The 3D.Y Knom Example Is /1"<
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Show Your Parents
Show your parents Saxby and William Pridmore Show your parents is a series of short chapters aimed at helping children (under 12 years) master a little general knowledge and science. Some of this material may need input from an adult – some words and ideas may be a bit difficult. But, the need for a bit of adult/parent input is not a bad thing – such interaction between the generations may be helpful to both. See what you think. It is a not-for-profit endeavour. Editorial Board Rachel & Amelia Allan, Eve Porter, Layla Tanner, Dempsey & Isaac O’Neil, and Julia & Claude Glaetzer Dedicated to Helen Stephen [pictured] [William’s pre-school teacher; many thanks to Sarah Stephen for the photograph] Contents 1. Start here… 2. Here, pussy, pussy… 3. Bones 4. Space opportunity 5. Rainbows 6. Where is New Zealand? 7. The narwhal 8. Kangaroos, what they do… 9. Planets and volcanos 10. Optical illusions 11. First and surprising 12. The marsupials 13. Tree rings and things 14. Flowers and honey 15. Evolution and waterfalls 16. Catalogue 17. Magnets and unrelated 18. Cakes first 19. Take a breath 20. Dolphins and 21. Getting around 22. Geography special 23. Speak up 24. Going around 25. Dragon’s blood 26. Larry 27. More atoms 28. Flags 29. Moscow 30. Some carbon 31. More carbon 32. Photosynthesis 33. Pisa 34. Toes and energy 35. Water and energy 36. Craters 37. Animals, mainly 38. Old rocks Show your parents Chapter 1. [‘Show your parents’ is a series of short chapters aimed at helping children (with input from their parents) learn some stuff. -
The Origin of the Circular K Anomalies at the Bosumtwi Impact Structure
Large Meteorite Impacts VI 2019 (LPI Contrib. No. 2136) 5008.pdf THE ORIGIN OF THE CIRCULAR K ANOMALIES AT THE BOSUMTWI IMPACT STRUCTURE. C.A.B. Niang1,2,3, D. Baratoux3, D.P. Diallo1, R. Braucher4, P. Rochette4, C. Koeberl5, M.W. Jessell6, W.U. Reimold7, D. Boamah8, G. Faye9, M.S. Sapah10, O. Vanderhaeghe3, S. Bouley11. 1Département de Géologie, Université Cheikh Anta Diop, Dakar, Senegal, [email protected], 2Institut Fon- damental d’Afrique Noire Cheikh Anta Diop, Dakar, Senegal. 3Géosciences Environnement Toulouse, University of Toulouse, CNRS & IRD, 14, Avenue Edouard Belin, 31400, Toulouse, France. 4Centre Européen de Recherche et d’Enseignement des Géosciences et de l’Environnement, Aix-Marseille Université, CNRS, IRD, CEREGE UM34, Aix en Provence, France, 5Department of Lithospheric Research, University of Vienna, 1090 Vienna, Austria, and Natural History Museum 1010 Vienna, Austria. 6Centre for Exploration Targeting, The University of Western Aus- tralia, 35 Stirling Highway, Crawley, WA 6009, Australia. 7Institute of Geosciences, Laboratory of Geodynamics, Geochronology and Environmental Science, University of Brasília, Brasília, Brazil. 8Geological Survey Department, Accra, Ghana. 9Institut des Sciences de la Terre, Université Cheikh Anta Diop de Dakar, Sénégal.10Department of Earth Science, University of Ghana, Accra, Ghana. 11GEOPS - Géosciences Paris Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Rue du Belvédère, Bât. 504-509, 91405 Orsay, France Introduction: Radiometric data are commonly to weathering, erosional and transport processes. Sev- used for geological mapping in mineral exploration, eral samples were also taken at surface and combined particularly in tropical regions where outcrop condi- with samples from shallow boreholes used for cosmo- tions are poor. -
A Possible Albian Impact Crater at Murshid, Southern Oman
GeoArabia, Vol. 7, No. 4, 2002 Gulf PetroLink, Bahrain A possible Albian impact crater at Murshid, southern Oman Bruce Levell1, Pascal Richard2 and Folco Hoogendijk2, Petroleum Development Oman ABSTRACT During interpretation of a 3-D seismic survey in southern Oman a solitary, 2.5-km-wide circular basin with a central peak and raised rim was identified in the subsurface 35 km west of the Marmul oil field. The feature is the only one of its kind in the area. The basinal structure is probably of Late Cretaceous (Albian) age and the regional geology strongly suggests that it is neither a volcanic crater nor related to salt-dome tectonics or salt