Determination of the Origin of Unusual Glass with Metallic Spherule

Total Page:16

File Type:pdf, Size:1020Kb

Determination of the Origin of Unusual Glass with Metallic Spherule Per. Mineral. (2006), 75, 2-3, 11-24 http://go.to/permin An International Journal of O PERIODICO di MINERALOGIA MINERALOGY, CRYSTALLOGRAPHY, GEOCHEMISTRY, established in 1930 ORE DEPOSITS, PETROLOGY, VOLCANOLOGY and applied topics on Environment, Archaeometry and Cultural Heritage Determination of the origin of unusual glass with metallic spherule inclusions found in the area between Inzingkofen and Sigmaringen (Bavaria, Germany), South-West of the Steinheim-Ries craters Matteo Ardit,1 Anna Maria Fioretti,2* Gianmario Molin,3 Emilio Ramous4 and Ulf-Christian Bauer5 1 Centro di Ateneo per i Musei, via Orto Botanico, 15 – 35122 Padova (Italy) 2 Istituto Geoscienze e Georisorse - CNR, c.so Garibaldi, 37 – 35137 Padova (Italy) 3 Dipartimento di Mineralogia e Petrologia, Università di Padova, c.so Garibaldi, 37 – 35137 Padova (Italy) 4 Dipartimento di Innovazione Meccanica e Gestionale, Università di Padova, via Venezia, 1 – 35139 Padova (Italy) 5 Seestrasse, 46a – 83727 Schliarsee (Germany) Abstract. — This paper reports the characteristics Riassunto. — In questo lavoro vengono studiati of a suite of pale green glass fragments and their diversi frammenti di vetro verde chiaro aventi metallic spherule inclusions (5 to 400 μm) found la particolarità di contenere inclusioni di sferule over a relatively wide area between Inzigkofen and metalliche (di dimensioni variabili tra 5 e 400 Sigmaringen (Bavaria, Germany), about 150 km SW μm), ritrovati in un’area relativamente vasta tra of the Steinheim-Ries impact craters. The distribution Inzigkofen e Sigmaringen (Baviera, Germania), a area of these glasses and their close macroscopic ~150 km SW dai crateri di impatto di Steinheim- similarity (apart from the spherules) with moldavite Ries. La distribuzione areale di questi vetri e la loro suggested us that they may shed new light on the nature stretta somiglianza macroscopica con le moldaviti of the binary asteroid which caused the Steinheim- (ad eccezione che per le sferule) ci suggerirono Ries impact craters. However, our petrographic and che essi potessero contribuire a chiarire la natura chemical data rule out an extra-terrestrial origin. dell’asteroide binario che generò i crateri di Metallographic microstructure, lack of Ni and high P Steinheim-Ries. I nostri dati chimici e petrografici contents (up to 9 wt.%) reveal the metallic inclusions escludono tuttavia un’origine extraterrestre dei vetri. as cast iron spherules. The chemical composition of La microstruttura metallografica, l’assenza di Ni e the host glass consistently differs from both moldavite l’elevato contenuto in P (anche superiore al 9 wt.%) and suevite compositions. Our data indicate that the indicano che le inclusioni metalliche sono sferule di investigated samples are by-products of metallurgic ghisa. La composizione chimica dei vetri in studio activity. This conclusion is consistent with the differisce sistematicamente da quella delle moldaviti presence in the Sigmaringen area of important cast e della suevite. I nostri dati indicano che i campioni iron furnaces which have been operating since the th studiati rappresentano pertanto un sottoprodotto di 18 century. attività siderurgica. Questa conclusione è avallata dal fatto che nelle vicinanze di Sigmaringen sono attivi Key Words: slag, cast iron, metallic spherules, altoforni operanti sin dagli inizi del XVIII secolo. moldavite, Ries crater. Parole Chiave: scoria di fusione, ghisa, sferule * Corresponding author, E-mail: [email protected] metalliche, moldavite e cratere di Ries. 12 M. Ardit, A.M. Fioretti, G. Molin, E. Ramous and U.