Geophysical Abstracts 184 January-March 1961

Total Page:16

File Type:pdf, Size:1020Kb

Geophysical Abstracts 184 January-March 1961 Geophysical Abstracts 184 January-March 1961 By JAMES W. CLARKE, DOROTHY B. VITALIANO, VIRGINIA S. NEUSCHEL, and others GEOLOGICAL SURVEY BULLETIN 1146-A Abstracts of current literature pertaining to the physics of the solid earth and to geophysical exploration UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1961 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printin~ Office, Washin~ton 25, D.C. Price 40 cents (sin~e copy). Subscription price: $1.75 a year; 50 cents additional for foreign mailin~. Use of funds for printin~ this publication has been approved by the Director of the Bureau of the Bud~et (June 23, 1960). CONTENTS Page Introduction --------------------------------------------------- 1 Extent of coverage------------------------------------------ 1 List of journals -------------------------------------------- 1 Form of citation-------------------------------------------- 2 Abstracters------------------------------------------------ 2 Age determinations -------------------------------------------- 2 Cosmogony---------------------------------------------------- 23 Earth currents ------------------------------------------------ 34 Earthquakes and earthquake waves------------------------------- 37 Elasticity----------------------------------------------------- 59 Electrical exploration ------------------------------------------ 71 Electrical logging---------------------------------------------- 79 Exploration summaries and statistics ---------------------------- 82 General------------------------------------------------------- 85 Geodesy------------------------------------------------------- 88 Geotectonics -------------------------------------------------- 91 Glaciers ------------------------------------------------------ 96 Gravity ------------------------------------------------------- 97 Heat and heat flow --------------------------------------------- 107 Internal constitution of the earth--------------------------------- 110 Isotope geology------------------------------------------------ 117 Magnetic field of the earth -------------------------------------- 121 Magnetic properties and paleomagnetism ------------------------- 128 Magnetic surveys ---------------------------------------------- 132 Microseisms -------------------------------------------------- 135 Radioactivity -------------------------------------------------- 136 Radioactivity surveying and logging ------------------------------ 140 Seismic exploration -------------------------------------------- 143 Strength and plasticity------------------------------------------ 154 Submarine geology --------------------------------------------- 156 Volcanology --------------------------------------------------- 158 Index --------------------------------------------------------- 163 III GEOPHYSICAL ABSTRACTS 184, JANUARY-MARCH 1961 By James W. Clarke, Dorothy B. Vitaliano, Virginia S. Neuschel, and others INTRODUCTION Extent of Coverage Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and tech­ niques to geologic problems, and geophysical exploration. The table of con­ tents, which is alphabetically arranged, shows the material covered. Abstracts are prepared only of material that is believed to be generally a­ vailable. Ordinarily abstracts are not published of material with limited cir­ culations (such as dissertations, open-file reports, or memorandums) or of other papers presented orally at meetings. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language ac­ companying the paper. List of J burnais Lists of journals published in Geophysical Abstracts 160 (January-March 1955, Bulletin 1033 -A) and subsequent issues through 175 (October-December 1958, Bulletin 1086-D) have been compiled into a single list, which may be obtained by writing to the U.S. Geological Survey, Washington 25, D. C. Supplements to this master list have been published in each issue since Geophysical Abstracts 175. The following is an additional supplement that lists references cited in Geophysical Abstracts 184 that have not been listed previously. Arizona Geol. Soc. Digest-Arizona Geological Society Digest. Tucson, Ari­ zona. Geog. Rundschau-Geographische Rundschau [Geographical Review}. Georg Westerman Verlag. Braunschweig, German Federal Republic. Geol. Gesell. Ber. -Berichte der Geologischen Gesellschaft in der deutschen demokratischen Republik fur das gesamtgebiet der