Exploring Meteorite Mysteries a Teacher’S Guide with Activities for Earth and Space Sciences EG-1997-08-104-HQ National Aeronautics and Space Administration

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Meteorite Mysteries a Teacher’S Guide with Activities for Earth and Space Sciences EG-1997-08-104-HQ National Aeronautics and Space Administration Educational Product National Aeronautics and Teachers Grades 5-12 Space Administration Exploring Meteorite Mysteries A Teachers Guide with Activities for Earth and Space Sciences EG-1997-08-104-HQ National Aeronautics and Space Administration Exploring Meteorite Mysteries A Teachers Guide with Activities for Earth and Space Sciences Office of Space Science Solar System Exploration Division Office of Human Resources and Education Education Division August 1997 This publication is in the Public Domain and is not copyrighted. Permission is not required for duplication. Acknowledgements This teacher’s guide was developed in a partnership between scientists in the Planetary Materials Office, at NASA’s Johnson Space Center in Houston, Texas, and teachers from local school districts. NASA and Contractor Staff Teachers On the Cover— Marilyn Lindstrom JoAnne Burch Project Coordinator and Meteorite Curator Pearland ISD, Several aspects of a meteorite NASA Johnson Space Center Elementary fall are depicted on the cover. Houston, Texas Pearland, Texas The background is a painting created by an eyewitness of Karen Crowell Jaclyn Allen the Sikhote-Alin fireball. At Scientist and Science Education Specialist Pasadena ISD, Lockheed Martin Engineering & Sciences Co. Elementary the top is the asteroid Ida, a Houston, Texas Pasadena, Texas possible source of meteorites. At the bottom is Meteor Allan Treiman* and Carl Allen Roy Luksch Crater in Arizona—the first Alvin ISD, Planetary Scientists identified meteorite impact Lockheed Martin Engineering & Sciences Co. High School Houston, Texas Alvin, Texas crater. Anita Dodson Karen Stocco Graphic Designer Pasadena ISD, Lockheed Martin Engineering & Sciences Co. High School Houston, Texas Pasadena, Texas Bobbie Swaby Pasadena ISD, Middle School National Aeronautics and Pasadena, Texas Space Administration Lyndon B. Johnson Space Center Earth Science and Solar System Kay Tobola Exploration Divison Alvin ISD, Middle School Alvin, Texas We would also like to thank the following for reviews and meteorite samples: NASA - Don Bogard, Mark Cintala, Everett Gibson, Kathleen McBride, Dave Mittlefehldt, Larry Nyquist, Cecilia Satterwhite, Carol Schwarz, Roberta Score,** Faith Vilas, and Mike Zolensky. NASA/OSU - Richard Adams, Jim Fitzgerald, Larry Gilbert, Les Gold, Tibisay Marin, Debbie Shearer, Greg Vogt, and Ralph Winrich. Teachers - Gregg Baumgartner, Stephanie McNeel, and Susan Ross (Alvin ISD); Jean Groover and John Ristvey (Clear Creek ISD); Cathy Corley and Jeanie Thuneman (Friendswood ISD) and John Beasley (Stafford MSD). Organizations - U.S. Antarctic Program (NSF), NNMH Smithsonian Institution, NASA, and the Field Museum of Natural History. *Now at the Lunar & Planetary Institute, Houston, Texas. **Now at Antarctic Support Services, Denver, Colorado. NASA EG-1997-08-104-HQ i Contents About Exploring Meteorite Mysteries ........................................................................................................................... iii About the Meteorite Disk ................................................................................................................................................ iv About the Slide Set.......................................................................................................................................................... iv Science Process Skills ...................................................................................................................................................... v Science and Mathematics Standards ..............................................................................................................................vii Lesson Topic Planner ...................................................................................................................................................... ix Lesson Sequence Suggestions ......................................................................................................................................... x Teacher’s Guide Meteorites, Clues to Solar System History ............................................................................................................... 1 Meteorite ABC’s Fact Sheet .................................................................................................................................... 29 Solar System ABC’s Fact Sheet .............................................................................................................................. 31 Mysterious Meteorites Lesson 1: Noblesville Fall ..................................................................................................................................... 1.1 Where Do They Come From? Lesson 2: Follow the Falling Meteorite................................................................................................................. 2.1 Lesson 3: Searching for Meteorites ....................................................................................................................... 3.1 Lesson 4: The Meteorite-Asteroid Connection ..................................................................................................... 4.1 Lesson 5: Looking at Asteroids ............................................................................................................................. 