-C. Bauer Introduction A wide variety of distinctive rock types (tektites, glass, breccias, melts, shock-metamorphosed In the early 1960s, one of the authors (UCB) target rocks) are actually produced during impacts. found several fragments of pale green glass with Glass and melted meteoritic metal spherules, metallic spherule inclusions (5 to 400 μm) in formed as a consequence of terrestrial impacts, a relatively wide area between Inzigkofen and have been found in association with young, well- Sigmaringen, near the Danube river, about 150 km preserved craters (e.g. Wabar, Saudi Arabia). SW of the Steinheim-Ries impact craters (Fig. 1). However, these spherules are not commonly Except for their inclusions, macroscopically the observed, perhaps because such ejected molten glass closely resembles moldavite (see later), a particles do not survive the disruptive effects of the group of tektites which were generated during the atmosphere, or because they are quickly destroyed Steinheim-Ries impact event. Although the area by weathering and erosion (French, 1998). One of where the glass fragments were found is exactly the main interests in studying these materials is opposite (with respect to the Steinheim-Ries that they may provide information on the nature craters) the moldavite distribution area (Fig. 1), and composition of the impactor. the close similarity of the new glasses with tektite The Steinheim-Ries craters originated about prevented us from excluding a priori that these 14.34 Ma ago (Laurenzi et al., 2003) in an materials were totally unrelated. area where minimal later erosion allowed the Fig. 1 – Map of Central Europe, showing Ries and Steinheim craters and moldavite strewn field (modified after Lange, 1996). Dashed lines (9 to 25.5°) define fan within which coherent melt patches are observed on inner slope of Ries crater rim. Moldavite strewn field extends about 450 km from the centre of the Ries crater to ENE forming a fan with an angle of about 57° (Stöffler et al., 2002). Determination of the origin of unusual glass with metallic spherule inclusions found ... 13 preservation of the impact products. The target to 7 wt.%), and H2O (up to 17 wt.%), consistent rocks consist of a sequence of sedimentary rocks with the melting of distinct protoliths. (limestone, shale, sandstone) (Tab. 1) underlain by In spite of the great amount of melted material crystalline rocks (gneiss, granite, and metabasite) produced during the Steinheim-Ries impact event, (Hüttner & Schmidt-Kaler, 1999; Stöffler et al., direct evidence for the composition of the projectile 2002). The impact produced melting of distinct is at present restricted to sub-micrometric Fe-Cr- target rocks generating moldavite, suevite (a Ni particles found in intragranular micro-fractures polymict breccia with clastic matrix and melts), in the crystalline basement underlying the crater and a variety of breccias and glass (Engelhardt, (El Goresy & Chao, 1976). On the basis of textural 1997; Osinski, 2003). relationships and particles composition, the above Moldavites have a typical green colour and vary authors suggested that the Ries impacting body in size from less to 1 mm (micro-tektites) to about was a stony meteorite. Subsequent studies (Morgan 20 cm. They have persilicic composition that is et al., 1979; Pernicka et al., 1987; Schmidt & constant, and characteristic for the strewn field Pernicka, 1994; Vennemann et al., 2001) were (French, 1998). To the best of our knowledge, unable to better specify the nature of the impactor. no metallic spherules have been reported within In this framework, the finding of the unusual moldavite. association of green glass including metallic The fall-out suevite is an impact breccia spherules, never before reported in the area, characterised by the presence of glass fragments may represent a new discovery of impact-related (Stoffler, 1974; Engelhardt, 1997). Four glass material, of paramount importance in shedding types are distinguished within suevite by Osinski new light on the nature of the impactor generating (2003) on the basis of their composition and the Steinheim-Ries craters, and may also indicate microtextures. They show wide ranges in SiO2 (50 the presence of a possible, still unidentified, third to 100 wt.%), Al2O3 (up to 21 wt.