Nakhlite Meteorites to Assess Carbonate Formation On

Total Page:16

File Type:pdf, Size:1020Kb

Nakhlite Meteorites to Assess Carbonate Formation On STUDYING ANTARCTIC ORDINARY CHONDRITE (OC) AND MILLER RANGE (MIL) NAKHLITE METEORITES TO ASSESS CARBONATE FORMATION ON EARTH AND MARS A Dissertation by MICHAEL ELLIS EVANS Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Piers Chapman Co-Chair of Committee, Paul Niles Committee Members, Niall Slowey Kathryn Shamberger Ethan Grossman Head of Department, Shari Yvon-Lewis May 2017 Major Subject: Oceanography Copyright 2017 Michael Ellis Evans ABSTRACT Carbonates are found in meteorites collected from Antarctica. The stable isotope composition of these carbonates records their formation environment on either Earth or Mars. The first research objective of this dissertation is to characterize the δ18O and δ13C values of terrestrial carbonates formed on Ordinary Chondrites (OCs) collected in regions near known martian meteorites. The second objective is to characterize the δ18O and δ13C values of martian carbonates from Nakhlites collected from the Miller Range (MIL). The third objective is to assess environmental changes on Mars since the Noachian period. The OCs selected had no pre-terrestrial carbonates so any carbonates detected are presumed terrestrial in origin. The study methodology is stepped extraction of CO2 created from phosphoric acid reaction with meteorite carbonate. Stable isotope results show that two distinct terrestrial carbonate species (Ca-rich and Fe/Mg-rich) formed in Antarctica on OCs from a thin-film of meltwater containing dissolved CO2. Carbon isotope data suggests the terrestrial carbonates formed in 13 18 equilibrium with atmospheric CO2 δ C = -7.5‰ at >15°C. The wide variation in δ O suggests the carbonates did not form in equilibrium with meteoric water alone, but possibly formed from an exchange of oxygen isotopes in both water and dissolved CO2. Antarctica provides a model for carbonate formation in a low water/rock ratio, near 0°C environment like modern Mars. Nakhlite parent basalt formed on Mars 1.3 billion years ago and the meteorites were ejected by a single impact approximately 11 ii million years ago. They traveled thru space before eventually falling to the Earth surface 10,000-40,000 years ago. Nakhlite samples for this research were all collected from the Miller Range (MIL) in Antarctica. The Nakhlite stable isotope results show two carbonate species (Ca-rich and Fe/Mg-rich) with a range of δ18O values that are similar to the terrestrial OC carbonates. The Nakhlite carbonates have distinctly different, heavier δ13C values from a presumed martian carbon reservoir. These carbonates cannot form in equilibrium at 15°C with the modern Mars atmospheric CO2 (measured by the Curiosity rover) δ13C = 46‰, but may reflect kinetic carbonate formation from a high pH fluid. Alternatively, the Nakhlite carbonates may have formed with a lighter, early Amazonian atmosphere of δ13C ≈ 30‰. Assuming the martian carbonates formed in a thin-film environment like the OC terrestrial carbonates, an oxygen mixing model predicts early Amazonian martian meteoric water δ18O = -30‰. iii DEDICATION I dedicate this work to my parents, who instilled in me a thirst for knowledge and a zest for life. They shaped my character to be confident, independent, and meticulous in all pursuits. My father modeled integrity with his work ethic that balanced professional and personal life. My love for family time stems from him. My mother has always been my greatest encouragement. She continues to model adult development with intelligence, humor, travel, outreach, and altruism. I also dedicate this work to my children with the hope that they grow, and evolve, and expand with every breath. I hope they treat life as a long education experience, and make wise decisions without fear of wondering “What if …” iv ACKNOWLEDGEMENTS I acknowledge my Texas A&M University (TAMU) committee chair, Dr. Piers Chapman, for accepting me as his wayward graduate student and guiding my evolution in the Oceanography Department. I have greatly enjoyed his gentle coaching as a teacher, a researcher, and a colleague. I encourage all grads to seek his wisdom over “Beers with Piers”. I also acknowledge my NASA committee co-chair, Dr. Paul Niles, who crafted a scientist from an engineer. His focus redirected my outlook from “How” to “Why” with the assurance that “Science is SLOW”. His assistance in coordinating NASA and TAMU logistics facilitated this successful research collaboration. I credit Rick Socki, Darren Locke, and Dr. Tao Sun for teaching me the skills to accomplish this research in NASA’s Light Element Analysis Laboratory (LEAL). I admire their patience, knowledge, and creativity in working to build, test, and maintain