5.1 Lesson 6: Impact Craters — Holes In the Ground! ................................................................................................ 6.1 Lesson 7: Crater Hunters ........................................................................................................................................ 7.1 What Are They? Lesson 8: Edible Rocks ......................................................................................................................................... 8.1 Lesson 9: Meteorite Sleuths! ................................................................................................................................. 9.1 How Did They Form? Lesson 10: Building Blocks of Planets ............................................................................................................... 10.1 Lesson 11: Changes Inside Planets ...................................................................................................................... 11.1 Lesson 12: Building Blocks of Life..................................................................................................................... 12.1 Lesson 13: Solving a Mystery ............................................................................................................................. 13.1 What Effect Do They Have? Lesson 14: Direct Hit at the K-T Boundary ......................................................................................................... 14.1 Lesson 15: Historical Meteorite Falls .................................................................................................................. 15.1 Lesson 16: Near Miss ........................................................................................................................................... 16.1 How Can I Use Them? Lesson 17: Asteroid Resources ............................................................................................................................ 17.1 Is There a Career for Me? Lesson 18: Antarctic Meteorite Teams ................................................................................................................. 18.1 What Can We Believe? Lesson 19: The Daily Shooting Star .................................................................................................................... 19.1 Glossary ........................................................................................................................................................................ A.1 Education Resources .................................................................................................................................................... B.1 ii NASA EG-1997-08-104-HQ About Exploring Meteorite Mysteries Teachers and scientists designed this book to engage students in inquiry science and to extend science with interdisciplinary connections. The study of meteorites provides a unifying theme that links almost every aspect of Earth and planetary science with mathematics, physics, chemistry and even biology. The effects of meteorite impacts have serious implications for social science. The activities in this book are designed for upper elementary to high school levels. Many of the lessons begin with a simple activity and build to more complex ones. The Curriculum Content Matrix, Lesson Topic Planner and Lesson Sequence Suggestions may assist teachers in integrating the meteorite activities with their existing Earth science curricula and standards requirements. The Teacher’s Guide, Meteorites, Clues to Solar System History, gives a broad introduction to many aspects of meteorite science. It tells the story of solar system history from the formation of the planets to catastrophic impacts on Earth. It helps the students learn how scientists use studies of these rocks from space to decipher that history. The Meteorite ABC’s and Solar System ABC’s Fact Sheets contain important information about meteorites and bodies in the solar system in convenient table format. The Activities are divided into units based on key questions students may ask about meteorites. For example, the unit entitled “Where do they come from?” contains six
Recommended publications
  • Handbook of Iron Meteorites, Volume 3
    Sierra Blanca - Sierra Gorda 1119 ing that created an incipient recrystallization and a few COLLECTIONS other anomalous features in Sierra Blanca. Washington (17 .3 kg), Ferry Building, San Francisco (about 7 kg), Chicago (550 g), New York (315 g), Ann Arbor (165 g). The original mass evidently weighed at least Sierra Gorda, Antofagasta, Chile 26 kg. 22°54's, 69°21 'w Hexahedrite, H. Single crystal larger than 14 em. Decorated Neu­ DESCRIPTION mann bands. HV 205± 15. According to Roy S. Clarke (personal communication) Group IIA . 5.48% Ni, 0.5 3% Co, 0.23% P, 61 ppm Ga, 170 ppm Ge, the main mass now weighs 16.3 kg and measures 22 x 15 x 43 ppm Ir. 13 em. A large end piece of 7 kg and several slices have been removed, leaving a cut surface of 17 x 10 em. The mass has HISTORY a relatively smooth domed surface (22 x 15 em) overlying a A mass was found at the coordinates given above, on concave surface with irregular depressions, from a few em the railway between Calama and Antofagasta, close to to 8 em in length. There is a series of what appears to be Sierra Gorda, the location of a silver mine (E.P. Henderson chisel marks around the center of the domed surface over 1939; as quoted by Hey 1966: 448). Henderson (1941a) an area of 6 x 7 em. Other small areas on the edges of the gave slightly different coordinates and an analysis; but since specimen could also be the result of hammering; but the he assumed Sierra Gorda to be just another of the North damage is only superficial, and artificial reheating has not Chilean hexahedrites, no further description was given.
