Bosumtwi Crater, Ghana

Total Page:16

File Type:pdf, Size:1020Kb

Bosumtwi Crater, Ghana Detailed structural analysis of the rim of a large, complex impact crater: Bosumtwi Crater, Ghana Wolf U. Reimold Dion Brandt Department of Geology, University of the Witwatersrand, Private Bag 3, P.O. Wits 2050, Johannesburg, South Africa Christian Koeberl Institute of Geochemistry, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria ABSTRACT The 1 Ma Bosumtwi Crater in Ghana is an 11-km-diameter, presumably complex, well- preserved impact structure that is associated with the Ivory Coast tektite strewnfield. Detailed structural geologic studies along a complete traverse through the northwestern rim section indi- cated four zones characterized by distinct deformation styles from just outside of the crater rim to near the crater floor. Zone 1 is dominated by thick deposits of lithic impact breccia, intercalated in places with products of local mass wasting. Zone 2 contains inward-dipping thrust planes, conjugate radial fractures, isoclinal folding, and overturned stratigraphic sequences. Zone 3 represents a megabreccia zone, in which block size decreases upward and outward toward the rim crest. The innermost zone 4 is dominated by intense thrust faulting of multiple orientations, resulting in complex duplex- and lens-shaped bodies. These deformation styles generally corre- spond to those previously reported from the rims of simple bowl-shaped meteorite-impact craters and appear to be characteristic of impact structures in general. INTRODUCTION Bedrock and impact formations outside of the southern rim sectors. A variety of granitoid intru- The geologic structure and macrodeformation crater are only accessible along road cuts and in sions (mainly biotite or amphibole granites) was associated with some small (<2 km), well- stream beds. In January 1997 we studied a series mapped by Junner (1937) and Moon and Mason preserved, simple bowl shaped impact structures of fresh road cuts, produced in 1993 in the course (1967). In addition, we observed numerous, but (Meteor Crater [Arizona], the Odessa crater of complete reconstruction of the access road to generally <1-m-wide, dikes of biotite granitoid at [Texas], and the Pretoria Saltpan crater [South the crater lake through the northwestern crater- many basement exposures in the crater rim. Many Africa]) have been studied before (Brandt and rim section. These exposures allowed detailed of these dikes have vertical to subvertical orienta- Reimold, 1995, and references therein). In con- structural analysis along a 7-km-long traverse tions. The overall granitoid component in the trast, most larger, complex impact structures are through the crater rim (Figs. 1 and 2). Two other, region is estimated at about 2%. too deeply eroded to allow detailed structural less complete cross sections were studied along Numerous breccia exposures have been analysis of their crater rims. The young (1.07 Ma, gravel roads in the northeastern and southern mapped around the crater in the past (e.g., Junner, Koeberl et al., 1997) Bosumtwi impact crater, sectors of the rim and generally confirmed the 1937; Moon and Mason, 1967; compare Fig. 1). located at 06°32′N, 01°25′W, about 30 km south- findings along the northwest traverse. These Our investigations confirm the presence of suevite east of Kumasi in the Ashanti Province of Ghana results provide, for the first time, a detailed deposits to the north and southwest of the crater. It is still well preserved (Fig. 3A). Although the assessment of the deformation associated with is, however, not certain at this stage whether any of structure of the central part of this impact crater the crater rim of a complex impact structure. the mapped occurrences of lithic (clastic) breccia is completely obscured by Lake Bosumtwi, it represent impact breccia. Extensive sedimento- must be assumed, on the basis of the existing GEOLOGY OF THE BOSUMTWI AREA logical work is needed to establish how much of terrestrial impact crater record (cf. Grieve and A schematic geologic map of the area (Fig. 1) the reported breccias represents impact ejecta or is Pilkington, 1996) that Bosumtwi represents a shows that the crater is nearly completely filled by the result of lateritization and secondary mass- complex impact crater. At 10.5 km in diameter, it Lake Bosumtwi and talus sediments in its wasting processes in this tropical and topographi- should feature a collapsed central uplift structure environs. The rim-to-rim crater diameter is about cally varied environment. Along the northwest (Melosh, 1989). 