<<

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

·~ .., ' ' ' ~' . :

RADIOCHEMICAL SEPARATION BY RETENTION ON IONIC PRECIPITATES ; {,'

ADSORPTION TESTS ON '17 MATERIALS

by

F. GIRARDI, R .. PIETRA and. E ... ~ABBIONI

' I 1,

I, I 1969

. '\ ':' t .

I "i: .. ·@···--~ ,/,... ~

, .•

Joint Nuclear Research Center lspra Establishment - Italy

Chemistry Department ;r

LEGAL NOTICE

,. I This document was prepared under the sponsorship of the Commission I of the European Communities.

Neither the Commission of the European Communities, its contractors nor any person acting on their behalf :

make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information con­ tained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights; or i assume any liability with respect to the use of, or for damages resulting ! from the use of any information, apparatus, method or process I disclosed in this document:.

This report is on sale at the addresses listed on cover page 4 at the price of FF 15.- FB 150.- DM 12.- Lit. 1870 Fl. H.-1

When ordering, please quote the EUR number and the title, which are indicat~ on the cover of each report.

Printed by Guyot, s.a. Brussels, July 1969

This document was reproduced on th~. basis of the best available copy. . ' ' ; , . ' ,, . -. .,11 ,( l ... EUR 4287 e

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

RADIOCHEMICAL SEPARATION BY RETENTION ON IONIC PRECIPITATES

ADSORPTION TESTS ON 17 MATERIALS

by

F. GIRARDI, R. PIETRA and E. SABBIONI

1969

Joint Nuclear Research Center Ispra Establishment - Italy

Chemistry Department ABSTRACT The retention of different radio- on columns of seventeen ionic prec1p1- tates from different acid media was studied, in view of possible applications for radiochemical separations. The results of about 3,000 adsorption experiments, carried out in a standardized way, are presented schematically in periodic tables. Twenty-one radiochemical separations, mainly in connection with activation analysis problems, were done to test the practical behaviour of potentially useful materials, and these are briefly described.

KEYWORDS

SEPARATION PROCESSES IONS EXTRACTION COLUMNS PRECIPITATION ACIDS ADSORPTION ACTIVATION ANALYSIS I N D E X

1 • IN'I1RODUCTI0N

2. EXPERIMENTAL PHOCEDUHES

3. RESULTS

3.1 Hydrated l\i!anganese Dioxide (IDfD) 3. 2 Anhydrous IvTanganese Dioxide ( A.I\11:!J) 3.3 Dioxide (SDO) 3.4 Hydrated Pentoxide (HAP) 3.5 Polyantimonic Acid (PAA) 3.6 (ATO) 3.7 (CDO) J.8 Acid Oxide (AAO) 3.9 Dioxide (TDO) 3.10 Phosphate (TPH) 3.11 Phosphate (ZPH) 3.12 Stannic Phosphate (SPH) 3.13 Cupric Sulphide (CUS) 3.14 Cuprous Chloride (CVC) 3.15 Cadmium Sulphide (C0S) J.16 Fluoride (LJ?) 3. 17 Cerous Oxalate ( COX) J.18 Anion Exchange Resin (AER) 3.19 Cation ~:xchange Resin ( CEH)

4. AKNONLE8GENEI'1"'1:~ - 4 -

1. INTRODUCTION(*)

Inorganic exchangers have been applied f~r a lonry time in the nuclear energy field particularly when their outstanding resistance to high temperatures and high radiation doses make them preferable to organic ion exchangers (separation of fission products from spent fuel elements, deionization of reactor cooling water at high temperature). Many materials have been developped for such uses (1,2). They have seldom been used for radioc~emical s~pqrations applied to neutron activation aralysis, despite the ~act that a high selectivity for a few ions was often demonstrated. In a few preceeding works (3,4,5,6) we showed that the retention behaviour of many inorganic materials, not usually employed as ion exchangers,was interesting enough for many practical applications in destructive activation analysis. Indeed,inorganic materials, not especially prepared as ion exchangers, can react with a solution containing trace ions with a number of possible reaction mechanisms, such as isotopic exchange, reactions, precipitation, formation of mixed crystals by recrystalization, and, of course, ion exchange. All these mechanisms can contribute to a different extent to the retention of different ions on a column of that material in an adsorption-elution experiment.