geologischen Wissen­ schaften [Reports of the geological society of the German Democratic Re­ public for the entire field of geological sciences]. Berlin, German Demo­ cratic Republic. Hokkaido Univ. Faculty Sci. Jour. -Journal of the Faculty of Science, Hok­ kaido University. Sapporo, Japan. Impact-Impact of science on society. United Nations Educational, Scientific and Cultural Organization. Paris, France. Nat. Sci. and Mus. -Natural Science and Museums. National Science Muse­ um. Tokyo, Japan. Problemy Geokhimii-Problemy Geokhimii [Problems of Geochemistry}. L'­ vovskiy Gosudarstvennyy Universitet. L'vov, U.S.S.R. Research Appl. Industry-ResearchApplied in Industry. Butterworths Scien­ tific Publications. London, England. Royal Geol. Soc. Cornwall Trans. -Transactions of the Royal Geological So­ ciety of Cornwall. Penzance, England. Univ. Indonesia, Inst. Technology Bandung, Dept. Geology Contr. -Contribu­ tions from the Department of Geology, Institute of Technology Bandung, U­ niversity of Indonesia. Bandung, Indonesia. Yorkshire Geol. Soc. Proc. -Proceedings of the Yorkshire Geological Society. Hull, England. 2 GEOPHYSICAL ABSTRACTS 184, JANUARY-MARCH 1961 Form of Citation The abbreviations of journal titles used are those used in the U.S. Geo­ logical Survey publications and in many geological journals. For papers in most languages other than English, the title is given in the original language as well as in translation. Slavic names and titles have been transliterated by the system used by the United States Board of Geographic Names. This sys­ tem of transliterationfor Russian is given in Geophysical Abstracts 148 (Jan­ uary-March1952,Bulletin 991-A)and in the new "List of Journals" announced above. Titles of papers in Japanese and Chinese are given in translation only. Abstracters Abstracts in this issue have been prepared by H. Faul, A. J. Shneiderov, and J. H. Swartz, as well as by the principal authors. Authors' abstracts are used in many instances. The initials of an abstracter following the notation "Author's abstract" indicates a translation from the original language. AGE DETERMINATIONS 184-1. Wetherill, G[eorge] W. Age of the base of the Cambrian: Nature, v. 187, no. 4731, p. 34-35, 1960. Holmes, Arthur. Age of the base of the Cambrian: ibid, p. 35-36, 1960. Wetherill draws attention to some problems existing in the determination of the base of the Cambrian and shows that the data used by Holmes in estab­ lishingthe revised date of 600±20 million years, based on absite from pegma­ tites overlain by the Adelaide series in South Australia and on uraninite from Katanga do not yield a firm maximum age for the base of even the Middle Cam­ brian. Holmes claims that Wetherill overrates some of the difficulties and exag­ gerates their geochronological consequences. The provisionally adopted figure of 600±20 million years was a reasonable estimate in the light of evidence then available; it should not be regarded as established fact. Disagreement over interpretation of inconclusive data is of minor significance in view of age de­ terminations on Lower Cambrian and Upper Cambrian glauconites of some other areas. One particularly valuable set of results is from the relatively undisturbed Russian platform-recalculated using decay constants that cor­ respond with American and British practice, the value obtained for the Lower Cambrian is 566X1o6 yr and that for the Upper Sinian, separated from it by only a slight unconformity, is 692-701X1o6 yr. -D. B. V. 184-2. Clark, David L. U -Pb age determination and Upper Devonian bio­ stratigraphy: Geol. Soc. America Bull., v. 72, no. 1, p. 163- 165, 1961. Physical and biological evidence suggests that the minimum age of the De­ vonian-Mississippian boundary is about 335-340 million years. The figure of 350 million years of Cobb and Kulp (see Geophys. Abs. 181-28) is not a min­ imum but a maximum figure for this boundary. As 10-15 million years is within the range of reliability of the uranium-lead sample, this does not rad­ ically change the significance of the 350-million-year date; it simply empha­ sizes the importance of biostratigraphic understanding in the application of geochemical dates to the stratigraphic section.- D. B. V. AGE DETERMINATIONS 3 184-3. Tilton, G[eorge] R., and Davis, G. L. Geochronology, in Research­ es in geochemistry: New York, John Wiley and Sons:P. 190-216, 1959. The accomplishments of geochronology with respect to geological problems are reviewed. The reliability of the isotopic methods of age determination is evaluated briefly, and some new investigations and their application are dis­ cussed. Particular attention is being given to tracing orogenic belts in time and space in order to evaluate the role of orogenies in the development of the continents. It is concluded that confidence in age determinations is justified when two different methods give the same result for
