalli Pencil tree Eustachys petraea Pinewoods fingergrass Ficus carica Edible fig Ficus microcarpa Chinese banyan Ficus rubiginosa Port Jackson fig Ficus sp fig sp. Fimbristylis cymosa button sedge Fimbristylis dichotoma Forked fimbry Gardenia taitensis Tahitian gardenia Gomphrena globosa Globe amaranth Gossypium hirsutum Cotton Gossypium hirsutum upland cotton Hedychium coronarium White ginger Helianthus annuus Common sunflower Heliotropium anomalum Hinahina Heliotropium procumbens var. depressum four-spike heliotrope Hibiscus sp hibiscus sp.. Hibiscus tiliaceus Hau Hymenocallis littoralis Beach spider lily Hymenocallis pedalis Spider lily Table E-1. Vegetation Species Found on Wake Atoll Scientific Name Common Name Ipomoea aquatica Swamp morning-glory Ipomoea batatas Sweet potato Ipomoea pes-caprae spp. brasiliensis beach morning glory Ipomoea tuba moon flower Ipomoea violacea beach moonflower Ixora sp. Ixora Jasminum sambac Arabian jasmine Jatropha integerrima Rose-flowered Jatropha Kalanchoe pinnata Cathedral bells Kalanchoe daigremontiana Kalanchoe Kalanchoe delagoensis Chandelier plant Kalanchoe pinnata Air plant Lactuca sativa Lettuce Lepidium bidentatum Kunana pepperwort Lepturus gasparricensis -- Lepturus repens Pacific Island thintail Leucaena leucocephala Tangantangan Lobularia maritima Sweet alyssum Mangifera indica Mango Manilkara zapota Chicle Momordica charantia bitter melon Morella faya Fire tree Morinda citrifolia Indian mulberry Moringa oleifera Horseradish tree Musa acuminata Banana Nerium oleander Oleander Nicotiana tabacum Tobacco Nidularium sp. Nest bromeliad Noronhia emarginata Madagascar olive Nymphaea sp. Waterlily Ocimum basilicum sweet basil Ocimum tenuiflorum holy basil Opuntia littoralis coastal pricklypear Opuntia cochenillifera Cochineal nopal cactus Pandanus tectorius Screwpine Pandanus tectorius - variegated form Variegated screwpine Paspalum setaceum thin pasplum Paspalum vaginatum seashore pasplum Paspalum scrobiculatum Knotgrass Passiflora foetida var. hispida Passion fruit Passiflora sp. Passion fruit Pedilanthus bracteatus Candelilla Slipper Pedilanthus tithymaloides Redbird flower Table E-1. Vegetation Species Found on Wake Atoll Scientific Name Common Name Pemphis acidula Pemphis Pennisetum polystachion Feathery pennisetum Petroselinum crispum Parsley Phaseolus coccineus Scarlet runner bean Phaseolus lunatus Lima bean Phaseolus vulgaris String bean Philodendron undulatum Philodendron Philodendron hederaceum var. oxycardium Philodendron Phoenix sp. Date palm Phyllanthus acidus Otaheite gooseberry Phyllanthus amarus carry me seed Phymatosorus scolopendria Laua’e fern Pilea microphylla Artillery plant Piper lolot Lolot Pisonia grandis Pisonia Pithecellobium dulce Manila tamarind Pluchea carolinensis Sour bush Pluchea odorata Sweetscent Plumeria obtusa Singapore Plumeria Plumeria rubra Red Plumeria Plumeria sp. plumeria sp. Polyscias fruticosa Ming aralia, Elegans Polyscias guilfoylei Wild coffee Polyscias scutellaria Balfour aralia, Balfourniana Portulaca australis Purslane Portulaca cv. Wildfire Portulaca lutea yellow purslane Portulaca oleracea Common purslane Portulaca pilosa Akulikuli Portulaca samoensis -- Portulaca sp purslane sp. Pseuderanthemum carruthersii var. atropurpurePurple false eranthemum Pseuderanthemum carruthersii var. carruthersiiEldorado