(*) Manuscript received on 14 ~ay 1969. - 5 -

Often, to clarify the actual retention mechanisms and describe them with comprehensive chemical laws can indeed be difficult;and the possibility of extrapolating the behaviour of ionic precipitates to different experimental conditions can be greatly hindered by the intervention of different reaction mechanisms in different media. This does not prevent, however, the analyst from taking advantage of the unusual retention properties of many ionic precipitates, used in proper media, if he keeps the experimental conditions as closeto the ori~inal ones as possible. When a wanted chemical senaration is still feasible under standardized working conditions, (the large variety of ionic precipitates which can be applied compensate for a more restricted choice of experimental conditions), then the limitation turns out to be an advarit.9.P'A, as the materials and columns can be prepared in advance and kept in stock and the execution can be left to less specialized personnel. The construction of automated machines can also be greatly simplified.

In this work about J.000 adsorption-elution cycles were carried out in a standardized way over different ionic precipitates from various media for a preliminary screening of possible useful materials for radiochemical separations applied to activation analysis. - 6 -

The results were reported schematically in a series of periodic tables. Possible analytical applications can be inferred from the behaviour of different ions in each couple column/medium, and work is being carried out to simplify this task. The experiments were carried out with radioactive tracers which were obtained by neutron activation in a nuclear reactor, with irradiation times ranging from minutes to three weeks, depending on the half-life of the radionuclide. The amount of tracer used was that required to obtain a reasonable counting rate on a gamma spectrometer, by counting the whole of the column or elution volumes. In this way the actual carrier concentration varies greatly from one radiotracer to another depending mainly on its activation cross section. While this is certainly a drawback for understanding the reaction mechanisms, in the practical analytical use it can be considered an advantage, as a relatively close simulation of a destructive activation analysis is thus obtained. The application of the reported resul 1E to actual separation cases is, of course,not entirely straightforward. The retention capacity of inorganic ion exchangers or ionic precipitates,in general, are usually lower than those of the organic exchangers, and moreover they vary considerably from ion to ion. For example,the retention capacity of hydrated antimony pentoxide for the alkaline ions in 0.1 M HNo (in milliequivalents per gram) 3 - 7 -

has the following values: Na + : 2.61, K+ : 1.7, Rb + : 1.45, Cs+: 0.15, (7). As a consequence, ions for which the material has a low retention capacity can exhibit a different behaviour for different ion concentrations. Also ions present. in extremely low concentration=;can frequently show unusual retention or long elution "tailsn. The addition of 50-100 ;Ug of carrier when elution is wanted is a recommended practice to avoid both difficulties. Elements present in large concentrations (matrix elements) can also alter the behaviour of the exchanger, as it happens with organic exchangers. Even with these limitations, we found that the behaviour indicated in the tables is very often exactly respected in many practical applications for activation analysis, where ion concentrations are often rather small. Together with the results of the retention experiments we briefly report the results of practical applications, when done.

This report is far from an exh8.usti VP study of analytical applications of ionic precipitates, and indeed it is more an introduction to that study than a real scientific work. However, the possibility of applying directly the data as they are presented here to the development of separation schemes, and the interest at recent congresses arose from their use has convincPi us that the presentation of these results was worth while. - 8 -

The data presented here ar~ n0t correl~te with each other enough to make the detection of possible mistakese~sy. The number of data is also high enough to make it possible and even probable the occurrence of such mistakes, even if most of the experiments were repeated at least twice. We shall be grateful to those, who will inform us of such errors.

1.1 References

1) C.B.Amphlett; Inorganic Ion Exchangers, Elsevier Publishing Co. (1964).

2) Bibliographical Series No. 25; IAEA (1967).

3) F.Girardi; Nuclear Activation Techniques in the Life Sciences, IAEA Vienna (1967).

4) C.Bigliocca, F.Girardi, J.Pauly, E.Sabbioni, S.Meloni and A.Provasoli; Anal.Chem. 39, 1634 (1967).