%), high CaO (up impact crater. Table 1 – Stratigraphy and lithologies of Ries pre-impact target (modified from Hüttner & Schmidt-Kaler, 1999). Stratigraphic Sections Thickness Subdivisions and Lithologies and Thickness (m) (m) Tertiary Middle Miocene = sands with minor clay and limestone 0-50 0-50 ε = massive limestone ∼20 δ = massive limestone 70-100 Malmian γ = bedded limestone with some marly limestone, marl and some reef limestone ∼30 150-200 β = mainly bedded limestone ∼20 α = marly limestone, marl and bedded limestone 40-50 γ-ζ = limestone, calcareous limestone and shale ∼10 Dogger β = sandstone, in part iron-rich ∼40 140-150 α = grey shale 90-100 Liassic Black shale with some sandstone and marl ∼30 30 Upper Keuper = red shale ∼30 Triassic Middle Keuper = sandstone with some shale ∼200 250-300 Muschelkalk = calcareous sandstone 0-50 Buntsandstein ∼15 several Hercynian Basement Various gneiss, granites and amphibolites kilometers 14 M. Ardit, A.M. Fioretti, G. Molin, E. Ramous and U.-C. Bauer An alternative possibility is that the glass derives IGG laboratory (Padova) on a CAMECA Camebax from human activity. Sigmaringen has been known Microbeam electron microprobe (EMP) fitted with for its metallurgic activity since the 18th century, four wavelength-dispersive spectrometers and one and vitreous materials are common by-products energy-dispersive spectrometer. For glass analyses, of this industrial process. Historical data report the system was operated at an accelerating voltage that in 1707, Meinrad II, Prince of Hohenzollern- of 15 kV and a beam current of 15 nA. A series of Sigmaringen, built a blast-furnace for iron natural (wollastonite for Si and Ca; corundum for extraction in Laucherthal (near Sigmaringen), Al; orthoclase for K; albite for Na) and synthetic after abandoning the methods for iron forging standards (Fe2O3 for Fe; MnTiO2 for Ti and Mn; which had long been used by his predecessors. In MgO for Mg; Cr2O3 for Cr) were employed. For the following years, iron production expanded and micro-spherule analyses, the system was operated another blast-furnace was built on the outskirts of at an accelerating voltage of 20 kV and a beam the town. These factories were both closed in 1878, current of 20 nA. A series of natural pure element because of a financial crisis. The Hohenzollern standards was employed.
Recommended publications
  • Relict Zircon Inclusions in Muong Nong-Type Australasain Tektites: Implications Regarding the Location of the Source Crater
    Lunar and Planetary Science XXXI 1196.pdf RELICT ZIRCON INCLUSIONS IN MUONG NONG-TYPE AUSTRALASAIN TEKTITES: IMPLICATIONS REGARDING THE LOCATION OF THE SOURCE CRATER. B. P. Glass, Geology Department, University of Delaware, Newark, DE 19716, USA ([email protected]) Introduction: Over the last thirty years we Australasian tektite samples from which we have have recovered crystalline inclusions from ap- identified inclusions; however, not all of the recov- proximately forty Muong Nong-type tektites from ered inclusions have been identified by XRD. the Australasian tektite strewn field in order to Based on appearance, the percent of inclusion- learn more about the nature of the parent material bearing specimens containing zircon is probably and the formation process [e.g., 1, 2]. More re- 100% or very close to it. Nearly all the zircons cently we have used geographic variations in con- are opaque white and their X-ray patterns show centration (number/gm) of crystalline inclusions to extreme X-ray asterism. However, of the 28 zir- indicate the possible location of the source crater cons identified by X-ray diffraction, only two [3]. The purpose of this abstract is to summarize (both from the same specimen whose place of ori- all the presently available data regarding relict gin is unknown) produced X-ray diffraction pat- zircon inclusions recovered from Australasian terns indicating that baddeleyite may be present. Muong Nong-type tektites and to discuss implica- The X-ray patterns from these two grains con- tions regarding the possible location of the source tained the two strongest lines for baddeleyite and crater which has still not been found.