Psidium guajava Guava Psophocarpus tetragonolobus Wing bean Raphanus sativus Daikon Raphanus sativus Radish Table E-1. Vegetation Species Found on Wake Atoll Scientific Name Common Name Ricinus communis Castor bean Rosa hybrid Rose Sansevieria trifasciata Bowstring hemp Sansevieria roxburghiana -- Scaevola sericea var. taccada scaevola Schefflera actinophylla Octopus tree Sedum sp. stonecrop sp. Sempervivum tectorum Common houseleek Sesbania grandiflora Sesban Sesuvium portulacastrum seaside purslane Setaria verticillata Bristly foxtail Sida fallax ilima Solanum lycopersicum Tomato Solanum torvum Wild tomato Solanum melongena eggplant Solenostemon scutellarioides Coleus Sonchus oleraceus thistle Aztec Sorghum bicolor Sweet sorghum Spondias pinnata Amra Stachytarpheta cayennensis Nettle-leaved vervain Stachytarpheta jamaicensis Jamaican vervain Strelitzia reginae Bird-of-paradise Syngonium auritum Syngonium Tagetes erecta marigold Tagetes patula French marigold Tamarindus indica Tamarind Terminalia catappa Indian almond Thespesia populnea Milo Tournefortia argentea tournefortia Tradescantia pallida Purple Tradescantia Tradescantia spathacea Oyster plant Tribulus cistoides Puncture vine Tribulus terrestris Puncture vine Tridax procumbens coatbuttons Vigna unguiculata ssp. sesquipedalis Yard-long bean Vitex trifolia Blue vitex Waltheria indica uhaloa Zea mays Corn Zinnia violacea Zinnia Ziziphus mauritiana Indian jujube Zoysia matrella Manila grass Sources: Fosberg 1959, USAF 2008a.
Recommended publications
  • Identification and Quantification of Pinitol in Selected Anti-Diabetic Medicinal Plants by an Optimized HPTLC Method * Indumathi, P
    Volume : 2 | Issue : 12 | Dec 2013 ISSN - 2250-1991 Research Paper Chemistry Identification and Quantification of Pinitol in Selected Anti-Diabetic Medicinal Plants by an Optimized HPTLC Method * Indumathi, P. ** Dr. Shubashini K. Sripathi *** Poongothai,G **** Sridevi V. *, **, ***, **** Department of Chemistry, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-641043, Tamilnadu, India ABSTRACT A high performance thin layer chromatography method was validated for the quantification of insulinomimetic pinitol in the extracts of anti diabetic plants. The alcoholic extract of selected anti diabetic plants was chromatographed on silica gel 60 F254 plates with CHCl3 :MeOH:H2O, 6:3.5:0.5 as mobile hase.p Detection and quantification was performed by densitometry scanning at λ=500 nm. The method provides a good resolution of pinitol from the ethanolic extract of dried leaves of selected plants. Pinitol was identified in ten indigenous medicinal plants Keywords : HPTLC, anti diabetic, Pinitol Introduction: silver nitrate solution. It was then placed in an oven for half Plants are an immediate source of medicines. In view of the an hour. Development of an orange brown spot for pinitol was large number of active principles produced by them one can noted and its Rf was recorded. only wonder at the incredibly vast reserves of ingredients that are still largely untapped. Numerous biomarkers are available Preparation of spray reagent - Ammoniacal silver nitrate for quantification of plant extracts which are potential candi - solution: dates of herbal formulations. Pinitol is an anti diabetic bio- A equal amounts of Tollen’s reagent I and II were mixed to- marker.