5) F.Girardi, -E.Sabbioni; Radio anal. Chem. l, 169, ( 1968).

6) F.Girardi, R.Pietra and E.Sabbioni; Int.Conf.l\Codern Trends in Activation Analysis Nashington 1968, paper n°142.

7) F.Girardi, T.Candelieri; Unpublished results. - 9 -

2. EXPERIMENTAL PT?C'CEOUf{ES

The ionic precipitates used in the present work were mostly of commercial origin and the name of the manufacturer and references on the preparation process, when available, are given for each individual material in the next paragraph. In table I the list and addresses of the manufacturers are given. Most of the materiaJsused in this work were previously known to exhibit ion exchange properties, or they had been briefly studied by us for somP. special purpnses. Others were added on which no information on their possible application was available to us, but could be easily packed into columns with good flow-rate characteristics, and insoluble or only slightly soluble in the proposed medium. Other insoluble materials (SeS , Sb o , Moo , Ti0 , Baso , Cr o , Pb0 , NiF , CuO, 2 2 3 3 2 4 2 3 2 4 v o , Cowo , cu o, Co o ) were discarded after a few 2 5 4 2 3 4 preliminary assays, as the particle size of the material available to us was too fine for the preparation of columns with good flow-rate behaviour. Dowex 1 and Dowex 50 were also tested, both in view of their possible use together with inorganic exchangers, and to be used as controls of anion and cation exchange in the study of the reaction mechanisms. The materials tested were used as received, occasionaly after sieving to eliminate finer particles to improve the - 10 -

elution flow-rate. Preliminary treatments only entailed washing the column with 5 ml of the eluting agent immediately before the adsorption step. 22 The radioactive tracers (except Na and 54Mn, which were of commercial origin), were prepared by neutron activation of the stable elements, in form of solid salts, in the Ispra 1 reactor. The irradiation times ranged from a few minutes to severai weeks, depending on the activation cross section and the half-life of the radionuclide formed. The irradiated salts were then dissolved and stored, generally as a 1 M HCl solution. The solutiom for the adsorption step were prepared by taking aliquots from the mother solution (generally 10-100 A) and diluting them to 30-50 ml with the required acid. From this second stock 5 -ml fractions were taken for each tracer experiment. The tracer used, and the approximate final carrier concentrations, are reported in table II. The tracer experiments were carried out in the following way: disposable polyethilene columns, p~epared by VEMOR (Monvalle, Varese, Italy) (figure 1) were used (internal diameter 7 mm) •. They include a 15 ml reservoir, and they

can be easily stacked one on tor ~ft~~ othe~ whPn e ser; 0 s ~f column is needed. The columrnwere prepared by putting a quartz wool plu~ (~r a teflon wool plug for the tracer experiments in HF) at the bottom and filling the column with the exchanger up to a 3 cm level. - 11. -

A preliminary wash with 5 ml of the eluting solution was done before the adsorption step, to wet and settle the column bed. The adsorption step (5 ml) was then carried out, and then two successive 15 ml fractions Nere passed through. The eluted solutions were collected into two 20 ml polyethilene bottles, the first collecting the adsorption and first 15 ml fraction, the second collecting the successive 15 ml fraction. The second fraction was diluted to 20 ml and both bottles were then analyzed by gamma ray spectroscopy. The column bed was transferred into a third bottle and analyzed in the same way. An experimental correction factor was used to relate the counting rate of the column to the counting rate of the eluted solutions. Most of the countings of the tracer experiments were done with a 3" x 3" NaI(Tl) scintillator coupled to a 200 channel LABEN analyzer. In tracer experiment with pure ~ emitters ( 32P, 35s, 90Y, 233Th), counting was done with a Geiger counter. The sources were prepared by taking 1 ml of solution and drying it under an infrared lamp. To count the columns, they were dissolved when possible and treated as the eluted solutions, otherwise they were carefully dried and stirred, and a weighed part was spread over the counting tray. The 1 ml aliquot from the eluted solution was then added to an identical weight of fresh exchanger, which was then stirred, dried and spread over a counting tray in the same way as described above. - 12 -

.~----- SAMPLE 5 ml

IONIC PRECIPITATE ( internal diameter 7 mm)

3cm

5

Figure 1 - 13 -

3. RESULTS

The results of the tracer experiments for each ionic precipitate in various media are reported in the following paragraphs, in form of periodic tables. The following codes were used: 0 element eluted (over 97%) e element retained (over 99%) () element partially retained (the black area is proportional to the amount retained)

~ : behaviour not well ri:>nrrdu:;; 1,1_p

no disk: the element was not tested.