10.5 km. The main bedrock strata are metasedi- traverse through the crater rim, Birimian meta- The origin of Bosumtwi has been controver- mentary rocks in greenschist facies belonging to graywacke and shale are the dominant rock types, sial for several decades, but since the 1960s, sev- the Birimian Supergroup, dated at 2.1–2.2 Ga besides minor occurences of shale and some dike- eral lines of evidence have supported an impact (Wright et al., 1985; Leube et al., 1990; Hirdes and pod-like granitoid intrusions. origin (cf. Jones et al., 1981; Koeberl et al., et al., 1996). To the southeast of the crater, some 1997). The Bosumtwi impact crater has also been Tarkwaian metasedimentary rocks occur as well. STRUCTURALANALYSIS associated with the Ivory Coast tektite strewn- The regional geology is characterized by a strong, Lineament analysis on both Thematic Map- field, on the basis of similarities in chemical and northeast-trending fabric with steep dips to either per 5 (TM5) Landsat and SPOT imagery con- isotopic composition, and identical ages for the northwest or the southeast. Variations in this firms the field observations that the crater is tektites and crater glasses (Koeberl et al., 1997, trend, due to folding, were observed on a local transected by numerous, generally steeply dip- and references therein). scale. Lithology at and around Lake Bosumtwi is ping radial fractures and/or faults. Pairs of No structural geologic data have been avail- dominated by metagraywackes and metasand- lineaments commonly occur in a scissors-like able so far, because of the extensive cover of the stones, but some shale and mica schist were also arrangement. Concentric lineaments are promi- whole region by rainforest and lateritic soils. observed, especially in the northeastern and nent, but not very abundant. Field observations Geology; June 1998; v. 26; no. 6; p. 543–546; 3 figures. 543 Figure 1. Geologic map of area around Lake Bosumtwi, with location of traverse (A–B) along access road to the crater lake through northwestern crater rim. Dashed line A–B: crater rim section based on observations along winding road, but projected onto a straight cross section (compare Fig. 2). strongly suggest that inward-directed slumping presumably the result of faulting in the rim. At posed that outside of the crater rim, about 1.5 km occurred, possibly along concentric and listric the inner end of the traverse, a relatively gentle from the rim crest, a shallow depression of about faults. The rim shape is complex (Fig. 2); the rim talus slope is exposed around the lake (compare 4 to 5 km width was surrounded by another slight has steep inner and outer slopes, and significant also Fig. 3A). (30–80 m) ring-shaped elevation. Our topo- depressions occur below the main rim crest— Earlier workers (e.g., Jones et al., 1981) pro- graphic studies support the presence of a wide, shallow depression in the northern and north- eastern environs of the crater. This feature could be the result of formation of a ring depression dur- ing transient cavity collapse, or of preferential erosion of impact ejecta along several stream beds, which follow the crater rim in a semicon- centric pattern. Jones et al. (1981) discussed the possibility that this ring morphology could be related to the multiple-ring features observed, for example, around the Ries Crater (Germany). However, we favor a different scenario: a ring fracture, formed during the cratering phase, led to the development of the specific drainage pattern observed around Bosumtwi Crater, which, in turn, caused the formation of a semiannular erosion channel. The terrane farther away from the crater does not display any evidence of cratering- Figure 2. Zonation of northwestern crater rim along A–B traverse (Fig. 1). Zone 1: dominantly induced structural control on the drainage pattern. ejecta breccia cover and local mass wasting. Zone 2: inward-dipping thrust planes, conjugate radial fractures, isoclinal folding, and overturned stratigraphy. Zone 3: megabreccia with upward- The presence of shatter cones at Bosumtwi, decreasing block sizes. Zone 4: dominant thrust faulting of multiple orientations, resulting in which had been suggested by Rohleder (1934), duplex- and lens-shaped bodies of pre-impact strata. could not be confirmed by us, but some curvi- 544 GEOLOGY, June 1998 Figure 3. A: View of north- ern crater-rim section from lakeshore, demonstrating radial macrofaulting and A B megablock slumping to- ward crater interior. B: Rim section zone 2; thrust plane dipping inward (to left) and cutting Birimian metagraywacke. C: Zone 2; isoclinal folding in strat- ified Birimian metasedi- mentary rocks. D: Zone 3, near highest point of rim; lithic impact breccia composed of centimeter- to decimeter-sized clasts. E: Zone 3; megabreccia with meter-sized blocks of Birimian metasedimentary rocks and (lightest-colored) 2 Ga granitoids; width of field of view = 10 m. F: C D Duplex- and lens-shaped shale and metagraywacke blocks between variably oriented thrust faults; width of field of view = 8 m. E F planar joints, partially displaying slickensides, metamorphic and chemical evidence for their or- erally smaller than 5 cm. Some larger clasts were observed. Furthermore, melt-breccia occur- igin by impact melting leads us to prefer an origin exhibit internal brecciation. Clast shapes are vari- rences were also not found, whereas abundant for these dikes by pre-impact intrusion of a rela- able, ranging from angular to well rounded.