    [Show full text]
  • The Villalbeto De La Peña Meteorite Fall: II. Determination of Atmospheric Trajectory and Orbit
    Meteoritics & Planetary Science 41, Nr 4, 505–517 (2006) Abstract available online at http://meteoritics.org The Villalbeto de la Peña meteorite fall: II. Determination of atmospheric trajectory and orbit Josep M. TRIGO-RODRÍGUEZ1, 2*, JiÚí BOROVIª.$3, Pavel SPURNÝ3, José L. ORTIZ4, José A. DOCOBO5, Alberto J. CASTRO-TIRADO4, and Jordi LLORCA2, 6 1Institut de Ciències de l’Espai (ICE-CSIC), Campus UAB, Facultat de Ciències, Torre C-5, parells, 2a planta, 08193 Bellaterra (Barcelona), Spain 2Institut d’Estudis Espacials de Catalunya (IEEC), Ed. Nexus, Gran Capità 2-4, 08034 Barcelona, Spain 3Astronomical Institute of the Academy of Sciences, OndÚHMRY2EVHUYDWRU\&]HFK5HSXEOLF 4Instituto de Astrofísica de Andalucía (IAA-CSIC), P.O. Box 3004, 18080 Granada, Spain 5Observatorio Astronómico Ramón Maria Aller, Universidade de Santiago de Compostela, Spain 6Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain *Corresponding author. E-mail: [email protected] (Received 23 April 2005; revision accepted 3 November 2005) Abstract–The L6 ordinary chondrite Villalbeto de la Peña fall occurred on January 4, 2004, at 16:46: 45 r 2 s UTC. The related daylight fireball was witnessed by thousands of people from Spain, Portugal, and southern France, and was also photographed and videotaped from different locations of León and Palencia provinces in Spain. From accurate astrometric calibrations of these records, we have determined the atmospheric trajectory of the meteoroid. The initial fireball velocity, calculated from measurements of 86 video frames, was 16.9 r 0.4 km/s. The slope of the trajectory was 29.0 r 0.6° to the horizontal, the recorded velocity during the main fragmentation at a height of 27.9 r 0.4 km was 14.2 r 0.2 km/s, and the fireball terminal height was 22.2 r 0.2 km.
    [Show full text]
  • Tardi-Magmatic Precipitation of Martian Fe/Mg-Rich Clay Minerals Via Igneous Differentiation
    ©2020TheAuthors Published by the European Association of Geochemistry ▪ Tardi-magmatic precipitation of Martian Fe/Mg-rich clay minerals via igneous differentiation J.-C. Viennet1*, S. Bernard1, C. Le Guillou2, V. Sautter1, P. Schmitt-Kopplin3, O. Beyssac1, S. Pont1, B. Zanda1, R. Hewins1, L. Remusat1 Abstract doi: 10.7185/geochemlet.2023 Mars is seen as a basalt covered world that has been extensively altered through hydrothermal or near surface water-rock interactions. As a result, all the Fe/Mg-rich clay minerals detected from orbit so far have been interpreted as secondary, i.e. as products of aqueous alteration of pre-existing silicates by (sub)surface water. Based on the fine scale petrographic study of the evolved mesostasis of the Nakhla mete- orite, we report here the presence of primary Fe/Mg-rich clay minerals that directly precipitated from a water-rich fluid exsolved from the Cl-rich parental melt of nakhlites during igneous differentiation. Such a tardi-magmatic precipitation of clay minerals requires much lower amounts of water compared to production via aque- ous alteration. Although primary Fe/Mg-rich clay minerals are minor phases in Nakhla, the contribution of such a process to Martian clay formation may have been quite significant during the Noachian given that Noachian magmas were richer in H2O. In any case, the present discovery justifies a re-evaluation of the exact origin of the clay minerals detected on Mars so far, with potential consequences for our vision of the early magmatic and climatic histories of Mars. Received 26 January 2020 | Accepted 27 May 2020 | Published 8 July 2020 Letter mafic crustal materials (Smith and Bandfield, 2012; Ehlmann and Edwards, 2014).