The tables are numbered successively, and t1':e cl"'lj e v.10inis of th~ mate.,...ii=il and nf t:re mer:ii.urr q~"=' ;_rir5~c:=i+,~c! in b..,..,qck~ts. (see table III for the keys of the code). Each paragraph is completed by a summarized description of applications made. Only the part referrin~ to the separation conditions and the results obtained, is given. Details on the irradiation and counting conditions and on the destructive producers used, were generally omitted to avoid repetition of non-essential data. Reference to published work on the material tested or on materials of similar chemical composition are given for each paragraph. - 14 -

3.1 Hydrated Dioxide (HMD)

3. 1 • 1 Material

Commercial HMD ( "RA-2", Carlo Erba, Italy), prepared according to reference (19) was used.

3. 1 • 2 Tracer_experiments

Carried out in the following media:

a) 0. 1 M HNo at 65°C ( 61 ions): table 1 (HMD/0.1N 65°C) 3 b) 1 M HN0 (50 ions): table 2 (HMD/1N) 3 c) 1 M HCl0 ( 51 ions): table 3 (HMD/1P) 4 d) 6 M HF (52 ions): table 4 (HMD/6F)

e) 14 M HN0 ( 51 ions): table 5 (HMD/14N) 3

3.1. 3 !PPlications

HMD was applied to various radiochemical separations, such as removal of Fe and Cr for the determination of Zn and Co in a Fe-Cr alloy, activation analysis of mussel shells (removal of 47 ca), and of leaf tissues (separation of Na from Mn and K) (19). A Tc99m generator based on the use of a HMD column, (20) and the application of HAP, HMD and TDO to the determination of in blood were recently reported (21). - 15 -

Other applications were:

a) Determination of Cu in steel (total removal of 187w 56 and part 1·a1 remova1 o f Mn_ from 1 M HClO , d e t ermina. t· ion 64 4 of cu in the eluate, figure 2)

b) Determination of Na, K, :Mn, Zn, Cs, Ba, Mg, Sr in a fish muscle (see paragraph 3.8.3)

c) Preparation of carrier free Co 58 from neutron irradiated 58 by the reaction Ni(n,p) 58co. Irradiated nickel in a 6 M HF solution was passed over HlVID. 58co is retained, and it can be eluted with 14M HNo • The 3 concentration of Ni++ in the solution must be lower than 1 mg/ml, or losses in the retention of 58co are found.

3.1.4 ------HMD references (references 8 to 18 refer to other types of used as inorganic exchanger, references 19 to 22 refer to HMD in particular).

8) E.Ebler and #.Bender; Z.Anorg.Allgem.Chem., 84, 77 (1913).

9) E.Ebler and W.Bender; Angew.Chem. 28, I, 25 (1915).

10) N.J.Polissar; J.Am.Chem.Soc., 58, 1372 (1936). - 16 -

11) B.Pulman and M.Haissinsky; J .Phys.Radium, 8, 36 ( 1947).

12) P.Pascal; "Nouveau Traite de Chimie Mineral" Vol. XVI, p. 774 Masson e Cie, Paris, 1960.

13) A.P.Tiutrina, B.P.Zhagin and V.G.Bakhurov; At.Energy (USSR), .l.§., 487 (1965).

14) N.Yamagata and K.Washima, Nature, 200, 52 (1963).

15) R.A.D•yachkova, ''ikt I .S11itsyn and P.P.l\1azarcw; '1Hdio 1rhimiya, !, 1 (1962).