the finicky instruments and temperamental equipment. I thank my committee members, Dr. Niall Slowey, Dr. Katie Shamberger, and Dr. Ethan Grossman for their guidance and support throughout the course of my TAMU education and research. I appreciate the faculty within Oceanography Department for their dedication to teaching excellence during my coursework. I acknowledge Dr. Debbie Thomas for her enthusiastic support (and comradeship on AGU runs). My life at TAMU has been enhanced because of a close family of graduate students (especially Steph, Natalie, Chris, Cody and Kat) in the Oceanography v Department. From shared coursework to OCNG-252 TA meetings to exploring the Galapagos Islands to Friendsgivings to AGU with tailgates, football games, rallys, movie nights, “Mug Club” and pub crawls - I am thankful. I also developed dear friendships through church (especially Linda, Glenn, & Vinnie) and choir in College Station that enriched my soul. My heart resides in Aggieland. Thanks to the Oceanography Department staff (especially Amy, Wendy, Janet and Debra) for their assistance with the paperwork that provided funding, benefits, and reimbursements for my educational expenses. This dissertation would not have been possible without the support of everyone. vi CONTRIBUTORS AND FUNDING SOURCES Contributors This work was supervised by a dissertation committee with members of the TAMU College of Geosciences, including Dr. Piers Chapman (co-chair), Dr. Niall Slowey, and Dr. Katie Shamberger, of the Oceanography Department, and Dr. Ethan Grossman of the Geology and Geophysics Department. Dr. Paul Niles of NASA/JSC functioned as both co-chair of the dissertation committee and management supervisor of the student at NASA. All experimental work conducted for this dissertation was completed by the student independently in the NASA/JSC Light Element Analysis Laboratory (LEAL) located in Houston, Texas. Funding Sources Graduate study was supported by a stipend from Texas A&M University – Galveston as a Teaching Assistant (TA) for CHEM-117 Chemistry Lab for Engineers (Fall 2011 and Spring 2012), as a TA for OCNG-252 Oceanography Lab (Fall 2012, Spring 2013, and Fall 2013) and as a Graduate Assistant Lecturer (GAL) for OCNG-251 Oceanography (Fall 2014, Fall 2015, and Fall 2016). Graduate study was also made possible with a scholarship from the family of Louis and Elizabeth Scherck for the 2015-2016 and 2016-2017 school years. Travel grants from the TAMU Oceanography Graduate Council (OGC) provided funds to present research at the 2014 American Geophysical Union (AGU) conference and at the vii 2017 Lunar Planetary Science Conference (LPSC). NASA provided funds to present research at the 2015 and 2016 AGU conference, and the LPSC in 2016 and 2017. The remainder of my graduate funding was earned as salary while working as a summer scientist for Jacobs Engineering (Summer 2012) and as a NASA Pathways Graduate Student (Summer 2013, Jan-Aug 2014, Jan-Aug 2015, Jan-Aug 2016, Jan-May 2017). viii TABLE OF CONTENTS Page ABSTRACT .......................................................................................................................ii DEDICATION .................................................................................................................. iv ACKNOWLEDGEMENTS ............................................................................................... v CONTRIBUTORS AND FUNDING SOURCES ............................................................vii TABLE OF CONTENTS .................................................................................................. ix LIST OF FIGURES ........................................................................................................ xiii LIST OF TABLES .......................................................................................................... xvi CHAPTER I INTRODUCTION AND BACKGROUND ................................................ 1 Understanding Mars ........................................................................................................... 1 Why Study Mars? ....................................................................................................... 1 Mars Environmental Changes .................................................................................... 2 Meteorites ......................................................................................................................... 14 Meteorite Types ........................................................................................................ 16 Undifferentiated Meteorites ................................................................................. 16 Differentiated Meteorites ....................................................................................