Recommended publications
  • Show Your Parents
    Show your parents Saxby and William Pridmore Show your parents is a series of short chapters aimed at helping children (under 12 years) master a little general knowledge and science. Some of this material may need input from an adult – some words and ideas may be a bit difficult. But, the need for a bit of adult/parent input is not a bad thing – such interaction between the generations may be helpful to both. See what you think. It is a not-for-profit endeavour. Editorial Board Rachel & Amelia Allan, Eve Porter, Layla Tanner, Dempsey & Isaac O’Neil, and Julia & Claude Glaetzer Dedicated to Helen Stephen [pictured] [William’s pre-school teacher; many thanks to Sarah Stephen for the photograph] Contents 1. Start here… 2. Here, pussy, pussy… 3. Bones 4. Space opportunity 5. Rainbows 6. Where is New Zealand? 7. The narwhal 8. Kangaroos, what they do… 9. Planets and volcanos 10. Optical illusions 11. First and surprising 12. The marsupials 13. Tree rings and things 14. Flowers and honey 15. Evolution and waterfalls 16. Catalogue 17. Magnets and unrelated 18. Cakes first 19. Take a breath 20. Dolphins and 21. Getting around 22. Geography special 23. Speak up 24. Going around 25. Dragon’s blood 26. Larry 27. More atoms 28. Flags 29. Moscow 30. Some carbon 31. More carbon 32. Photosynthesis 33. Pisa 34. Toes and energy 35. Water and energy 36. Craters 37. Animals, mainly 38. Old rocks Show your parents Chapter 1. [‘Show your parents’ is a series of short chapters aimed at helping children (with input from their parents) learn some stuff.
    [Show full text]
  • The Origin of the Circular K Anomalies at the Bosumtwi Impact Structure
    Large Meteorite Impacts VI 2019 (LPI Contrib. No. 2136) 5008.pdf THE ORIGIN OF THE CIRCULAR K ANOMALIES AT THE BOSUMTWI IMPACT STRUCTURE. C.A.B. Niang1,2,3, D. Baratoux3, D.P. Diallo1, R. Braucher4, P. Rochette4, C. Koeberl5, M.W. Jessell6, W.U. Reimold7, D. Boamah8, G. Faye9, M.S. Sapah10, O. Vanderhaeghe3, S. Bouley11. 1Département de Géologie, Université Cheikh Anta Diop, Dakar, Senegal, [email protected], 2Institut Fon- damental d’Afrique Noire Cheikh Anta Diop, Dakar, Senegal. 3Géosciences Environnement Toulouse, University of Toulouse, CNRS & IRD, 14, Avenue Edouard Belin, 31400, Toulouse, France. 4Centre Européen de Recherche et d’Enseignement des Géosciences et de l’Environnement, Aix-Marseille Université, CNRS, IRD, CEREGE UM34, Aix en Provence, France, 5Department of Lithospheric Research, University of Vienna, 1090 Vienna, Austria, and Natural History Museum 1010 Vienna, Austria. 6Centre for Exploration Targeting, The University of Western Aus- tralia, 35 Stirling Highway, Crawley, WA 6009, Australia. 7Institute of Geosciences, Laboratory of Geodynamics, Geochronology and Environmental Science, University of Brasília, Brasília, Brazil. 8Geological Survey Department, Accra, Ghana. 9Institut des Sciences de la Terre, Université Cheikh Anta Diop de Dakar, Sénégal.10Department of Earth Science, University of Ghana, Accra, Ghana. 11GEOPS - Géosciences Paris Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Rue du Belvédère, Bât. 504-509, 91405 Orsay, France Introduction: Radiometric data are commonly to weathering, erosional and transport processes. Sev- used for geological mapping in mineral exploration, eral samples were also taken at surface and combined particularly in tropical regions where outcrop condi- with samples from shallow boreholes used for cosmo- tions are poor.