dissolution. It possibly represents a crater formed by a terrestrial impact event and has been named the Murshid crater. This report does not constitute a detailed investigation of the possible impact crater but rather records the 3-D seismic observations and the drilling that has taken place near the structure so far. INTRODUCTION During interpretation of a newly acquired 3-D seismic survey for oil exploration in southern Oman, a solitary 2.5-km-diameter circular basinal feature was identified as a possible impact structure and was named the Murshid crater. It lies 35 km west of the Marmul oil field in the South Oman Salt Basin (Figure 1). The center of the structure is at latitude 18º10’59"N, longitude 54º55’08”E, and it is buried at a depth of approximately 380 m below mean sea level (680 m below the ground surface). The authors are petroleum geologists who felt that the Murshid basinal structure needed reporting to the wider scientific community. -
Magnetic Properties and Redox State of Impact Glasses: a Review and New Case Studies from Siberia
geosciences Review Magnetic Properties and Redox State of Impact Glasses: A Review and New Case Studies from Siberia Pierre Rochette 1,* , Natalia S. Bezaeva 2,3, Andrei Kosterov 4 ,Jérôme Gattacceca 1, Victor L. Masaitis 5, Dmitry D. Badyukov 6, Gabriele Giuli 7 , Giovani Orazio Lepore 8 and Pierre Beck 9 1 Aix Marseille Université, CNRS, IRD, Coll. France, INRA, CEREGE, 13545 Aix-en-Provence, France; [email protected] 2 Institute of Geology and Petroleum Technologies, Kazan Federal University, 4/5 Kremlyovskaya Str., 420008 Kazan, Russia; [email protected] 3 Institute of Physics and Technology, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia 4 St. Petersburg State University, 199034 St. Petersburg, Russia; [email protected] 5 A.P. Karpinsky Russian Geological Research Institute (VSEGEI), Sredny prospect 74, 199106 St. Petersburg, Russia; [email protected] 6 V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin str., 119991 Moscow, Russia; [email protected] 7 School of Science and Technology-Geology division, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy; [email protected] 8 CNR-IOM-OGG c/o ESRF, 71 Avenue des Martyrs CS 40220, F-38043 Grenoble, France; [email protected] 9 Université Grenoble Alpes, CNRS, IPAG, UMR5274, 38041 Grenoble, France; [email protected] * Correspondence: [email protected]; Tel.: +33-442971562 Received: 26 February 2019; Accepted: 11 May 2019; Published: 15 May 2019 Abstract: High velocity impacts produce melts that solidify as ejected or in-situ glasses. We provide a review of their peculiar magnetic properties, as well as a new detailed study of four glasses from Siberia: El’gygytgyn, Popigai, urengoites, and South-Ural glass (on a total of 24 different craters or strewn-fields). -
NEW HIGH-PRECISION POTASSIUM ISOTOPES of TEKTITES. Y. Jiang1,2, H
49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 1311.pdf NEW HIGH-PRECISION POTASSIUM ISOTOPES OF TEKTITES. Y. Jiang1,2, H. Chen2, B. Fegley, Jr.2, K. Lodders2, W. Hsu3, S. B. Jacobsen4, K. Wang (王昆)2. 1CAS Key Laboratory of Planetary Sciences, Purple Moun- tain Observatory, Chinese Academy of Sciences ([email protected]), 2Dept. Earth & Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis ([email protected]), 3Space Sci- ence Institute, Macau University of Science and Technology, 4Dept. Earth & Planetary Sciences, Harvard University. Introduction: Tektites are natural glassy objects crater of Hawaii (BHVO-1), are also analyzed. Hainan formed from the melting and rapid cooling of terrestri- Tektite is a typical splash-form tektite from Hainan al rocks during the high-energy impacts of meteorites, Island, China and of a dumbbell shape. We analyzed K comets, or asteroids upon the surface of the Earth [1]. isotopes of 15 chips along the longitudinal axis of its Chemical and isotopic compositions indicate that pre- profile, on a Neptune Plus MC-ICP-MS at Washington cursor components of tektites are the upper terrestrial University in St. Louis [14]. Except for Hainan tektite, continental crust, rather than extraterrestrial rocks. all other samples were only analyzed in bulk, with a Tektites are characterized by the depletion of volatile GV Instruments IsoProbe P MC-ICP-MS at Harvard elements and water, and heavy Cd, Sn, Zn and Cu iso- University following the description in [13]. K isotope topic compositions [2-5]. Since volatilities of elements compositions are reported using the per mil (‰) nota- 41 41 39 41 39 are defined by their 50% condensation temperature (Tc) tion, where δ K = ([( K/ K)sample/( K/ K)standard – of the solar nebula gas at 10-4 bars [6], there is no rea- 1]×1000). -