Recommended publications
  • A Stringent Upper Limit of 20 Pptv for Methane on Mars and Constraints on Its Dispersion Outside Gale Crater F
    A&A 650, A140 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140389 & © F. Montmessin et al. 2021 Astrophysics A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater F. Montmessin1 , O. I. Korablev2 , A. Trokhimovskiy2 , F. Lefèvre3 , A. A. Fedorova2 , L. Baggio1 , A. Irbah1 , G. Lacombe1, K. S. Olsen4 , A. S. Braude1 , D. A. Belyaev2 , J. Alday4 , F. Forget5 , F. Daerden6, J. Pla-Garcia7,8 , S. Rafkin8 , C. F. Wilson4, A. Patrakeev2, A. Shakun2, and J. L. Bertaux1 1 LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France e-mail: [email protected] 2 Space Research Institute (IKI) RAS, Moscow, Russia 3 LATMOS/IPSL, Sorbonne Université, UVSQ Université Paris-Saclay, CNRS, Paris, France 4 AOPP, Oxford University, Oxford, UK 5 Laboratoire de Météorologie Dynamique, Sorbonne Université, Paris, France 6 BIRA-IASB, Bruxelles, Belgium 7 Centro de Astrobiología (CSIC?INTA), Torrejón de Ardoz, Spain 8 Southwest Research Institute, Boulder, CO, USA Received 20 January 2021 / Accepted 23 April 2021 ABSTRACT Context. Reports on the detection of methane in the Martian atmosphere have motivated numerous studies aiming to confirm or explain its presence on a planet where it might imply a biogenic or more likely a geophysical origin. Aims. Our intent is to complement and improve on the previously reported detection attempts by the Atmospheric Chemistry Suite (ACS) on board the ExoMars Trace Gas Orbiter (TGO). This latter study reported the results of a campaign that was a few months in length, and was significantly hindered by a dusty period that impaired detection performances.
    [Show full text]
  • The Mystery of Methane on Mars and Titan
    The Mystery of Methane on Mars & Titan By Sushil K. Atreya MARS has long been thought of as a possible abode of life. The discovery of methane in its atmosphere has rekindled those visions. The visible face of Mars looks nearly static, apart from a few wispy clouds (white). But the methane hints at a beehive of biological or geochemical activity underground. Of all the planets in the solar system other than Earth, own way, revealing either that we are not alone in the universe Mars has arguably the greatest potential for life, either extinct or that both Mars and Titan harbor large underground bodies or extant. It resembles Earth in so many ways: its formation of water together with unexpected levels of geochemical activ- process, its early climate history, its reservoirs of water, its vol- ity. Understanding the origin and fate of methane on these bod- canoes and other geologic processes. Microorganisms would fit ies will provide crucial clues to the processes that shape the right in. Another planetary body, Saturn’s largest moon Titan, formation, evolution and habitability of terrestrial worlds in also routinely comes up in discussions of extraterrestrial biology. this solar system and possibly in others. In its primordial past, Titan possessed conditions conducive to Methane (CH4) is abundant on the giant planets—Jupiter, the formation of molecular precursors of life, and some scientists Saturn, Uranus and Neptune—where it was the product of chem- believe it may have been alive then and might even be alive now. ical processing of primordial solar nebula material. On Earth, To add intrigue to these possibilities, astronomers studying though, methane is special.