    [Show full text]
  • Chapter 6 Lawn Hill Megabreccia
    Chapter 6 Lawn Hill Megabreccia Chapter 6 Catastrophic mass failure of a Middle Cambrian platform margin, the Lawn Hill Megabreccia, Queensland, Australia Leonardo Feltrin 6-1 Chapter 6 Lawn Hill Megabreccia Acknowledgement of Contributions N.H.S. Oliver – normal supervisory contributions Leonardo Feltrin 6-2 Chapter 6 Lawn Hill Megabreccia Abstract Megabreccia and related folds are two of the most spectacular features of the Lawn Hill Outlier, a small carbonate platform of Middle Cambrian age, situated in the northeastern part of the Georgina Basin, Australia. The megabreccia is a thick unit (over 200 m) composed of chaotic structures and containing matrix-supported clasts up to 260 m across. The breccia also influenced a Mesoproterozoic basement, which hosts the world class Zn-Pb-Ag Century Deposit. Field-studies (undertaken in the mine area), structural 3D modelling and stable isotopic data were used to assess the origin and timing of the megabreccia, and its relationship to the tectonic framework. Previous workers proposed the possible linkage of the structural disruption to an asteroid impact, to justify the extremely large clasts and the conspicuous basement interaction. However, the megabreccia has comparable clast size to some of the largest examples of sedimentary breccias and synsedimentary dyke intrusions in the world. Together with our field and isotope data, the reconstruction of the sequence of events that led to the cratonization of the Centralian Superbasin supports a synsedimentary origin for the Lawn Hill Megabreccia. However, later brittle faulting and veining accompanying strain localisation within the Thorntonia Limestones may represent post-sedimentary, syntectonic deformation, possibly linked to the late Devonian Alice Springs Orogeny.
    [Show full text]
  • Geochemical Characterization of Moldavites from a New Locality, the Cheb Basin, Czech Republic
    Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic Item Type Article; text Authors Řanda, Zdeněk; Mizera, Jiři; Frána, Jaroslav; Kučera, Jan Citation Řanda, Z., Mizera, J., Frána, J. and Kučera, J. (2008), Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic. Meteoritics & Planetary Science, 43(3), 461-477. DOI 10.1111/j.1945-5100.2008.tb00666.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 30/09/2021 11:07:40 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656405 Meteoritics & Planetary Science 43, Nr 3, 461–477 (2008) AUTHOR’S PROOF Abstract available online at http://meteoritics.org Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic ZdenÏk ÿANDA1, Ji¯í MIZERA1, 2*, Jaroslav FRÁNA1, and Jan KU»ERA1 1Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 ÿež, Czech Republic 2Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V HolešoviËkách 41, 182 09 Praha 8, Czech Republic *Corresponding author. E-mail: [email protected] (Received 02 June 2006; revision accepted 15 July 2007) Abstract–Twenty-three moldavites from a new locality, the Cheb Basin in Western Bohemia, were analyzed by instrumental neutron activation analysis for 45 major and trace elements. Detailed comparison of the Cheb Basin moldavites with moldavites from other substrewn fields in both major and trace element composition shows that the Cheb Basin is a separate substrewn field.
    [Show full text]
  • Multiple Fluvial Reworking of Impact Ejecta—A Case Study from the Ries Crater, Southern Germany
    Multiple fluvial reworking of impact ejecta--A case study from the Ries crater, southern Germany Item Type Article; text Authors Buchner, E.; Schmieder, M. Citation Buchner, E., & Schmieder, M. (2009). Multiple fluvial reworking of impact ejecta—A case study from the Ries crater, southern Germany. Meteoritics & Planetary Science, 44(7), 1051-1060. DOI 10.1111/j.1945-5100.2009.tb00787.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 06/10/2021 20:56:07 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656594 Meteoritics & Planetary Science 44, Nr 7, 1051–1060 (2009) Abstract available online at http://meteoritics.org Multiple fluvial reworking of impact ejecta—A case study from the Ries crater, southern Germany Elmar BUCHNER* and Martin SCHMIEDER Institut für Planetologie, Universität Stuttgart, 70174 Stuttgart, Germany *Corresponding author. E-mail: [email protected] (Received 21 July 2008; revision accepted 12 May 2009) Abstract–Impact ejecta eroded and transported by gravity flows, tsunamis, or glaciers have been reported from a number of impact structures on Earth. Impact ejecta reworked by fluvial processes, however, are sparsely mentioned in the literature. This suggests that shocked mineral grains and impact glasses are unstable when eroded and transported in a fluvial system. As a case study, we here present a report of impact ejecta affected by multiple fluvial reworking including rounded quartz grains with planar deformation features and diaplectic quartz and feldspar glass in pebbles of fluvial sandstones from the “Monheimer Höhensande” ~10 km east of the Ries crater in southern Germany.