Chapter 6 Lawn Hill Megabreccia
Chapter 6 Lawn Hill Megabreccia Chapter 6 Catastrophic mass failure of a Middle Cambrian platform margin, the Lawn Hill Megabreccia, Queensland, Australia Leonardo Feltrin 6-1 Chapter 6 Lawn Hill Megabreccia Acknowledgement of Contributions N.H.S. Oliver – normal supervisory contributions Leonardo Feltrin 6-2 Chapter 6 Lawn Hill Megabreccia Abstract Megabreccia and related folds are two of the most spectacular features of the Lawn Hill Outlier, a small carbonate platform of Middle Cambrian age, situated in the northeastern part of the Georgina Basin, Australia. The megabreccia is a thick unit (over 200 m) composed of chaotic structures and containing matrix-supported clasts up to 260 m across. The breccia also influenced a Mesoproterozoic basement, which hosts the world class Zn-Pb-Ag Century Deposit. Field-studies (undertaken in the mine area), structural 3D modelling and stable isotopic data were used to assess the origin and timing of the megabreccia, and its relationship to the tectonic framework. Previous workers proposed the possible linkage of the structural disruption to an asteroid impact, to justify the extremely large clasts and the conspicuous basement interaction. However, the megabreccia has comparable clast size to some of the largest examples of sedimentary breccias and synsedimentary dyke intrusions in the world. Together with our field and isotope data, the reconstruction of the sequence of events that led to the cratonization of the Centralian Superbasin supports a synsedimentary origin for the Lawn Hill Megabreccia. However, later brittle faulting and veining accompanying strain localisation within the Thorntonia Limestones may represent post-sedimentary, syntectonic deformation, possibly linked to the late Devonian Alice Springs Orogeny. -
Geochemical Characterization of Moldavites from a New Locality, the Cheb Basin, Czech Republic
Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic Item Type Article; text Authors Řanda, Zdeněk; Mizera, Jiři; Frána, Jaroslav; Kučera, Jan Citation Řanda, Z., Mizera, J., Frána, J. and Kučera, J. (2008), Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic. Meteoritics & Planetary Science, 43(3), 461-477. DOI 10.1111/j.1945-5100.2008.tb00666.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 30/09/2021 11:07:40 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656405 Meteoritics & Planetary Science 43, Nr 3, 461–477 (2008) AUTHOR’S PROOF Abstract available online at http://meteoritics.org Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic ZdenÏk ÿANDA1, Ji¯í MIZERA1, 2*, Jaroslav FRÁNA1, and Jan KU»ERA1 1Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 ÿež, Czech Republic 2Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V HolešoviËkách 41, 182 09 Praha 8, Czech Republic *Corresponding author. E-mail: [email protected] (Received 02 June 2006; revision accepted 15 July 2007) Abstract–Twenty-three moldavites from a new locality, the Cheb Basin in Western Bohemia, were analyzed by instrumental neutron activation analysis for 45 major and trace elements. Detailed comparison of the Cheb Basin moldavites with moldavites from other substrewn fields in both major and trace element composition shows that the Cheb Basin is a separate substrewn field. -
Multiple Fluvial Reworking of Impact Ejecta—A Case Study from the Ries Crater, Southern Germany