Recommended publications
  • Handbook of Iron Meteorites, Volume 3
    Sierra Blanca - Sierra Gorda 1119 ing that created an incipient recrystallization and a few COLLECTIONS other anomalous features in Sierra Blanca. Washington (17 .3 kg), Ferry Building, San Francisco (about 7 kg), Chicago (550 g), New York (315 g), Ann Arbor (165 g). The original mass evidently weighed at least Sierra Gorda, Antofagasta, Chile 26 kg. 22°54's, 69°21 'w Hexahedrite, H. Single crystal larger than 14 em. Decorated Neu­ DESCRIPTION mann bands. HV 205± 15. According to Roy S. Clarke (personal communication) Group IIA . 5.48% Ni, 0.5 3% Co, 0.23% P, 61 ppm Ga, 170 ppm Ge, the main mass now weighs 16.3 kg and measures 22 x 15 x 43 ppm Ir. 13 em. A large end piece of 7 kg and several slices have been removed, leaving a cut surface of 17 x 10 em. The mass has HISTORY a relatively smooth domed surface (22 x 15 em) overlying a A mass was found at the coordinates given above, on concave surface with irregular depressions, from a few em the railway between Calama and Antofagasta, close to to 8 em in length. There is a series of what appears to be Sierra Gorda, the location of a silver mine (E.P. Henderson chisel marks around the center of the domed surface over 1939; as quoted by Hey 1966: 448). Henderson (1941a) an area of 6 x 7 em. Other small areas on the edges of the gave slightly different coordinates and an analysis; but since specimen could also be the result of hammering; but the he assumed Sierra Gorda to be just another of the North damage is only superficial, and artificial reheating has not Chilean hexahedrites, no further description was given.
    [Show full text]
  • Meteorite in Den Polargebiefen
    Literatur: chemische Untersuchungen in den Alpen. Zb1. 1) Gor h a m , E.: The salt content of some Ice­ Aerosolforsch. 10, 1962, 97-105. samples from Nordaustlandet, Svalbord, :r. of 6) Tarn a n n , G.: Die Bildung des Gletscher­ Glaciology, 3, 1957, 181-186. korns, Naturwiss. 17, 1929, 851-854. 2) Gor h a m , E.: Soluble salts in a temperate 7) Renaud, A.: A contribution to the study of glacier Tellus, 10, 1958, 496-497. the glacter-graln. J. of Glaciology, 1, 1949, 3) Renaud, A.: Nouvelle contribution ä l' Hude 328-324. du grain de glacier. IUGG-Konferenzbericht, 8) R e v eIl e, R. und S u e s S, H.: Carbon dio­ Brüssel 1951, 206-211. xide exehange between atmosphere and ocean 4) Junge, C. E.: Sulfur in the atmosphere. :r of and the question of anincrease of atmospheric Geophys. Res .. 65, 1960, 227-237. CO. during the past decades Tellus, 9, 1957, 5) G e 0 r g 11, H. W. und Web er, E.: Luft- 18-27. Meteorite in den Polargebiefen Von Werner Sandner, Grafing-Bahnhof '}) Gegenüber den Vertretern aller anderen tische Gebiet zu zählen sind und wieviele naturwissenschaftlichen Disziplinen ist der Fundorte bereits südlich desselben liegen. Astronom insofern benachteiligt, als er die Was die benutzten literarischen Unterlagen Objekte seines Forschens nicht im Labora­ betrifft, so reicht der Katalog von Leonard torium einer Untersuchung unterwerfen, bis zum Jahre 1955, während das Werk von nicht mit ihnen "experimentieren" kann. Er Krinow alle Fälle und Funde bis 1956 ent­ ist vielmehr auf die Kunde angewiesen, die hält.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • NEW HIGH-PRECISION POTASSIUM ISOTOPES of TEKTITES. Y. Jiang1,2, H
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 1311.pdf NEW HIGH-PRECISION POTASSIUM ISOTOPES OF TEKTITES. Y. Jiang1,2, H. Chen2, B. Fegley, Jr.2, K. Lodders2, W. Hsu3, S. B. Jacobsen4, K. Wang (王昆)2. 