    [Show full text]
  • Appendix A: Consultation and Coordination
    APPENDIX A: CONSULTATION AND COORDINATION Virgin Islands National Park July 2013 Caneel Bay Resort Lease This page intentionally left blank Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-1 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-2 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-3 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-4 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-5 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-6 APPENDIX B: PUBLIC INVOLVEMENT Virgin Islands National Park July 2013 Caneel Bay Resort Lease This page intentionally left blank Virgin Islands National Park July 2013 Caneel Bay Resort Lease B-1 Virgin Islands National Park July 2013 Caneel Bay Resort Lease B-2 Virgin Islands National Park July 2013 Caneel Bay Resort Lease B-3 APPENDIX C: VEGETATION AND WILDLIFE ASSESSMENTS Virgin Islands National Park July 2013 Caneel Bay Resort Lease VEGETATION AND WILDLIFE ASSESSMENTS FOR THE CANEEL BAY RESORT LEASE ENVIRONMENTAL ASSESSMENT AT VIRGIN ISLANDS NATIONAL PARK ST. JOHN, U.S. VIRGIN ISLANDS Prepared for: National Park Service Southeast Regional Office Atlanta, Georgia March 2013 TABLE OF CONTENTS Page LIST OF FIGURES ...................................................................................................................... ii LIST OF TABLES ........................................................................................................................ ii LIST OF ATTACHMENTS ......................................................................................................
    [Show full text]
  • Crop Profile for Basil in New Jersey Ocimum Basilicum (L.) O
    Crop Profile for Basil in New Jersey Ocimum basilicum (L.) O. tenuiflorum O. americanum Lamiales: Lamiaceae Prepared: 2008 General Production Information Yearly production: Approximately 450 acres % of crop for fresh market: 100% % of crop grown for retail market: 10 % % of crop grown for wholesale market: 90 % Production Regions The majority of basil production occurs in the southern New Jersey counties of Atlantic (100 acres), Cumberland (225 acres), and Gloucester (50 acres). There is some basil production in the central counties of Monmouth, Ocean, and Burlington, amounting to less than 50 acres. Soils in southern and much of central New Jersey are light, ranging from sand to sandy loam with some areas of silt loam. Basil production in the southern region extends from early April to October. In this region, basil is predominantly grown for the wholesale market, with plant stems generally cut or pulled, washed and bundled in 12-15 plant or stem bunches. Wholesale units are 15-count (bunch) crates. Some basil in this region is produced for the retail market and sold at farm stands or directly to restaurants. In this case, basil is generally sold by the bunch. In the northern counties of Hunterdon, Mercer, Morris, Warren, and Sussex, many growers produce basil, but on minimal acreage. Soils in the northern region are typically Piedmont (heavy silt loams) and Appalachian (shaley) soils. The field season begins in mid-May here, and continues until cold weather terminates production. In the north, basil is grown exclusively for retail at farm stands and at community-sponsored farmers markets. Typical growers in this region produce less than one half acre of basil.
    [Show full text]
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Comparative Mapping Between Arabidopsis Thaliana and Brassica Nigra Indicates That Brassica Genomes Have Evolved Through Extensi
    Copyright 1998 by the Genetics Society of America Comparative Mapping Between Arabidopsis thaliana and Brassica nigra Indicates That Brassica Genomes Have Evolved Through Extensive Genome Replication Accompanied by Chromosome Fusions and Frequent Rearrangements Ulf Lagercrantz Department of Plant Biology, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden Manuscript received March 27, 1998 Accepted for publication July 24, 1998 ABSTRACT Chromosome organization and evolution in the Brassicaceae family was studied using comparative linkage mapping. A total of 160 mapped Arabidopsis thaliana DNA fragments identi®ed 284 homologous loci covering 751 cM in Brassica nigra. The data support that modern diploid Brassica species are descended from a hexaploid ancestor, and that the A. thaliana genome is similar in structure and complexity to those of each of the hypothetical diploid progenitors of the proposed hexaploid. Thus, the Brassica lineage probably went through a triplication after the divergence of the lineages leading to A. thaliana and B. nigra. These duplications were also accompanied by an exceptionally high rate of chromosomal rearrangements. The average length of conserved segments between A. thaliana and B. nigra was estimated at 8 cM. This estimate corresponds to z90 rearrangements since the divergence of the two species. The estimated rate of chromosomal rearrangements is higher than any previously reported data based on comparative mapping. Despite the large number of rearrangements, ®ne-scale comparative mapping between model plant A. thal- iana and Brassica crops is likely to result in the identi®cation of a large number of genes that affect important traits in Brassica crops. NE important aspect of genome evolution is polyploid (Masterson 1994).