    [Show full text]
  • The 3D.Y Knom Example Is /1"<
    t Sixth International Congress on Glass - Washington, D. C., 1962. Fossil Glasses Produced by Inpact of Meteorites, Asteroids 2nd Possibly Comets with the Planet Xarth* A. J. Zzhen :&uon Insticute, Pittsburgh, ?ennsylvania (U. S. A. ) Sunnary / (to be trmslzted izto Frerzh and German) - i in recent thes one of the nost intriging aysteries of geGlogy has ceen the occurrence of aerodgnasicdly-shaped glasses on five continents of the earth. Tnese glasses mder discussion are obviously not of f-d- guritic origin. 3ecent research indicates that these glasses laom as tektites are the result of meteorite, esteroid, or sossibly comet hpact. Lqact glass?s, io generzl, differ Tram volcanic glasses in that they are lo;;.tr in ?,iater zontent, have laver gallium and germiun ccntents, and are rot necessarily ia mgnaticalljr unstable continental areas. These hpac- tites may be divided as follovs: (1)Glasses found in or near terrestrial neteorite craters. These glasses usually contain numerous s-,'nerules 02 nickel-iron, coesite, chunlks of partially melted meteoritic inatter and even stishovite. Shattered or fractured melted mi-nerals such as quarts are comxonly gresent. Aerodpaaic-shaping nay or nay not be present in this t-ne. &m?les are Canyon Diablo and Wabar Crster glasses. (2) Impzct- glasses zssociated with craters uitn no evidence of meteoritic mterial i? the @.ass or surrounding the explosisn site. The 3d.y knom example is /1"< Tnis vork vas supported by Xatiocal A-eroEautizs and Space P.dministretioq,$ 3esezrch Grant NsG-37-6O Supplement 1-62. Page 2 glass associated with AoueUoul Crater in the Western Sahara Desert.
    [Show full text]
  • Impact Structures and Events – a Nordic Perspective
    107 by Henning Dypvik1, Jüri Plado2, Claus Heinberg3, Eckart Håkansson4, Lauri J. Pesonen5, Birger Schmitz6, and Selen Raiskila5 Impact structures and events – a Nordic perspective 1 Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, NO 0316 Oslo, Norway. E-mail: [email protected] 2 Department of Geology, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia. 3 Department of Environmental, Social and Spatial Change, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark. 4 Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark. 5 Division of Geophysics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland. 6 Department of Geology, University of Lund, Sölvegatan 12, SE-22362 Lund, Sweden. Impact cratering is one of the fundamental processes in are the main reason that the Nordic countries are generally well- the formation of the Earth and our planetary system, as mapped. reflected, for example in the surfaces of Mars and the Impact craters came into the focus about 20 years ago and the interest among the Nordic communities has increased during recent Moon. The Earth has been covered by a comparable years. The small Kaalijärv structure of Estonia was the first impact number of impact scars, but due to active geological structure to be confirmed in northern Europe (Table 1; Figures 1 and processes, weathering, sea floor spreading etc, the num- 7). First described in 1794 (Rauch), the meteorite origin of the crater ber of preserved and recognized impact craters on the field (presently 9 craters) was proposed much later in 1919 (Kalju- Earth are limited.