Multiple fluvial reworking of impact ejecta--A case study from the Ries crater, southern Germany Item Type Article; text Authors Buchner, E.; Schmieder, M. Citation Buchner, E., & Schmieder, M. (2009). Multiple fluvial reworking of impact ejecta—A case study from the Ries crater, southern Germany. Meteoritics & Planetary Science, 44(7), 1051-1060. DOI 10.1111/j.1945-5100.2009.tb00787.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 06/10/2021 20:56:07 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656594 Meteoritics & Planetary Science 44, Nr 7, 1051–1060 (2009) Abstract available online at http://meteoritics.org Multiple fluvial reworking of impact ejecta—A case study from the Ries crater, southern Germany Elmar BUCHNER* and Martin SCHMIEDER Institut für Planetologie, Universität Stuttgart, 70174 Stuttgart, Germany *Corresponding author. E-mail: [email protected] (Received 21 July 2008; revision accepted 12 May 2009) Abstract–Impact ejecta eroded and transported by gravity flows, tsunamis, or glaciers have been reported from a number of impact structures on Earth. Impact ejecta reworked by fluvial processes, however, are sparsely mentioned in the literature. This suggests that shocked mineral grains and impact glasses are unstable when eroded and transported in a fluvial system. As a case study, we here present a report of impact ejecta affected by multiple fluvial reworking including rounded quartz grains with planar deformation features and diaplectic quartz and feldspar glass in pebbles of fluvial sandstones from the “Monheimer Höhensande” ~10 km east of the Ries crater in southern Germany. -
A Tomography Approach to Investigate Impactite Structure
3rd International Conference on Tomography of Materials and Structures Lund, Sweden, 26-30 June 2017, ICTMS2017-110 A TOMOGRAPHY APPROACH TO INVESTIGATE IMPACTITE STRUCTURE A. Fedrigo*1,2, K. Marstal1,3, A. Bjorholm Dahl1, M. Lyksborg1, C. Gundlach1, M. Strobl2 & C. Bender Koch4 1Danish Technical University, Denmark 2European Spallation Source ESS ERIC, Sweden 3ERASMUS MC, Netherland 4Copenhagen University, Denmark Keywords: Neutron imaging, image registration, bimodal imaging, computed tomography. Summary: We investigate the structure of impactites from the Wabar iron meteorite impact site in Saudi Arabia. In order to understand the physical and chemical processes involved in the formation of the impactite, we applied a non-destructive investigation approach, which combines X-ray and neutron tomography. This bi-modal imaging method allowed for a better understanding of the impactite’s chemical composition. 1. INTRODUCTION Meteorite impacts have recently been recognised among the most important processes able to modify planetary surfaces. It also happens to be one of the least understood in details. In particular it is a challenge to understand both the extent of impacts and the physical and chemical changes that occur during and following the impact, where materials (e.g., rocks, sand, meteorite fragments, etc.) are subjected to temperatures of several thousands degrees and pressures of several GPa. In addition, most accessible Earth impact areas are highly affected by weathering, which causes extensive secondary chemical alterations. Iron meteorites impact on planetary surfaces cause shock-induced rock deformations that happens both at macroscopic and at microscopic level, e.g. shatter cones (macroscopic) and planar deformation features in quartz (microscopic). Another indicator often correlated to meteoritic impacts is the presence of iridium concentration anomalies [1, 2]. -
Investigating Possible Belize Tektites – Request of an Extended Database on Magnetic and Raman Spectroscopical Signature of Natural Glasses
47th Lunar and Planetary Science Conference (2016) 2482.pdf INVESTIGATING POSSIBLE BELIZE TEKTITES – REQUEST OF AN EXTENDED DATABASE ON MAGNETIC AND RAMAN SPECTROSCOPICAL SIGNATURE OF NATURAL GLASSES. V.H. Hoffmann1,2, Kaliwoda M.3, Hochleitner R.3, M. Funaki4, M. Torii5. 1Faculty of Geosciences, Dep. Geo- and Envi- ronm. Sciences, Univ. Munich; 2Dep. Geosciences, Univ. Tuebingen, 3MSCM, Munich, Germany; 4Tokyo, Japan; 5Okayama, Japan. Introduction m (gr) MS (10-9 m3/kg) Log MS Since 1992 findings of possible tektite glasses have- Belize A 1.35 123.5 2.09 been reported from Tikal region, Guatemala, and later Belize 1 0.61 131.5 2.12 from Belize, here most likely in situ. Therefore the Belize 2 0.67 128.5 2.11 existence of a Central American tektite strewn field Belize 3 0.42 178.7 2.25 was proposed [1,2]. Ages of between 780 and 820 ± Belize 4 0.33 212.8 2.33 40 ka have been determined for Belize glasses [3-5]. The radiometric age constraints are indistinguishable Belize 5 0.53 168.3 2.23 from the ages of the Australite-Indochinite tektite Belize 6 0.52 195.4 2.29 strewn field (~770 ka). However, additional investiga- Belize 7 0.36 170.5 2.23 tions on Belize glasses reported different geochemical Belize 8 0.56 129.0 2.11 signatures in comparison to the Australite-Indochinite Range 123.5 – 212.8 2.09 – 2.33 tektites [6-10]. Pantasma structure in Nicaragua was Average 159.8 2.20 proposed as a possible impact crater [11]. -