    [Show full text]
  • 8. Projectile ˜˜˜
    8. Projectile ˜˜˜ Meteoritic remnants of the impacting asteroid that produced Barringer Crater littered the landscape when exploration began ~115 years ago. As described in Chapter 1, meteoritic irons are what initially captured Foote’s interest and spurred Barringer’s interest in a possibly rich natural source of native metal. After Foote’s description was published, samples were collected by F. W. Volz at a nearby trading post and sold widely. Gilbert (1896) estimated that 10 tons of meteoritic debris had already been recovered by the time of his visit. Similarly, Barringer (1905) estimated that 10 to 15 tons of it were circulating around the world by the time his exploration work began. Fortunately, he tried to document the geographic and mass distribution of that debris in a detailed map, which is reproduced in Fig. 8.1. The map indicates that meteoritic irons were recovered from distances approaching 10 km. Gilbert (1896) apparently recovered a sample nearly 13 km beyond the crater rim. A lot of the meteoritic material was oxidized. It is sometimes simply called oxidized iron, but large masses are also called shale balls. A concentrated deposit of small oxidized iron fragments was found northeast of the crater, although those types of fragments are distributed in all directions around the crater. The current estimate of the recovered meteoritic iron mass is 30 tons (Nininger, 1949; Grady, 2000), although this is a highly uncertain number. Specimens were transported in pre-historical times and have been found scattered throughout Arizona (see, for example, Wasson, 1968). Specimens have also been illicitly removed in recent times, without any documentation of the locations or masses recovered.
    [Show full text]
  • New Mars Meteorite Fall in Marocco: Final Strewn Field
    Available online at www.ilcpa.pl International Letters of Chemistry, Physics and Astronomy 11 (2013) 20-25 ISSN 2299-3843 New Mars meteorite fall in Marocco: final strewn field Abderrahmane Ibhi Laboratory of Geo-heritage and Geo-materials Science, Ibn Zohr University, Agadir, Morocco E-mail address: [email protected] ABSTRACT The Tissint fireball is the only fireball to have been observed and reported by numerous witnesses across the south-east of Morocco. The event was extremely valuable to the scientific community; show an extraordinary and rare event and were also the brightest and most comprehensively observed fireball in Morocco’s known astronomical history. Since the abstract of A. Ibhi (2011) [1]. In 1012-2013 concerning a number of Martian meteorite fragments found in the region of Tata (Morocco), a number of expeditions have been made to the area. A. ibhi has done a great amount of field work. He discovered the strewn field and collected the fragments of this Martian meteorite and many information. Each expedition has had the effect of expanding the size of the strewn field which is now documented to cover more than 70 sq. kilometers. The size of the strewn field is now estimated to be about a 17 km long. Keywords: fireball; Martian meteorite; Shergottite; Strewn field; Tissint; Morocco. 1. INTRODUCTION A meteoritic body entered the earth’s atmosphere in the south-east skies of Tata, Morocco, On Sunday July, 18th, 2011 at 2 o’clock in the morning. Its interaction with the atmosphere led to brilliant light flashes accompanied with detonations.
    [Show full text]
  • Constraints on the Water, Chlorine, and Fluorine Content of the Martian Mantle
    Meteoritics & Planetary Science 1–13 (2016) doi: 10.1111/maps.12624 Constraints on the water, chlorine, and fluorine content of the Martian mantle 1* 2,3 4 Justin FILIBERTO , Juliane GROSS , and Francis M. MCCubbin 1Department of Geology, Southern Illinois University, 1259 Lincoln Dr, MC 4324, Carbondale, Illinois 62901, USA 2Department of Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, USA 3Department of Earth and Planetary Sciences, The American Museum of Natural History, New York, New York 10024, USA 4NASA Johnson Space Center, Mail Code XI2, 2101 NASA Parkway, Houston, Texas 77058, USA *Corresponding author. E-mail: fi[email protected] (Received 30 July 2015; revision accepted 22 January 2016) Abstract–Previous estimates of the volatile contents of Martian basalts, and hence their source regions, ranged from nearly volatile-free through estimates similar to those found in terrestrial subduction zones. Here, we use the bulk chemistry of Martian meteorites, along with Martian apatite and amphibole chemistry, to constrain the volatile contents of the Martian interior. Our estimates show that the volatile content of the source region for the Martian meteorites is similar to the terrestrial Mid-Ocean-Ridge Mantle source. Chlorine is enriched compared with the depleted terrestrial mantle but is similar to the terrestrial enriched source region; fluorine is similar to the terrestrial primitive mantle; and water is consistent with the terrestrial mantle. Our results show that Martian magmas were not volatile saturated; had water/chlorine and water/fluorine ratios ~0.4–18; and are most similar, in terms of volatiles, to terrestrial MORBs. Presumably, there are variations in volatile content in the Martian interior as suggested by apatite compositions, but more bulk chemical data, especially for fluorine and water, are required to investigate these variations.