    [Show full text]
  • Shock Wave Distribution at Ries Impact Crater, Germany?:A Micro-Raman Spectroscopical Study of Shocked Zircon
    Workshop on Impact Cratering II (2007) 8050.pdf “ANTISYMMETRIC” SHOCK WAVE DISTRIBUTION AT RIES IMPACT CRATER, GERMANY?:A MICRO-RAMAN SPECTROSCOPICAL STUDY OF SHOCKED ZIRCON. A. Gucsik, Max Planck Institute for Chemistry, Department of Geochemistry,. Joh.-J.-Becherweg 27, D-55128 Mainz, Germany (gucsik@mpch- mainz.mpg.de). Introduction: Zircon is a highly refractory and weather- parallel and perpendicular to the c-axis, for the pur- ing-resistant mineral that has proven useful as an indi- pose of Raman spectrometric analysis. cator of shock metamorphism in the study of impact Raman spectra were obtained with a Renishaw structures and formations that are old, deeply eroded, RM1000 confocal micro-Raman spectrometer with a and metamorphically overprinted (e.g., [1-3]. Zircon 20 mW, 632 nm He-Ne laser excitation system and a has advantages compared to quartz or other shock- thermo-electrically cooled CCD detector. The power metamorphosed rock-forming minerals that have been of the laser beam on the sample was approximately 3 widely used as impact indicators, but are far less re- mW. Spectra were obtained in the range 100-1200 cm- fractory. Furthermore, U-Pb dating of zircon can pro- 1, with approximately thirty seconds total exposure vide constraints on the ages of impact events or depo- time. The spectral resolution (apparatus function) was sition of impact formations (e.g., [4] and references 4 cm-1. Raman spectra were taken from 3 µm3 sample therein). volume and CL spectra were obtained from approxi- Effects of high degrees of shock deformation (>10 mately 35 x 45 µm areas. GPa) in quartz and other rock-forming minerals (e.g., Further details on the samples and methodology feldspars), such as planar deformation features (PDFs), can be found in [7].
    [Show full text]
  • Lechatelierite in Moldavite Tektites: New Analyses of Composition
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1580.pdf LECHATELIERITE IN MOLDAVITE TEKTITES: NEW ANALYSES OF COMPOSITION. Martin Molnár1, Stanislav Šlang2, Karel Ventura3. Kord Ernstson4.1Resselovo nám. 76, Chrudim 537 01, Czech Republic ([email protected]) 2Center of Materials and Nanotechnologies, University of Pardubice, 532 10 Pardubice, Czech Republic, [email protected] 3Faculty of Chemical Technology, University of Pardubice, 530 02 Pardubice, Czech Republic, [email protected]. 4University of Würzburg, D-97074 Würzburg, Deutschland ([email protected]) Introduction: Moldavites are tektites with a Experiments and Results: Experiments 1 and 2 - beautiful, mostly green discoloration and a very the boron question. The question of lowering the pronounced sculpture (Fig.1), which have been studied melting point and acid resistance led to the possibility many times e.g. [1-3]). of adding boron. The experiment 1 on a moldavite plate etched in 15%-HF to expose the lechatelierite was performed by laser ablation spectrometry and showed B2O3 concentration of >1%. In experiment 2, 38 g of lechatelierite fragments were then separated from 482 g of pure moldavite, and after the boron Fig. 1. Moldavites from Besednice analyzed in this content remained high (Tab. 2), the remaining carbon study. Scale bar 1 cm. was washed away. The analysis in Tab. 3 shows According to the most probable theory, they were remaining low boron content, which is obviously formed 14.5 million years ago together with the Ries bound to the carbon of the moldavites [8]. crater meteorite impact in Germany. They belong to the mid-European tektite strewn field and fell mostly in Bohemia.