1CAS Key Laboratory of Planetary Sciences, Purple Moun- tain Observatory, Chinese Academy of Sciences ([email protected]), 2Dept. Earth & Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis ([email protected]), 3Space Sci- ence Institute, Macau University of Science and Technology, 4Dept. Earth & Planetary Sciences, Harvard University. Introduction: Tektites are natural glassy objects crater of Hawaii (BHVO-1), are also analyzed. Hainan formed from the melting and rapid cooling of terrestri- Tektite is a typical splash-form tektite from Hainan al rocks during the high-energy impacts of meteorites, Island, China and of a dumbbell shape. We analyzed K comets, or asteroids upon the surface of the Earth [1]. isotopes of 15 chips along the longitudinal axis of its Chemical and isotopic compositions indicate that pre- profile, on a Neptune Plus MC-ICP-MS at Washington cursor components of tektites are the upper terrestrial University in St. Louis [14]. Except for Hainan tektite, continental crust, rather than extraterrestrial rocks. all other samples were only analyzed in bulk, with a Tektites are characterized by the depletion of volatile GV Instruments IsoProbe P MC-ICP-MS at Harvard elements and water, and heavy Cd, Sn, Zn and Cu iso- University following the description in [13]. K isotope topic compositions [2-5]. Since volatilities of elements compositions are reported using the per mil (‰) nota- 41 41 39 41 39 are defined by their 50% condensation temperature (Tc) tion, where δ K = ([( K/ K)sample/( K/ K)standard – of the solar nebula gas at 10-4 bars [6], there is no rea- 1]×1000).
    [Show full text]
  • Tardi-Magmatic Precipitation of Martian Fe/Mg-Rich Clay Minerals Via Igneous Differentiation
    ©2020TheAuthors Published by the European Association of Geochemistry ▪ Tardi-magmatic precipitation of Martian Fe/Mg-rich clay minerals via igneous differentiation J.-C. Viennet1*, S. Bernard1, C. Le Guillou2, V. Sautter1, P. Schmitt-Kopplin3, O. Beyssac1, S. Pont1, B. Zanda1, R. Hewins1, L. Remusat1 Abstract doi: 10.7185/geochemlet.2023 Mars is seen as a basalt covered world that has been extensively altered through hydrothermal or near surface water-rock interactions. As a result, all the Fe/Mg-rich clay minerals detected from orbit so far have been interpreted as secondary, i.e. as products of aqueous alteration of pre-existing silicates by (sub)surface water. Based on the fine scale petrographic study of the evolved mesostasis of the Nakhla mete- orite, we report here the presence of primary Fe/Mg-rich clay minerals that directly precipitated from a water-rich fluid exsolved from the Cl-rich parental melt of nakhlites during igneous differentiation. Such a tardi-magmatic precipitation of clay minerals requires much lower amounts of water compared to production via aque- ous alteration. Although primary Fe/Mg-rich clay minerals are minor phases in Nakhla, the contribution of such a process to Martian clay formation may have been quite significant during the Noachian given that Noachian magmas were richer in H2O. In any case, the present discovery justifies a re-evaluation of the exact origin of the clay minerals detected on Mars so far, with potential consequences for our vision of the early magmatic and climatic histories of Mars. Received 26 January 2020 | Accepted 27 May 2020 | Published 8 July 2020 Letter mafic crustal materials (Smith and Bandfield, 2012; Ehlmann and Edwards, 2014).
    [Show full text]
  • New Mars Meteorite Fall in Marocco: Final Strewn Field
    Available online at www.ilcpa.pl International Letters of Chemistry, Physics and Astronomy 11 (2013) 20-25 ISSN 2299-3843 New Mars meteorite fall in Marocco: final strewn field Abderrahmane Ibhi Laboratory of Geo-heritage and Geo-materials Science, Ibn Zohr University, Agadir, Morocco E-mail address: [email protected] ABSTRACT The Tissint fireball is the only fireball to have been observed and reported by numerous witnesses across the south-east of Morocco. The event was extremely valuable to the scientific community; show an extraordinary and rare event and were also the brightest and most comprehensively observed fireball in Morocco’s known astronomical history. Since the abstract of A. Ibhi (2011) [1]. In 1012-2013 concerning a number of Martian meteorite fragments found in the region of Tata (Morocco), a number of expeditions have been made to the area. A. ibhi has done a great amount of field work. He discovered the strewn field and collected the fragments of this Martian meteorite and many information. Each expedition has had the effect of expanding the size of the strewn field which is now documented to cover more than 70 sq. kilometers. The size of the strewn field is now estimated to be about a 17 km long. Keywords: fireball; Martian meteorite; Shergottite; Strewn field; Tissint; Morocco. 1. INTRODUCTION A meteoritic body entered the earth’s atmosphere in the south-east skies of Tata, Morocco, On Sunday July, 18th, 2011 at 2 o’clock in the morning. Its interaction with the atmosphere led to brilliant light flashes accompanied with detonations.