Impact Structures and Events – a Nordic Perspective
107 by Henning Dypvik1, Jüri Plado2, Claus Heinberg3, Eckart Håkansson4, Lauri J. Pesonen5, Birger Schmitz6, and Selen Raiskila5 Impact structures and events – a Nordic perspective 1 Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, NO 0316 Oslo, Norway. E-mail: [email protected] 2 Department of Geology, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia. 3 Department of Environmental, Social and Spatial Change, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark. 4 Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark. 5 Division of Geophysics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland. 6 Department of Geology, University of Lund, Sölvegatan 12, SE-22362 Lund, Sweden. Impact cratering is one of the fundamental processes in are the main reason that the Nordic countries are generally well- the formation of the Earth and our planetary system, as mapped. reflected, for example in the surfaces of Mars and the Impact craters came into the focus about 20 years ago and the interest among the Nordic communities has increased during recent Moon. The Earth has been covered by a comparable years. The small Kaalijärv structure of Estonia was the first impact number of impact scars, but due to active geological structure to be confirmed in northern Europe (Table 1; Figures 1 and processes, weathering, sea floor spreading etc, the num- 7). First described in 1794 (Rauch), the meteorite origin of the crater ber of preserved and recognized impact craters on the field (presently 9 craters) was proposed much later in 1919 (Kalju- Earth are limited. -
Soft-Sediment Deformation Structures in Siliciclastic Sediments: an Overview
Geologos, 2009, 15 (1): 3–55 Soft-sediment deformation structures in siliciclastic sediments: an overview A.J. VAN LOON Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61–606 Poznań, Poland; e-mail: [email protected] Abstract Deformations formed in unconsolidated sediments are known as soft-sediment deformation structures. Their nature, the time of their genesis, and the state in which the sediments occured during the formation of soft-sediment deforma- tion structures are responsible for controversies regarding the character of these deformations. A defi nition for soft- sediment deformation structures in siliciclastic sediments is therefore proposed. A wide variety of soft-sediment deformations in sediments, with emphasis on deformations in siliciclastic sediments studied by the present author, are described. Their genesis can be understood only if their sedimentary context is con- sidered, so that attention is also paid to the various deformational processes, which are subdivided here into (1) endo- genic processes resulting in endoturbations; (2) gravity-dominated processes resulting in graviturbations, which can be subdivided further into (2a) astroturbations, (2b) praecipiturbations, (2c) instabiloturbations, (2d) compagoturbations and (2e) inclinaturbations; and (3) exogenic processes resulting in exoturbations, which can be further subdivided into (3a) bioturbations – with subcategories (3a’) phytoturbations, (3a’’) zooturbations and (3a’’’) anthropoturbations – (3b) glaciturbations, (3c) thermoturbations, (3d) hydroturbations, (3e) chemoturbations, and (3f) eoloturbations. This sub- division forms the basis for a new approach towards their classifi cation. It is found that detailed analysis of soft-sediment deformations can increase the insight into aspects that are of im- portance for applied earth-scientifi c research, and that many more underlying data of purely scientifi c interest can, in specifi c cases, be derived from them than previously assumed.