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Gossypium Barbadense: an Approach for in Situ Conservation in Cerrado, Brazil
    Journal of Agricultural Science; Vol. 8, No. 8; 2016 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Gossypium barbadense: An Approach for in Situ Conservation in Cerrado, Brazil Andrezza Arantes Castro1, Lúcia Vieira Hoffmann2, Thiago Henrique Lima1, Aryanny Irene Domingos Oliveira1, Rafaela Ribeiro Brito1, Letícia de Maria Oliveira Mendes1, Caio César Oliveira Pereira1, Guilherme Malafaia1 & Ivandilson Pessoa Pinto de Menezes1 1 Genetic Molecular Laboratory, Instituto Federal Goiano, Urutaí, Goiás, Brazil 2 Embrapa Algodão, Campina Grande, Paraíba, Brazil Correspondence: Ivandilson Pessoa Pinto de Menezes, School Genetic Molecular Laboratory, Instituto Federal Goiano, Urutaí, Brazil. Tel: 55-64-9279-9708. E-mail: [email protected] Received: May 27, 2016 Accepted: June 16, 2016 Online Published: July 15, 2016 doi:10.5539/jas.v8n8p59 URL:http://dx.doi.org/10.5539/jas.v8n8p59 Abstract Abandonment of planting of Gossypium barbadense has endangered its existence. The objective was to determine the characteristicof the maintenance of Gossypium barbadense in the Central-West Region of Brazil, with the aim to foster the conservation of the species. Expeditions were conducted in 2014-2015 in Southeast Goiás, where cotton collection has not been reported before. Data from previous collections in Goiás, Mato Grosso, Mato Grosso do Sul and Distrito Federal available in Albrana database were considered this study. In the Central-West Region of Brazil, 466 accesses of G. barbadense were recorded, found most frequently in backyards (91.4%), but also spontaneous plants (7.5%), farm boundary (0.8%) and commercial farming (0.2%) have also been found. The main use indicated by VDU was as medicinal plant (0.66), therefore this is the main reason for in situ preservation.
    [Show full text]
  • 62 of 17 January 2018 Replacing Annex I to Regulation (EC) No 396/2005 of the European Parliament and of the Council
    23.1.2018 EN Official Journal of the European Union L 18/1 II (Non-legislative acts) REGULATIONS COMMISSION REGULATION (EU) 2018/62 of 17 January 2018 replacing Annex I to Regulation (EC) No 396/2005 of the European Parliament and of the Council (Text with EEA relevance) THE EUROPEAN COMMISSION, Having regard to the Treaty on the Functioning of the European Union, Having regard to Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC (1), and in particular Article 4 thereof, Whereas: (1) The products of plant and animal origin to which the maximum residue levels of pesticides (‘MRLs’) set by Regulation (EC) No 396/2005 apply, subject to the provisions of that Regulation, are listed in Annex I to that Regulation. (2) Additional information should be provided by Annex I to Regulation (EC) No 396/2005 as regards the products concerned, in particular as regards the synonyms used to indicate the products, the scientific names of the species to which the products belong and the part of the product to which the respective MRLs apply. (3) The text of footnote (1) in both Part A and Part B of Annex I to Regulation (EC) No 396/2005 should be reworded, in order to avoid ambiguity and different interpretations encountered with the current wording. (4) New footnotes (3) and (4) should be inserted in Part A of Annex I to Regulation (EC) No 396/2005, in order to provide additional information as regards the part of the product to which the MRLs of the products concerned apply (5) New footnote (7) should be inserted in Part A of Annex I to Regulation (EC) No 396/2005, in order to clarify that MRLs of honey are not applicable to other apiculture products due to their different chemicals character­ istics.