    [Show full text]
  • Lost Lake by Robert Verish
    Meteorite-Times Magazine Contents by Editor Like Sign Up to see what your friends like. Featured Monthly Articles Accretion Desk by Martin Horejsi Jim’s Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob’s Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Galactic Lore by Mike Gilmer Meteorite Calendar by Anne Black Meteorite of the Month by Michael Johnson Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2010 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Cape Denison MAWSON CENTENNIAL 1911–2011, Commonwealth Bay
    Cape Denison MAWSON CENTENNIAL 1911–2011, Commonwealth Bay Mawson and the Australasian Geology of Cape Denison Landforms of Cape Denison Position of Cape Denison in Gondwana Antarctic Expedition The two dominant rock-types found at Cape Denison Cape Denison is a small ice-free rocky outcrop covering Around 270 Million years ago the continents that we are orthogneiss and amphibolite. There are also minor less than one square kilometre, which emerges from The Australasian Antarctic Expedition (AAE) took place know today were part of a single ancient supercontinent occurrences of coarse grained felsic pegmatites. beneath the continental ice sheet. Stillwell (1918) reported between 1911 and 1914, and was organised and led by called Pangea. Later, Pangea split into two smaller that the continental ice sheet rises steeply behind Cape the geologist, Dr Douglas Mawson. The expedition was The Cape Denison Orthogneiss was described by Stillwell (1918) as supercontinents, Laurasia and Gondwana, and Denison reaching an altitude of ‘1000 ft in three miles and jointly funded by the Australian and British Governments coarse-grained grey quartz-feldspar layered granitic gneiss. These rock Antarctica formed part of Gondwana. with contributions received from various individuals and types are normally formed by metamorphism (changed by extreme heat 1500 ft in five and a half miles’ (approximately 300 metres and pressure) of granites. The Cape Denison Orthogneiss is found around In current reconstructions of the supercontinent Gondwana, the Cape scientific societies, including the Australasian Association to 450 metres over 8.9 kilometres). Photography by Chris Carson Cape Denison, the nearby offshore Mackellar Islands, and nearby outcrops Denison–Commonwealth Bay region was located adjacent to the coast for the Advancement of Science.
    [Show full text]
  • The 3D.Y Knom Example Is /1"<
    t Sixth International Congress on Glass - Washington, D. C., 1962. Fossil Glasses Produced by Inpact of Meteorites, Asteroids 2nd Possibly Comets with the Planet Xarth* A. J. Zzhen :&uon Insticute, Pittsburgh, ?ennsylvania (U. S. A. ) Sunnary / (to be trmslzted izto Frerzh and German) - i in recent thes one of the nost intriging aysteries of geGlogy has ceen the occurrence of aerodgnasicdly-shaped glasses on five continents of the earth. Tnese glasses mder discussion are obviously not of f-d- guritic origin. 3ecent research indicates that these glasses laom as tektites are the result of meteorite, esteroid, or sossibly comet hpact. Lqact glass?s, io generzl, differ Tram volcanic glasses in that they are lo;;.tr in ?,iater zontent, have laver gallium and germiun ccntents, and are rot necessarily ia mgnaticalljr unstable continental areas. These hpac- tites may be divided as follovs: (1)Glasses found in or near terrestrial neteorite craters. These glasses usually contain numerous s-,'nerules 02 nickel-iron, coesite, chunlks of partially melted meteoritic inatter and even stishovite. Shattered or fractured melted mi-nerals such as quarts are comxonly gresent. Aerodpaaic-shaping nay or nay not be present in this t-ne. &m?les are Canyon Diablo and Wabar Crster glasses. (2) Impzct- glasses zssociated with craters uitn no evidence of meteoritic mterial i? the @.ass or surrounding the explosisn site. The 3d.y knom example is /1"< Tnis vork vas supported by Xatiocal A-eroEautizs and Space P.dministretioq,$ 3esezrch Grant NsG-37-6O Supplement 1-62. Page 2 glass associated with AoueUoul Crater in the Western Sahara Desert.