    [Show full text]
  • 19980227350.Pdf
    NASA TN D-490 =o C_ Z I.- <: .< Z TECHNICAL NOTE D-490 THE ORIGIN OF TEKTITES J. A. O'Keefe Goddard Space Flight Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION I WASHINGTON November 1960 CONTENTS Summary .................................. i INTRODUCTION ............................. 1 DESCRIPTION AND COMPOSITION OF TEKTITES ..... 1 DISTRIBUTION OF TEKTITES ................... 5 TERRESTRIAL VS. EXTRATERRESTRIAL ORIGIN ...... 6 MODE OF ARRIVAL .......................... 10 Dissimilarity to Ordinary Meteorites ............. 10 Great Meteor Procession of 1913 ............... 11 ORIGIN OF THE METEOR PROCESSION ............ 13 Physical Aspects of the Sputnik II Descent ......... 13 Physical Aspects of the Meteor Procession ......... 18 Inferences from the Analyses .................. 21 LUNAR ORIGIN OF TEKTITES ................... 22 ACKNOWLEDGMENTS ......................... 23 References ................................. 24 111 THE ORIGIN OF TEKTITES by J. A. O'Keefe SUMMARY Tektites are probably extraterrestrial, rather than the result of heating some terrestrial materials, because they are a chemi- cally homogeneous group with definite peculiarities (high silica, excess of alkaline earths over alkalis, excess of potash over soda, absence of water), and because some of them (the australites) appear to have undergone ablation in flight through the atmosphere. Since comparatively slow heating is required to explain the liquefaction of the tektite material, it is suggested that the tektites arrived along orbits which were nearly parallel to the surface of the earth, and which resulted from the decay of the orbit of a natural satellite. The great meteor procession of February 9, 1913, is an example of such an object. Comparison with the re- entry phenomena of the artificial satellite 1957 Beta suggests that the 1913 shower consisted of a single large stone weighing about 400 kilograms, and a few dozen smaller bodies weighing about 40 grams each, formed by ablation from the larger body.
    [Show full text]
  • Brachaniec ACTA LAYAUT
    Acta Geologica Polonica, Vol. 66 (2016), No. 1, pp. 99–105 DOI: 10.1515/agp-2016-0005 New moldavites from SW Poland TOMASZ BRACHANIEC, KRZYSZTOF SZOPA and ŁUKASZ KARWOWSKI Department of Geochemistry, Mineralogy and Petrography; Faculty of Earth Science; University of Silesia; Będzińska Str. 60, PL-41-200 Sosnowiec, Poland. E-mails: [email protected], [email protected], [email protected]. ABSTRACT: Brachaniec, T., Szopa, K. and Karwowski, Ł. 2016. New moldavites from SW Poland. Acta Geologica Polonica, 66 (1), 99–105.Warszawa. Four newly discovered moldavites from the East and West Gozdnica pits, SW Poland, are characterized. All spec- imens, including other four, reported earlier, are from Upper Miocene fluvial sediments of the Gozdnica For- mation. Their weight varies between 0.529 and 1.196 g. The moldavites are bottle green in colour and have bub- bles and inclusions of lechatelierite. Low degree of corrosion suggests short river transport, apparently eastward from Lusatia. Key words: Moldavites; Tektites; Ries; Fluvial transport; Miocene; Poland. INTRODUCTION distinguish between the impact and terrestrial types of glasses: (1) the impact glass has a chemical composition Large impact craters are relatively rare in geologi- of one lithology or mixture of different rock types that cal record on the Earth. All over the world only 164 are present in the source basement (Dence 1971), (2) it crater structures are above 1 km in diameter and only 40 is characterized by the presence of lechatelierite (Stöf- with with more than 20 km in diameter (Earth Impact fler 1984), and (3) it has inclusions of shocked miner- Database).