    [Show full text]
  • Plants-Derived Biomolecules As Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences Against Coronaviruses
    plants Review Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses Arif Jamal Siddiqui 1,* , Corina Danciu 2,*, Syed Amir Ashraf 3 , Afrasim Moin 4 , Ritu Singh 5 , Mousa Alreshidi 1, Mitesh Patel 6 , Sadaf Jahan 7 , Sanjeev Kumar 8, Mulfi I. M. Alkhinjar 9, Riadh Badraoui 1,10,11 , Mejdi Snoussi 1,12 and Mohd Adnan 1 1 Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] (M.A.); [email protected] (R.B.); [email protected] (M.S.); [email protected] (M.A.) 2 Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania 3 Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] 4 Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] 5 Department of Environmental Sciences, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India; [email protected] 6 Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India; [email protected] 7 Department of Medical Laboratory, College of Applied Medical Sciences, Majmaah University, Al Majma’ah 15341, Saudi Arabia; [email protected] 8 Department of Environmental Sciences, Central University of Jharkhand,
    [Show full text]
  • International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 05 (2018) Journal Homepage
    Int.J.Curr.Microbiol.App.Sci (2018) 7(5): 1457-1464 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 05 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.705.172 Bionematicidal Potential of Some Incorporating Plants on Meloidogyne javanica Control on Tomato R.A. Bakr* Agricultural Botany Department, Faculty of Agriculture, Menoufia University, Egypt *Corresponding author ABSTRACT Experiments carried out to estimate the potential of incorporating garlic (Allium K e yw or ds sativumm), onion (Allium cepa) and Lemon grass (Cymbopogon citratus) on root-knot nematode Meloidogyne javanica affecting tomato under glasshouse conditions and Tomato, Meloidogyne concentration at 1, 2 and 3% of each plant used. Plants un-inoculated by nematode keep as javanica , Root-knot control in four replicates. Results elucidate that nematode population and tomato plant nematodes, Control growth parameters affected by using the different plants. Observation of root system revealed that number of egg-masses, galls and females/root system affected markedly. The Article Info garlic at 3% give the highest reduction in nematodes parameters followed by onion 3% Accepted: while the least one was Lemon grass at 1% comparing to untreated infected plants. Fresh 12 April 2018 root weight and shoot fresh and dry weights raise compared to control plants. Therefore, Available Online: using these plants may provide a prime and importance method in the integrated nematode 10 May 2018 management (INM) practices as environmental safety and economical as anew alternative to originally chemical nematicides. Introduction consider one of the limiting factors for profitable tomato plantation [2, 3].
    [Show full text]
  • Pemphis Acidula J.R.Forst
    Australian Tropical Rainforest Plants - Online edition Pemphis acidula J.R.Forst. & G.Forst. Family: Lythraceae Forster, J.R. & Forster, J.G. (1775) Characteres Generum Plantarum : 68. Type: (not cited). Common name: Digging stick tree Stem Usually flowers and fruits as a shrub about 1-4 m tall. Leaves Leaf blades about 16-30 x 7.5-9 mm, petioles about 2-3 mm long, grooved on the upper surface. Both the upper and lower surfaces of the leaf blade clothed in pale prostrate hairs. Stipules dark brown, about 1 mm long. Lateral veins, about 3-5 on each side of the midrib, inconspicuous on both Flower. © A. Ford & F. Goulter the upper and lower surfaces of the leaf blade. Flowers Hypanthium about 3-5 mm long, apex with 6 quite small lobes and 6 somewhat larger lobes, outer surface longitudinally ribbed below the calyx-like appendages at the apex and clothed in pale prostrate hairs. Calyx lobes about 0.5 mm long. Petals orbicular to obovate, about 4-5 mm long, crumpled in the bud. Stamens 12, alternately longer and shorter. Ovary 3-locular at the base and 1- locular at the apex. Stigma globular. Fruit Fruits globose, about 5-6 x 3-5 mm, calyx lobes and style persistent at the apex. Seeds numerous ( about 20 per fruit) each seed about 3 x 2 mm. Endosperm scanty. Testa very thin. Embryo about 1 Scale bar 10mm. © CSIRO mm long, cotyledons about 0.5 mm long, radicle about 0.5 mm long. Cotyledons larger than the radicle. Seedlings Features not available.
    [Show full text]