    [Show full text]
  • Lost Lake by Robert Verish
    Meteorite-Times Magazine Contents by Editor Like Sign Up to see what your friends like. Featured Monthly Articles Accretion Desk by Martin Horejsi Jim’s Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob’s Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Galactic Lore by Mike Gilmer Meteorite Calendar by Anne Black Meteorite of the Month by Michael Johnson Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2010 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • A Magnetic Susceptibility Database for Stony Meteorites
    Direttore Enzo Boschi Comitato di Redazione Cesidio Bianchi Tecnologia Geofisica Rodolfo Console Sismologia Giorgiana De Franceschi Relazioni Sole-Terra Leonardo Sagnotti Geomagnetismo Giancarlo Scalera Geodinamica Ufficio Editoriale Francesca Di Stefano Istituto Nazionale di Geofisica e Vulcanologia Via di Vigna Murata, 605 00143 Roma Tel. (06) 51860468 Telefax: (06) 51860507 e-mail: [email protected] A MAGNETIC SUSCEPTIBILITY DATABASE FOR STONY METEORITES Pierre Rochette1, Leonardo Sagnotti1, Guy Consolmagno2, Luigi Folco3, Adriana Maras4, Flora Panzarino4, Lauri Pesonen5, Romano Serra6 and Mauri Terho5 1Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy [[email protected]] 2Specola Vaticana, Castel Gandolfo, Italy 3Antarctic [PNRA] Museum of Siena, Siena, Italy 4Università La Sapienza, Roma, Italy 5University of Helsinki, Finland 6“Giorgio Abetti” Museum of San Giovanni in Persiceto, Italy Pierre Rochette et alii: A Magnetic Susceptibility Database for Stony Meteorites 1. Introduction the Museo Nationale dell’Antartide in Siena [Folco and Rastelli, 2000], the University of More than 22,000 different meteorites Roma “la Sapienza” [Cavaretta Maras, 1975], have been catalogued in collections around the the “Giorgio Abetti” Museum in San Giovanni world (as of 1999) of which 95% are stony types Persiceto [Levi-Donati, 1996] and the private [Grady, 2000]. About a thousand new meteorites collection of Matteo Chinelatto. In particular, are added every year, primarily from Antarctic the Antarctic Museum in Siena is the curatorial and hot-desert areas. Thus there is a need for centre for the Antarctic meteorite collection rapid systematic and non-destructive means to (mostly from Frontier Mountain) recovered by characterise this unique sampling of the solar the Italian Programma Nazionale di Ricerche in system materials.
    [Show full text]
  • 2017 Chicxulub Revealed
    THE UNIVERSITY TEXAS OF AUSTIN AT JACKSON• SCHOOL GEOSCIENCES OF 2017 NEWSLETTER• Newsletter2 017 Chicxulub Revealed A first look at rocks from the crater left by the asteroid that wiped out non-avian dinosaurs WELCOME Dear Alumni and Friends he devastation that Hurricane Harvey brought to Texas communities in August was a tragic reminder of how vital it is to understand our planet and T its processes. Shortly after the hurricane struck, our scientists, through our Rapid Response program, began to conduct research to understand how Harvey has impacted the coast and offshore Gulf of Mexico. This research will help determine the best ways to deal with many coastal issues in the aftermath of the storm, and how we might better prepare for such events in the future. You can read more about the mission on page 18. Rapid response efforts on the effects of abrupt, catastrophic geoscience events COVER: GRANITE FROM THE PEAK RING OF provide critical science that can benefit society. This is what we strive to do here at the THE CHICXULUB CRATER FORMED BY THE Jackson School of Geosciences. This year’s Newsletter holds some tremendous examples. ASTEROID STRIKE THAT WIPED OUT ALL NON- AVIAN DINOSAURS I’d like to draw your attention to the story on page 58 about the scientific coring mission led by Peter Flemings to bring back samples of methane hydrate from ABOVE: MEMBERS OF THE JACKSON beneath the Gulf of Mexico. This is a cutting-edge research project on a potential SCHOOL-LED TEAM CORING FOR SAMPLES OF METHANE HYDRATE IN THE GULF OF MEXICO future energy source that very few schools in the world would be able to mount.