    [Show full text]
  • Cosmic-Ray-Exposure Ages Martian Meteorites Million Years
    Introduction to MMC 2012 someone keeps adding pieces as you go along (see my Introduction 2006). Most Martian meteorites are mafic As of the end of 2012, we now know of about 65 basalts. That is, they have an abundance of Fe and different meteorites from Mars with a total weight about Mg, are low in Si and Al and have a texture of 120 kilograms. Some fell as showers (e.g. Nakhla, intergrown minerals typical of terrestrial basalts (the Tissint), and some can be paired by common lithology, tradition has been to call them “shergottites”, after the age and fall location, but it is more instructive to first sample recognized as such). Some often have an consider how they are grouped by “launch pairs”. If abundance of large olivine crystals (so called olivine- you add the terrestrial age to the cosmic exposure age phyric). Others have an abundance of both high- and (CRE) you get the time when the meteorite was low-Ca pyroxene, with poikilitic textures and were launched off of Mars by impact. Since only rather large originally called “lherzolitic shergottites”. But it has impacts would do this, there must be a finite number now been recognized that there is a more fundamental of such impacts – hence grouping of samples. and better way to describe these rocks (Irving 2012). Now that we have such a large number of samples, it Figure 1 shows a crude summary of CRE that have is time to understand what we have and infer what we been determined for Martian meteorites. Note that can about Mars.
    [Show full text]
  • Asteroids 2867 Steins and 21 Lutetia: Surface Composition from Far Infrared Observations with the Spitzer Space Telescope
    A&A 477, 665–670 (2008) Astronomy DOI: 10.1051/0004-6361:20078085 & c ESO 2007 Astrophysics Asteroids 2867 Steins and 21 Lutetia: surface composition from far infrared observations with the Spitzer space telescope M. A. Barucci1, S. Fornasier1,2,E.Dotto3,P.L.Lamy4, L. Jorda4, O. Groussin4,J.R.Brucato5, J. Carvano6, A. Alvarez-Candal1, D. Cruikshank7, and M. Fulchignoni1,2 1 LESIA, Observatoire de Paris, 92195 Meudon Principal Cedex, France e-mail: [email protected] 2 Université Paris Diderot, Paris VII, France 3 INAF, Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monteporzio Catone, Roma, Italy 4 Laboratoire d’Astrophysique de Marseille, BP 8, 13376 Marseille Cedex 12, France 5 INAF, Osservatorio Astronomico di Capodimonte, via Moiariello 16, 80131 Napoli, Italy 6 Observatorio National (COAA), rua Gal. José Cristino 77, CEP20921–400 Rio de Janeiro, Brazil 7 NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-1000, USA Received 14 June 2007 / Accepted 3 October 2007 ABSTRACT Aims. The aim of this paper is to investigate the surface composition of the two asteroids 21 Lutetia and 2867 Steins, targets of the Rosetta space mission. Methods. We observed the two asteroids through their full rotational periods with the Infrared Spectrograph of the Spitzer Space Telescope to investigate the surface properties. The analysis of their thermal emission spectra was carried out to detect emissivity features that diagnose the surface composition. Results. For both asteroids, the Christiansen peak, the Reststrahlen, and the Transparency features were detected. The thermal emissiv- ity shows a clear analogy to carbonaceous chondrite meteorites, in particular to the CO–CV types for 21 Lutetia, while for 2867 Steins, already suggested as belonging to the E-type asteroids, the similarity to the enstatite achondrite meteorite is confirmed.