    [Show full text]
  • The 3D.Y Knom Example Is /1"<
    t Sixth International Congress on Glass - Washington, D. C., 1962. Fossil Glasses Produced by Inpact of Meteorites, Asteroids 2nd Possibly Comets with the Planet Xarth* A. J. Zzhen :&uon Insticute, Pittsburgh, ?ennsylvania (U. S. A. ) Sunnary / (to be trmslzted izto Frerzh and German) - i in recent thes one of the nost intriging aysteries of geGlogy has ceen the occurrence of aerodgnasicdly-shaped glasses on five continents of the earth. Tnese glasses mder discussion are obviously not of f-d- guritic origin. 3ecent research indicates that these glasses laom as tektites are the result of meteorite, esteroid, or sossibly comet hpact. Lqact glass?s, io generzl, differ Tram volcanic glasses in that they are lo;;.tr in ?,iater zontent, have laver gallium and germiun ccntents, and are rot necessarily ia mgnaticalljr unstable continental areas. These hpac- tites may be divided as follovs: (1)Glasses found in or near terrestrial neteorite craters. These glasses usually contain numerous s-,'nerules 02 nickel-iron, coesite, chunlks of partially melted meteoritic inatter and even stishovite. Shattered or fractured melted mi-nerals such as quarts are comxonly gresent. Aerodpaaic-shaping nay or nay not be present in this t-ne. &m?les are Canyon Diablo and Wabar Crster glasses. (2) Impzct- glasses zssociated with craters uitn no evidence of meteoritic mterial i? the @.ass or surrounding the explosisn site. The 3d.y knom example is /1"< Tnis vork vas supported by Xatiocal A-eroEautizs and Space P.dministretioq,$ 3esezrch Grant NsG-37-6O Supplement 1-62. Page 2 glass associated with AoueUoul Crater in the Western Sahara Desert.
    [Show full text]
  • Porosity of Meteorite Impact Rocks: Inferences from Geophysical and Petrophysical Studies from the Lake Bosumtwi Impact Crater, Ghana
    Porosity of Meteorite Impact Rocks: Inferences from Geophysical and Petrophysical Studies from the Lake Bosumtwi Impact Crater, Ghana Damien Meillieux* University of Alberta, Edmonton, Alberta, Canada [email protected] Douglas Schmitt, Meghan Brown, Marek Welz and Tiewei He University of Alberta, Edmonton, Alberta, Canada Bernd Milkereit University of Toronto, Toronto, Ontario, Canada Tobias Karp and Christopher Scholz University of Syracuse, Syracuse, New York, United States and Sylvester Danour Kwame Nkrumah University of Science and Technology, Kumasi, Ghana Abstract Introduction Impact structures have been targets in petroleum exploration primarily due to the structural traps that are created during formation and evolution of the crater basin and rim. Not much is known, however, about the porosity introduced to the rock mass as a result of the high strain rates induced during the impact event itself. This porosity, however, can be of crucial importance both in terms of the storativity and the permeabilty of the remaining rock mass. The Lake Bosumtwi (Ghana) impact crater is a young (~1.1 Ma) structure approximately 10-km in diameter which today remains much intact. Field surface geological investigations of the crater structure are restricted by both Lake Bosumtwi and the thick layer of soft sediments that have accumulated in it since the crater’s formation. Consequently, geophysical methods have played a major role in delineating the structure of the crater. Marine reflection seismic investigations, in particular, showed the existence of a prominent central uplift surrounded by a circular depression [1]. The current study was carried out in 2004 as part of the Lake Bosumtwi Drilling project, under the auspices of the International Continental Drilling Program (ICDP), with two deeper wells drilled into the basin and the central uplift.
    [Show full text]
  • The Subsurface Structure of Oblique Impact Craters
    The subsurface structure of oblique impact craters Dissertation vorgelegt von Dipl.-Geol. Michael H. Poelchau vom Fachbereich Geowissenschaften der Freien Universität Berlin zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) Berlin, 2010 The subsurface structure of oblique impact craters Dissertation vorgelegt von Dipl.-Geol. Michael H. Poelchau vom Fachbereich Geowissenschaften der Freien Universität Berlin zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) Berlin, 2010 Gutachter: 1. PD Dr. Thomas Kenkmann 2. Prof. Wolf-Uwe Reimold Tag der Disputation: 23.02.2010 Statement regarding the contributions of the author and others to this thesis This thesis is comprised of three published, peer-reviewed articles and one submitted manuscript, which each form separate chapters within this thesis. The chapters “Introduction” and “General Conclusions” were written especially for this thesis. The PhD candidate is the first author of two of these articles, and the second author of the third article. The PhD candidate is also the first author of a manuscript currently submitted to Earth and Planetary Science Letters. Therefore, these four chapters have their own introduction, methodology, discussion, conclusions and references. The articles and manuscripts used in this thesis are the following: Poelchau, M. H., and T. Kenkmann, 2008. Asymmetric signatures in simple craters as an indicator for an oblique impact direction, Meteoritcal and Planetary Science, 43, 2059-2072. Poelchau M. H., Kenkmann T. and Kring D. A., 2009. Rim uplift and crater shape in Meteor Crater: the effects of target heterogeneities and trajectory obliquity. Journal of Geophysical Research, 114, E01006, doi:10.1029/2008JE003235. Kenkmann, T.
