View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors - Main Meteoritics & Planetary Science 44, Nr 5, 725–745 (2009) Abstract available online at http://meteoritics.org Expanding the application of the Eu-oxybarometer to the lherzolitic shergottites and nakhlites: Implications for the oxidation state heterogeneity of the Martian interior Molly C. MCCANTA1, 4*, Linda ELKINS-TANTON2, and Malcolm J. RUTHERFORD3 1California Institute of Technology, Department of Geological and Planetary Sciences, MS 170-25, Pasadena, California 91125, USA 2Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 77 Massachusetts Ave., Building 54, Room 824, Cambridge, Massachusetts 02139, USA 3Brown University, Department of Geological Sciences, 324 Brook St., Providence, Rhode Island 02912, USA 4Present address: Tufts University, Geology Department, Lane Hall, 2 North Hill Road, Medford, Massachusetts 02155, USA *Corresponding author. E-mail:
[email protected] (Received 07 July 2008; revision accepted 06 February 2009) Abstract–Experimentally rehomogenized melt inclusions from the nakhlite Miller Range 03346 (MIL 03346) and the lherzolitic shergottite Allan Hills 77005 (ALH 77005) have been analyzed for their rare earth element (REE) concentrations in order to characterize the early melt compositions of these Martian meteorites and to calculate the oxygen fugacity conditions they crystallized under. D(Eu/Sm)pyroxene/melt values were measured at 0.77 and 1.05 for ALH 77005 and MIL 03346, respectively. These melts and their associated whole rock compositions have similar REE patterns, suggesting that whole rock REE values are representative of those of the early melts and can be used as input into the pyroxene Eu-oxybarometer for the nakhlites and lherzolitic shergottites.