    [Show full text]
  • Antarctic Guide to Martian Weathering
    PSRD: Antarctic Guide to Martian Weathering http://www.psrd.hawaii.edu/April05/DryValleysSoils.html posted April 13, 2005 Antarctic Guide to Martian Weathering --- Soils in the Antarctic Dry Valleys contain traces of silicate alteration products and secondary salts much like those found in Martian meteorites. Written by Linda M. V. Martel Hawai'i Institute of Geophysics and Planetology Field sites in the Antarctic Dry Valleys serve as useful (and relatively nearby) analogs to the surface of Mars for several reasons that have been known since the Viking Lander experiments. The environmental similarities include: low mean temperatures; strong, desiccating winds; lack of rain; sparse snowfall; sublimation; diurnal freeze-thaw cycles; low humidity; high solar radiation; and the presence of salts in the soils. A team of planetary scientists have recently reexamined earlier work on cold Antarctic desert soils to better understand the Martian near-surface environment and weathering processes. The ongoing studies by Susan Wentworth (ERC/ESCG at Johnson Space Center), Everett Gibson and David McKay (Johnson Space Center), and Michael Velbel (Michigan State University) include Martian meteorites, most of which contain traces of aqueous weathering products. They report that these meteorite weathering features, which are of Martian origin, are remarkably similar in composition, nature, and abundance to those found in the Antarctic Dry Valleys soils, suggesting the weathering processes are also similar. Reference: S. J. Wentworth, Gibson, E. K., Velbel, M. A., and McKay, D. S. (2005) Antarctic Dry Valleys and indigenous weathering in Mars meteorites: implications for water and life on Mars. Icarus, v. 174, p. 382-395. Insights from Polar Desert Soils 1 of 6 PSRD: Antarctic Guide to Martian Weathering http://www.psrd.hawaii.edu/April05/DryValleysSoils.html The photograph on the left is a general scene of the environment of Wright Valley, Antarctica.
    [Show full text]
  • Lafayette - 800 Grams Nakhlite
    Lafayette - 800 grams Nakhlite Figure 1. Photograph showing fine ablation features Figure 2. Photograph of bottom surface of Lafayette of fusion crust on Lafayette meteorite. Sample is meteorite. Photograph from Field Museum Natural shaped like a truncated cone. This is a view of the top History, Chicago, number 62918. of the cone. Sample is 4-5 centimeters across. Photo- graph from Field Museum Natural History, Chicago, number 62913. Introduction According to Graham et al. (1985), “a mass of about 800 grams was noticed by Farrington in 1931 in the geological collections in Purdue University in Lafayette Indiana.” It was first described by Nininger (1935) and Mason (1962). Lafayette is very similar to the Nakhla and Governador Valadares meteorites, but apparently distinct from them (Berkley et al. 1980). Lafayette is a single stone with a fusion crust showing Figure 3. Side view of Lafayette. Photograph from well-developed flow features from ablation in the Field Museum Natural History, Chicago, number Earth’s atmosphere (figures 1,2,3). The specimen is 62917. shaped like a rounded cone with a blunt bottom end. It was apparently oriented during entry into the Earth’s that the water released during stepwise heating of atmosphere. Note that the fine ablation features seen Lafayette was enriched in deuterium. The alteration on Lafayette have not been reported on any of the assemblages in Lafayette continue to be an active field Nakhla specimens. of research, because it has been shown that the alteration in Lafayette occurred on Mars. Karlsson et al. (1992) found that Lafayette contained the most extra-terrestrial water of any Martian Lafayette is 1.32 b.y.
    [Show full text]
  • Meteorites from the Lut Desert (Iran)
    Meteorites from the Lut Desert (Iran) Hamed Pourkhorsandi, Jérôme Gattacceca, Pierre Rochette, Massimo d’Orazio, Hojat Kamali, Roberto Avillez, Sonia Letichevsky, Morteza Djamali, Hassan Mirnejad, Vinciane Debaille, et al. To cite this version: Hamed Pourkhorsandi, Jérôme Gattacceca, Pierre Rochette, Massimo d’Orazio, Hojat Kamali, et al.. Meteorites from the Lut Desert (Iran). Meteoritics and Planetary Science, Wiley, 2019, 54 (8), pp.1737-1763. 10.1111/maps.13311. hal-02144596 HAL Id: hal-02144596 https://hal-amu.archives-ouvertes.fr/hal-02144596 Submitted on 31 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License doi: 10.1111/maps.13311 Meteorites from the Lut Desert (Iran) Hamed POURKHORSANDI 1,2*,Jerome^ GATTACCECA 1, Pierre ROCHETTE 1, Massimo D’ORAZIO3, Hojat KAMALI4, Roberto de AVILLEZ5, Sonia LETICHEVSKY5, Morteza DJAMALI6, Hassan MIRNEJAD7, Vinciane DEBAILLE2, and A. J. Timothy JULL8 1Aix Marseille Universite, CNRS, IRD, Coll France, INRA, CEREGE, Aix-en-Provence, France 2Laboratoire G-Time, Universite Libre de Bruxelles, CP 160/02, 50, Av. F.D. Roosevelt, 1050 Brussels, Belgium 3Dipartimento di Scienze della Terra, Universita di Pisa, Via S.