    [Show full text]
  • Impact Melt Rocks in the "Cretaceous
    Large Meteorite Impacts (2003) alpha_t-z.pdf Contents — T through Z Locations and Compositions of Mare Ponds in South Pole-Aitken Basin on the Moon and Its Implication to the Impact Tectonics T. Takata and S. Hori ............................................................................................................................. 4058 New Laboratory Results on Field Sections at the Impact Crater of Araguainha (MT, GO, Brazil). Area of Proximal and Distal Impact Ejecta, Including Microspherules Dated from the End of Permian J. M. Théry, A. Crosta, E. Veto Akos, E. Bilal, K. Gal-Solymos, and E. Dransart................................. 4096 Techniques of Shock Wave Experiments and Determination of Hugoniot Data of Solids K. Thoma................................................................................................................................................ 4134 Differential Stress-controlled Deformation of Quartz During and After Hypervelocity Impact — Microstructural Evidence from the Charlevoix Impact Structure, Quebéc, Canada C. A. Trepmann and J. G. Spray............................................................................................................. 4026 Mjølnir Marine Crater Resulting from Oblique Impact: Compelling Evidence F. Tsikalas and J. I. Faleide................................................................................................................... 4005 A New Mid- to Late-Maastrichtian Impact in the Raton Basin 100m Below the K/T Boundary P. Turner, S. C. Sherlock, P. Clarke, and
    [Show full text]
  • Impact Cratering: Bridging the Gap Between Modeling and Observations
    IMPA_ CRATERING: BRIDGING THE GAP B_EEN MODELING AND OBSERVATIONS IIllll ..................... ,, ,, ,,, ,,,,,,,, ,r, II I I II I Houston, T<xas -- F_bruary 7-9, 2003 Abstract Volume LPI LPI Contribution No. 1155 Impact Cratering: Bridging the Gap Between Modeling and Observations February 7-9, 2003 Houston, Texas Sponsor Lunar and Planetary Institute National Aeronautics and Space Administration Conveners Robert Herrick, Lunar and Planetary Institute Elisabetta Pierrazzo, Planetary Science Institute Scientific Organizing Committee Bevan French, Natural History Museum Kevin Housen, Boeing Corporation William McKinnon, Washington University Jay Melosh, University of Arizona Michael Zolensky, NASA Johnson Space Center Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1155 Compiled in 2003 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Agreement No. NCC5-679 issued through the Solar System Exploration Division of the National Aeronautics and Space Administration. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2003) Title of abstract. In Impact Cratering: Bridging the Gap Between Modeling and Observations, p. XX. LPI Contribution No. 1155, Lunar and Planetary Institute, Houston. This volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] Mail order requestors will be invoiced for the cost of shipping and handling.