    [Show full text]
  • Science Policy Bulletin, Volume 2 Number 5. INSTITUTION Battelle Memorial Inst., Columbus, Ohio
    DOCUMENT RESUME ED 042 598 SE 007 869 AUTHOR Brainard, Robert W., Ed. TITLE Science Policy Bulletin, Volume 2 Number 5. INSTITUTION Battelle Memorial Inst., Columbus, Ohio. Columbus Labs. PUB DATE Oct 69 NOTE 66p. EDRS PRICE EDRS Price MF-$0.50 HC-$3.40 DESCRIPTORS *Annotated Bibliographies, Federal Legislation, Financial Support, Foreign Policy, *Government Role, Natural Resources, *Policy Formation, *Scientific Research, Socioeconomic Influences, *Technology ABSTRACT This bimonthly bulletin reports annotations of current literature on science and public policy. Coverage includes both "policy for science..!, and "science for policy" in the areas of engineering, technical and narrowly specialized publications. Its purpose.is to aid persons who study, formulate, or implement public policy related to science by alerting them to new additions to tilt. science policy literature. Documents are listed under the headings of (1) General, (2) Science, Domestic Problems and National Goals, (3) Needs and Allocation of Resources for Science,(4) National R & D Programs,(5) Science, Education, and the University, (6) Science Management and Policy-Making Bodies, (7) Science, Foreign Affairs, and National Defense, and (8) Science Policy in Foreign Countries. The 109 documents are listed under°one of these categories. Cross-indexing is not used. Major meetings and other events in the area are also reported. (RR) Vol. 2 Number 5 October, 1969 U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY. Science Policy Bulletin Battelle Memorial Institute SCIENCE POLICY BULLETIN The Bulletin, published bimonthly, reports the current literature in the area of science and public policy.
    [Show full text]
  • Radar-Enabled Recovery of the Sutter's Mill Meteorite, A
    RESEARCH ARTICLES the area (2). One meteorite fell at Sutter’sMill (SM), the gold discovery site that initiated the California Gold Rush. Two months after the fall, Radar-Enabled Recovery of the Sutter’s SM find numbers were assigned to the 77 me- teorites listed in table S3 (3), with a total mass of 943 g. The biggest meteorite is 205 g. Mill Meteorite, a Carbonaceous This is a tiny fraction of the pre-atmospheric mass, based on the kinetic energy derived from Chondrite Regolith Breccia infrasound records. Eyewitnesses reported hearing aloudboomfollowedbyadeeprumble.Infra- Peter Jenniskens,1,2* Marc D. Fries,3 Qing-Zhu Yin,4 Michael Zolensky,5 Alexander N. Krot,6 sound signals (table S2A) at stations I57US and 2 2 7 8 8,9 Scott A. Sandford, Derek Sears, Robert Beauford, Denton S. Ebel, Jon M. Friedrich, I56US of the International Monitoring System 6 4 4 10 Kazuhide Nagashima, Josh Wimpenny, Akane Yamakawa, Kunihiko Nishiizumi, (4), located ~770 and ~1080 km from the source, 11 12 10 13 Yasunori Hamajima, Marc W. Caffee, Kees C. Welten, Matthias Laubenstein, are consistent with stratospherically ducted ar- 14,15 14 14,15 16 Andrew M. Davis, Steven B. Simon, Philipp R. Heck, Edward D. Young, rivals (5). The combined average periods of all 17 18 18 19 20 Issaku E. Kohl, Mark H. Thiemens, Morgan H. Nunn, Takashi Mikouchi, Kenji Hagiya, phase-aligned stacked waveforms at each station 21 22 22 22 23 Kazumasa Ohsumi, Thomas A. Cahill, Jonathan A. Lawton, David Barnes, Andrew Steele, of 7.6 s correspond to a mean source energy of 24 4 24 2 25 Pierre Rochette, Kenneth L.
    [Show full text]