    [Show full text]
  • Tardi-Magmatic Precipitation of Martian Fe/Mg-Rich Clay Minerals Via Igneous Differentiation
    ©2020TheAuthors Published by the European Association of Geochemistry ▪ Tardi-magmatic precipitation of Martian Fe/Mg-rich clay minerals via igneous differentiation J.-C. Viennet1*, S. Bernard1, C. Le Guillou2, V. Sautter1, P. Schmitt-Kopplin3, O. Beyssac1, S. Pont1, B. Zanda1, R. Hewins1, L. Remusat1 Abstract doi: 10.7185/geochemlet.2023 Mars is seen as a basalt covered world that has been extensively altered through hydrothermal or near surface water-rock interactions. As a result, all the Fe/Mg-rich clay minerals detected from orbit so far have been interpreted as secondary, i.e. as products of aqueous alteration of pre-existing silicates by (sub)surface water. Based on the fine scale petrographic study of the evolved mesostasis of the Nakhla mete- orite, we report here the presence of primary Fe/Mg-rich clay minerals that directly precipitated from a water-rich fluid exsolved from the Cl-rich parental melt of nakhlites during igneous differentiation. Such a tardi-magmatic precipitation of clay minerals requires much lower amounts of water compared to production via aque- ous alteration. Although primary Fe/Mg-rich clay minerals are minor phases in Nakhla, the contribution of such a process to Martian clay formation may have been quite significant during the Noachian given that Noachian magmas were richer in H2O. In any case, the present discovery justifies a re-evaluation of the exact origin of the clay minerals detected on Mars so far, with potential consequences for our vision of the early magmatic and climatic histories of Mars. Received 26 January 2020 | Accepted 27 May 2020 | Published 8 July 2020 Letter mafic crustal materials (Smith and Bandfield, 2012; Ehlmann and Edwards, 2014).
    [Show full text]
  • Proquest Dissertations
    RICE UNIVERSITY Meteorite evidence for deep crustal magma chambers on Mars suggests crustal growth driven by underplating and intrusion by Heather Anne Dalton A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Master of Science APPROVED, THESIS COMMITTEE: Cin-Ty Lee, A^ociate Professor Earth Science Raj deep Dasgupta, Assistant Professor Earth Science rian Lenardic/Professor Earth Science , Dale Sawyer, Professor Earth Science HOUSTON, TEXAS JANUARY 2010 UMI Number: 1485997 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 1485997 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Meteorite evidence for deep crustal magma chambers on Mars suggests crustal growth driven by underplating and intrusion by Heather Anne Dalton Meteorite RBT04262 is one of only two Martian meteorites made of composite lithologies. Lithology 1 is composed of coarse-grained olivines enclosed inpoikilitic pigeonites, resembling lherzolitic shergottites. Lithology 2 is finer-grained and composed of olivine phenocrysts set within a groundmass of augite, olivine, plagioclase (shocked to maskelynite) and accessory phases such as Ca-phosphates, representing an olivine-phyric shergottite. Lithology 1 may be an early-formed cumulate while Lithology 2 may represent a cooled liquid laden with accumulated olivine crystals.
    [Show full text]
  • Physical Properties of Martian Meteorites: Porosity and Density Measurements
    Meteoritics & Planetary Science 42, Nr 12, 2043–2054 (2007) Abstract available online at http://meteoritics.org Physical properties of Martian meteorites: Porosity and density measurements Ian M. COULSON1, 2*, Martin BEECH3, and Wenshuang NIE3 1Solid Earth Studies Laboratory (SESL), Department of Geology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada 2Institut für Geowissenschaften, Universität Tübingen, 72074 Tübingen, Germany 3Campion College, University of Regina, Regina, Saskatchewan S4S 0A2, Canada *Corresponding author. E-mail: [email protected] (Received 11 September 2006; revision accepted 06 June 2007) Abstract–Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet’s surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability.