    [Show full text]
  • Ablation, 259, 260 Acid Rains, 217 Acoustic Gravity Waves, 148, 218
    INDEX Ablation, 259, 260 fluctuation, 348 Acid rains, 217 temperature, 348, 349 Acoustic gravity waves, 148, 218, 236 Atmospheric darkening, 207 Acoustic signals, 149 Atmospheric winds, 239 Acoustic system, 148 Auroral phenomena, 238 Active Geophysical Rocket Experiments, 328 Australasian strewn field, 272 Advective motion, 341 Australian-Asian tektites, 268 Aerial shock waves, 229 Australites, 267 Aerodynamic forces, 10 Air-blast, 16 Baikonur cosmodrome, 238 Alfven velocity, 314, 322 Ballistic motion, 270 Aluminium jet, 328 Barents Sea, 293 Alvarez, Luis, 1 Barium vapor streams, 325 ANEOS equation of state, 62, 269, 293 10Be, 271, 272 Angara River, 232 Benesov bolide, 135 Annealing of meteorite samples, 340 Bishop’s rings, 234 Annealing of minerals, 245 Block structure, 33 Anomalies of elements and isotopes Bodaibo, 232 in peat, 242 Bohemia, 273 Anomalous atmospheric phenomena, 235, 236 Bolides, 131 Antipodal point, 216, 217, 219 Bottom relief, 41 Apollo lunar samples, 268 Brazil, 228 Apparent strength, 145 Breakup, 9 Arago neutral polarization points, 234 Brightness, 233 Archean, 175, 187 Bronze Age, 228 Artificial air cloud, 328, 329 Buried explosions, 31, 56 Asteroidal hypothesis, 259 Butterfly-shaped tree fall pattern, 240 Asteroids, 120 2002 EM7, 5 99942 Apophis, 5 Carbon, 208 Eros, 61 Carbonaceous chondrites, 242, 243 Gaspra, 92 Carbonates terrestrial, 340, 346 Hermes, 5 Carbon isotopes 13C, 14C, 243 Ida, 92 Casualties, 19, 23 Itokawa, 57, 92 Cenomanian-Turonian boundary, 208 Mathilde, 7, 61, 92, 244 Central European tektite strewn
    [Show full text]
  • Lithostratigraphic and Petrographic Analysis of ICDP Drill Core LB-07A, Bosumtwi Impact Structure, Ghana
    Meteoritics & Planetary Science 42, Nr 4/5, 569–589 (2007) Abstract available online at http://meteoritics.org Lithostratigraphic and petrographic analysis of ICDP drill core LB-07A, Bosumtwi impact structure, Ghana Louise CONEY1*, Roger L. GIBSON1, Wolf Uwe REIMOLD1, 2, and Christian KOEBERL3 1Impact Cratering Research Group, School of Geosciences, University of the Witwatersrand, Private Bag 3, P.O. WITS, Johannesburg 2050, South Africa 2Museum for Natural History (Mineralogy), Humboldt University in Berlin, Invalidenstrasse 43, D-10115 Berlin, Germany 3Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria *Corresponding author. E-mail: [email protected] (Received 01 September 2006; revision accepted 02 January 2007) Abstract–Lithostratigraphic and petrographic studies of drill core samples from the 545.08 m deep International Continental Scientific Drilling Program (ICDP) borehole LB-07A in the Bosumtwi impact structure revealed two sequences of impactites below the post-impact crater sediments and above coherent basement rock. The upper impactites (333.38–415.67 m depth) comprise an alternating sequence of suevite and lithic impact breccias. The lower impactite sequence (415.67–470.55 m depth) consists essentially of monomict impact breccia formed from meta-graywacke with minor shale, as well as two narrow injections of suevite, which differ from the suevites of the upper impactites in color and intensity of shock metamorphism of the clasts. The basement rock (470.55–545.08 m depth) is composed of lower greenschist-facies metapelites (shale, schist and minor phyllite), meta-graywacke, and minor meta-sandstone, as well as interlaminated quartzite and calcite layers.
    [Show full text]
  • An Unusual Occurrence of Coesite at the Lonar Crater, India
    Meteoritics & Planetary Science 52, Nr 1, 147–163 (2017) doi: 10.1111/maps.12745 An unusual occurrence of coesite at the Lonar crater, India 1* 1 2 1 3 Steven J. JARET , Brian L. PHILLIPS , David T. KING JR , Tim D. GLOTCH , Zia RAHMAN , and Shawn P. WRIGHT4 1Department of Geosciences, Stony Brook University, Stony Brook, New York 11794–2100, USA 2Department of Geosciences, Auburn University, Auburn, Alabama 36849, USA 3Jacobs—NASA Johnson Space Center, Houston, Texas 77058, USA 4Planetary Science Institute, Tucson, Arizona 85719, USA *Corresponding author. E-mail: [email protected] (Received 18 March 2016; revision accepted 06 September 2016) Abstract–Coesite has been identified within ejected blocks of shocked basalt at Lonar crater, India. This is the first report of coesite from the Lonar crater. Coesite occurs within SiO2 glass as distinct ~30 lm spherical aggregates of “granular coesite” identifiable both with optical petrography and with micro-Raman spectroscopy. The coesite+glass occurs only within former silica amygdules, which is also the first report of high-pressure polymorphs forming from a shocked secondary mineral. Detailed petrography and NMR spectroscopy suggest that the coesite crystallized directly from a localized SiO2 melt, as the result of complex interactions between the shock wave and these vesicle fillings. INTRODUCTION Although there is no direct observation of nonshock stishovite in nature, a possible post-stishovite phase may High-Pressure SiO2 Phases be a large component of subducting slabs and the core- mantle boundary (Lakshtanov et al. 2007), and Silica (SiO2) polymorphs are some of the simplest stishovite likely occurs in the deep mantle if basaltic minerals in terms of elemental chemistry, yet they are slabs survive to depth.