    [Show full text]
  • Geological Survey Canada
    70-66 GEOLOGICAL PAPER 70-66 ., SURVEY OF CANADA DEPARTMENT OF ENERGY, MINES AND RESOURCES REVISED CATALOGUE OF THE NATIONAL METEORITE COLLECTION OF CANADA LISTING ACQUISITIONS TO AUGUST 31, 1970 J. A. V. Douglas 1971 Price, 75 cents GEOLOGICAL SURVEY OF CANADA CANADA PAPER 70-66 REVISED CATALOGUE OF THE NATIONAL METEORITE COLLECTION OF CANADA LISTING ACQUISITIONS TO AUGUST 31, 1970 J. A. V. Douglas DEPARTMENT OF ENERGY, MINES AND RESOURCES @)Crown Copyrights reserved Available by mail from Information Canada, Ottawa from the Geological Survey of Canada 601 Booth St., Ottawa and Information Canada bookshops in HALIFAX - 1735 Barrington Street MONTREAL - 1182 St. Catherine Street West OTTAWA - 171 Slater Street TORONTO - 221 Yonge Street WINNIPEG - 499 Portage Avenue VANCOUVER - 657 Granville Street or through your bookseller Price: 75 cents Catalogue No. M44-70-66 Price subject to change without notice Information Canada Ottawa 1971 ABSTRACT A catalogue of the National Meteorite Collection of Canada, published in 1963 listed 242 different meteorite specimens. Since then specimens from 50 a dditional meteorites have been added to the collection and several more specimens have been added to the tektite collection. This report describes all specimens in the collection. REVISED CATALOGUE OF THE NATIONAL METEORITE COLLECTION OF CANADA LISTING ACQUISITIONS TO AUGUST 31, 1970 INTRODUCTION At the beginning of the nineteenth century meteorites were recog­ nized as unique objects worth preserving in collections. Increasingly they have become such valuable objects for investigation in many fields of scienti­ fic research that a strong international interest in their conservation and pre­ servation has developed (c. f.
    [Show full text]
  • Handbook of Iron Meteorites, Volume 3 (Pima County – Ponca Creek)
    974 Piedade do Bagre - Pima County Schreibersite is almost absent, but may be found as short, 5-l 0 J.1 wide grain boundary folia. Rhabdites are not observed. The bulk phosphorus content is estimated to be A between 0.05 and 0.10%. Troilite is scattered as small nodules and lenticular bodies, ranging from I to 5 mm in size. They occur with a frequency of about one per 20 cm2 , and contain 10-20% daubreelite in the form of parallel bars, 0.1-0.5 mm wide. Spencer & Hey (1930) reported cohenite, but this could not be confirmed. Piedade do Bagre is a somewhat annealed, medium octahedrite with an anomalously small bandwidth if com­ pared to Hen bury, Costilla Peak, Wabar and other irons of similar composition. The trace-element determination indi­ cates that it is in some degree related to these irons; Wasson (personal communication) feels, however, that it should be earmarked anomalous, since its combination of Ni, Ga, Ge and Ir places it outside the normal IliA range. This conclusion is supported by the bandwidth-Ni combination which is anomalous, too. Figure 1367. Pima County (U.S.N.M. no. 1447). The meteorite, originally a hexahedrite, is recrystallized due to shock and the Specimen in the U.S, National Museum in Washington: associated reheating. A heat-affected rim zone is present along the 398 g (no. 1559, 12 x 8.5 x 0.5 em) edge A-A. Imperfectly polished, black patches are due to corrosion. Deep-etched. Scale bar 10 mm. (Perry 1950: volume 7.) HISTORY Pierceville (iron), Kansas, U.S.A.
    [Show full text]