    [Show full text]
  • New Mars Meteorite Fall in Marocco: Final Strewn Field
    Available online at www.ilcpa.pl International Letters of Chemistry, Physics and Astronomy 11 (2013) 20-25 ISSN 2299-3843 New Mars meteorite fall in Marocco: final strewn field Abderrahmane Ibhi Laboratory of Geo-heritage and Geo-materials Science, Ibn Zohr University, Agadir, Morocco E-mail address: [email protected] ABSTRACT The Tissint fireball is the only fireball to have been observed and reported by numerous witnesses across the south-east of Morocco. The event was extremely valuable to the scientific community; show an extraordinary and rare event and were also the brightest and most comprehensively observed fireball in Morocco’s known astronomical history. Since the abstract of A. Ibhi (2011) [1]. In 1012-2013 concerning a number of Martian meteorite fragments found in the region of Tata (Morocco), a number of expeditions have been made to the area. A. ibhi has done a great amount of field work. He discovered the strewn field and collected the fragments of this Martian meteorite and many information. Each expedition has had the effect of expanding the size of the strewn field which is now documented to cover more than 70 sq. kilometers. The size of the strewn field is now estimated to be about a 17 km long. Keywords: fireball; Martian meteorite; Shergottite; Strewn field; Tissint; Morocco. 1. INTRODUCTION A meteoritic body entered the earth’s atmosphere in the south-east skies of Tata, Morocco, On Sunday July, 18th, 2011 at 2 o’clock in the morning. Its interaction with the atmosphere led to brilliant light flashes accompanied with detonations.
    [Show full text]
  • POSTER SESSION 5:30 P.M
    Monday, July 27, 1998 POSTER SESSION 5:30 p.m. Edmund Burke Theatre Concourse MARTIAN AND SNC METEORITES Head J. W. III Smith D. Zuber M. MOLA Science Team Mars: Assessing Evidence for an Ancient Northern Ocean with MOLA Data Varela M. E. Clocchiatti R. Kurat G. Massare D. Glass-bearing Inclusions in Chassigny Olivine: Heating Experiments Suggest Nonigneous Origin Boctor N. Z. Fei Y. Bertka C. M. Alexander C. M. O’D. Hauri E. Shock Metamorphic Features in Lithologies A, B, and C of Martian Meteorite Elephant Moraine 79001 Flynn G. J. Keller L. P. Jacobsen C. Wirick S. Carbon in Allan Hills 84001 Carbonate and Rims Terho M. Magnetic Properties and Paleointensity Studies of Two SNC Meteorites Britt D. T. Geological Results of the Mars Pathfinder Mission Wright I. P. Grady M. M. Pillinger C. T. Further Carbon-Isotopic Measurements of Carbonates in Allan Hills 84001 Burckle L. H. Delaney J. S. Microfossils in Chondritic Meteorites from Antarctica? Stay Tuned CHONDRULES Srinivasan G. Bischoff A. Magnesium-Aluminum Study of Hibonites Within a Chondrulelike Object from Sharps (H3) Mikouchi T. Fujita K. Miyamoto M. Preferred-oriented Olivines in a Porphyritic Olivine Chondrule from the Semarkona (LL3.0) Chondrite Tachibana S. Tsuchiyama A. Measurements of Evaporation Rates of Sulfur from Iron-Iron Sulfide Melt Maruyama S. Yurimoto H. Sueno S. Spinel-bearing Chondrules in the Allende Meteorite Semenenko V. P. Perron C. Girich A. L. Carbon-rich Fine-grained Clasts in the Krymka (LL3) Chondrite Bukovanská M. Nemec I. Šolc M. Study of Some Achondrites and Chondrites by Fourier Transform Infrared Microspectroscopy and Diffuse Reflectance Spectroscopy Semenenko V.
    [Show full text]