    [Show full text]
  • Ni in Impactite Sulphides in the Lappajärvi, Sääksjärvi, Suvasvesi S, 1,2 and Paasselkä Meteorite Craters in Finland
    Lunar and Planetary Science XXXVII (2006) 1676.pdf NI IN IMPACTITE SULPHIDES IN THE LAPPAJÄRVI, SÄÄKSJÄRVI, SUVASVESI S, 1,2 AND PAASSELKÄ METEORITE CRATERS IN FINLAND. D. D. BADJUKOV AND J. 2 1 RAITALA ; V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry RAS, 119991, 19, Kosygin str., Moscow, Russia ([email protected]), 2University of Oulu, P.O. Box 3000, FIN-90401, Oulu, Finland ([email protected]) Introduction: The craters are situated in Bravoite is present also in strongly re- the central part of Finland and were formed crystallized impact melt rocks of the in crystalline rocks. The melt rocks at these Paasselkä impact crater. Finnish meteorite craters are enriched in According to morphologic and siderophile elements and other meteoritic composition features, a fraction of sulphides components [1,2]. Contents of a meteoritic and metal in Lappajärvi and Sääksjärvi matter are around 2 – 0.1 % of a nominal CI impactites are a shock re-worked meteorite component and the distributions are matter, that experienced shock-induced heterogeneous on a fine scale [3,4]. melting or, less likely, are condensates of Sulphides in the impact melt rocks are main impact generated vapour cloud [5]. carriers of siderophile elements, especially Other fraction of sulphides and metal for Ni and Co. with low Ni and Co contents has terrestrial The studied impactites: The Lappajärvi origin and formed by shock melting of a melt rocks contain pyrrhotite droplets and target. The reduced from target rocks and oxide-silicate globules (d < 2 mm) rich in Ni Fe-sulphide metal suggests to be slightly rimmed by pyrrhotite and occasionally with enriched in Ni and Co due to presence of pentlandite and chalcopyrite.
    [Show full text]
  • 1 a 1. a 2. a 3. a 4. a 8
    ,- - 7 I 1 a/ i' # SUBJECT CATEGORfES FOR GODDARD JOURNAL i (To be used for classifying all NASA publications, journal articles, and other pap& for inclusion in the Goddard Journal.) 1 Part A - Space :I. .-JA A 1. A::i,c-4cr.y crr.3 , id .-ophyslos h A 2. Cz 1 e; i ia 1 Mz cnc.; . cs c :.A u;lzodesy A 3. SoiGi ?hyjiCS A 4. io*iosp>.c:.-zcnd dio?bysics r- . A 5. r:~13scnJ ?c.-tiC:Ls A 6: Pi meto, cgy A 7. Picnetcry ;\tnos,:,sres A 8. Generai (subjec.-r not clearly belonging in any of categories 1-7) Part B - Space Technology B 1. Projects and Programs €3 2. Space Dynamics and Control Systems B 3. Spacecraft and Subsystems B 4. Vehicle Technology B 5. Sounding Rockets B 6. Sensors B 7. General Electronics B 8. Environmental Testing - B 9. Tracking Systems B 10. General (subiects not clearly belonging in any of categories 1-9) GPO PRICE CFSTl PRICE ff 653 July 65 a 7 The Chemical Composition and Origin of Moldavites f * J. A. Philpotts and W. H. Pinson, Jr. Department of Geology and Geophysics Massachusetts Iilstizute of Technology Cimbricgc :" asachuse:ts Abstract : Twenty three new ma,cr-eienm: ,nalyads or' moldavites are report&. I 1 The samples include seve-nzean Bohe.Ai<-..i ar.d six Moravian tektites. The 1 ranges in the contents 05 the various oxicies are as follows: Si02, 75.5 - 80.6; A1203, 9.62 - 12.64; TLG 2' 0.253 - 0.460; Fe203, 0.12 - 0.31; FeO, 1.42 - 2.36; MgO, 1.13 - 2.50; CaO, 1.46 - 3.71; Na20, 0.31 - i 1 f 0.67; K20, 3.26 - 3.81.' The Rb and Sr contents and the Rb/Sr ratios are 1 t also reported for the 23 specimens; the ranges are as follows: 1 Rb, I 120 - 160 ppm; Sr, 130 - 156 ppm; Rb/Sr, 0.82 - 1.20.
    [Show full text]