    [Show full text]
  • The Lake Bosumtwi Meteorite Impact Structure, Ghana—A Magnetic
    The Lake Bosumtwi meteorite impact structure, Ghana —A magnetic image from a third observational level Item Type Article; text Authors Ugalde, H.; Morris, W. A.; Clark, C.; Miles, B.; Milkereit, B. Citation Ugalde, H., Morris, W. A., Clark, C., Miles, B., & Milkereit, B. (2007). The Lake Bosumtwi meteorite impact structure, Ghana— A magnetic image from a third observational level. Meteoritics & Planetary Science, 42(45), 793-800. DOI 10.1111/j.1945-5100.2007.tb01075.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 06/10/2021 14:48:05 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656706 Meteoritics & Planetary Science 42, Nr 4/5, 793–800 (2007) Abstract available online at http://meteoritics.org The Lake Bosumtwi meteorite impact structure, Ghana— A magnetic image from a third observational level Hernan UGALDE1, 2*, William A. MORRIS1, Christina CLARK1, Brett MILES1, and Bernd MILKEREIT2 1McMaster Applied Geophysics and Geological Imaging Consortium, School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada 2Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario, M5S 1A7, Canada *Corresponding author. E-mail: [email protected] (Received 26 July 2006; revision accepted 23 December 2006) Abstract–The Bosumtwi impact structure in Ghana is the youngest and best-preserved medium-sized impact structure on Earth, and because of the vast amount of prior geophysical and geological data gathered in the area, it constitutes a great natural laboratory to try to develop new geophysical interpretation and modeling techniques.
    [Show full text]
  • MAPPING the K, Th, U DISTRIBUTION at the ROCHECHOUART IMPACT STRUCTURE: IN- SIGHT INTO IMPACT-RELATED and POST-IMPACT PROCESSES
    Large Meteorite Impacts VI 2019 (LPI Contrib. No. 2136) 5019.pdf MAPPING THE K, Th, U DISTRIBUTION AT THE ROCHECHOUART IMPACT STRUCTURE: IN- SIGHT INTO IMPACT-RELATED AND POST-IMPACT PROCESSES. D. Baratoux1, C.A.B. Niang1,2,3, J. Lofi4, P. Rochette5, W.U. Reimold6, P. Lambert7, 1Géosciences Environnement Toulouse, University of Toulouse, CNRS & IRD, 14, Avenue Edouard Belin, 31400, Toulouse, France. 2Département de Géologie, Université Cheikh Anta Diop, Dakar, Senegal, [email protected], 3Institut Fondamental d’Afrique Noire Cheikh Anta Diop, Dakar, Senegal. 4 Geosciences Montpellier, Université de Montpellier Campus Triolet cc060Place Eugène Bataillon 34095 Montpellier, France. 5Centre Européen de Recherche et d’Enseignement des Géosciences et de l’Environnement, Aix-Marseille Université, CNRS, IRD, CEREGE UM34, Aix en Provence, France. 6Institute of Geosciences, Laboratory of Geodynamics, Geochronology and Environmental Science, University of Brasília, Bra- sília, Brazil.7Center for International Research & Restitution on Impacts and on Rochechouart, 87600 Rochechouart, France. Introduction: Radiometric data can be processed ducted in parallel with remote sensing and field studies into distribution maps for K – Th - U concentrations of of K, Th, U signatures at various impact structures in surface materials. These three elements are incompati- Africa, and Australia. ble - K is mobile under aqueous alteration, whereas the Methodology: We aim at mapping the distribution mobilities of Th and U are comparatively much lower of K, Th, and U concentrations on surface and at depth and depend on pH and degree of oxidation, respective- at various scales (from the size of mineral grains to the ly. Therefore, impact processes (shock metamorphism, scale of the impact structure).
    [Show full text]