16) V.V.Pushkarev, E.V.Tkachenko, Yv.V.Egorov and A.S.Lyubimov; Radiokhimiya, 4, 1 (1962).

17) T.Gerevini and R.Somigliana, Energia Nucleare, 6, 5 C-19 59) •

18) P.Guegueniat; Report CEA-R 3284.

19) F.Girardi, G.Guzzi, J.Pauly and R.Pietra; Int.Conf.Modern Trends in Activation Analysis, 337 (1965).

20) C.Bigliocca, F.Girardi, J.Pauly, E.Sabbioni, S.Meloni and, A.Provasoli; Anal.Chem. 39, 1634 (1967). - 17 -

21) S.Meloni, A.Brandone; Int.J.Appl.Rad.Isotopes, .12., 164 (1968).

22) S.Meloni, A.Brandone and V.Maxia; Int.Conf.Modern Trends in Activation Analysis Washington, 1968, paper n° 52, in press. - 18 -

HYDRATED MANGANESE DIOXIDE 1 (HMD/0. 1N 65°c) 0.1 M HN03 at 65°c

Li Ba B C N 0 F 0 C) Na Mg Al Si p s Cl () !~ 1_) 0 0 ''-.../ J /- I K Ca Sc Ti V Cr Mn J Fe Co Ni Cu Zn Ga Ge As Se Br I 1'\ (~ ..___) e1,~ e oe e e1e10 ."--' ' 0 i '-'' Rb Sr y •Zr •Nb Ag I Cd I •In •Sn •Sb Te ! I e 0 e e e 1 01ct Rh1e e ,Jte eie1•1e Cs Ba •R.E. Hf Ta W Re I Os Ir Pt Au !¥ Pb Bi Po I At 0 0 e eo1e,o.o 01e1 I 1 Fr Ra Ac Th Pa u Arn Cm I Bk Cf • • Np I Pu I 0 01 I Sm Eu / Gd Tb Dy La I Ce ! Pr Nd I Pm Ho ! Er i Tm / Yb I Lu • I i e,ei •1•1 1e1 e i I 1tlt1

HYDRATED MANGANESE DIOXIDE 2(HlV'D/1N) 1 M HN0 3

Li B2 C i N 0 I r B I ! I ! I Na. ~:g Al Si p I s Cl

()1(, I ' 0 '-"" Se Br K I Ca I Sc i Ti V I Cr ! l,'.n ) ?e I Co I Ni I Cu I Zn I Ga Ge i As I ' I - ~:o: 1.l()'G O .- -,Jo 01 I ~1l)1 I I I !u! i\__)\\.....,' i. ,e1• C Pd Ag Cd In I Sn Sb Te I I

1 ,,--,, 1 - 1 .~1010 ct ;1;1c r01 Rh L.i 1\_ 0 e e .-\ At Cs Ba IR.E. Hf •ra N Re I Os Ir Pt Au Hg Tl Pb Bi Po • 0 OIC) C, e QC) ~10 0 0 Fr Ra Ac Th Pa •u Np Pu Am l Cm Bk Cf ") I I e l_, I l I La Ce Pr Nd Pm Sm Eu Gd Tb I Dy Ho Er Tm Yb Lu

~ 0 I 0 - 19 -

HYDRATED MANGANESE DIOXIDE 3(HMD/1P) 1 M HCl0 4 Li Be B C N 0 F

Na Mg Al Si p s Cl 0 e 0 0 K Ca Sc Ti V Cr Tu:n Fe I Co Ni Cu Zn Ga Ge As Se Br C, 0 0 e () 010 0 0 0 0 e e e 0 Rb Sr y Zr Nb Mo I •re \ Ru Rh Pd Ag Cd In Sn Sb Te I

1 0 0 0 ~ e e 01~ lc1 e 0 0 e e e e Cs Ba R,E, Hf Ta II Re \ Os Ir Pt Au Hg Tl Pb Bi Po At I ~,C) 0 0 e e OiOJtt 0 0 C> Ra Th Pa u Cf Fr Ac Np I Pu I ~~ Cm I Bk () I I e '--/ I La Ce \ Pr Nd Pm Sm Eu I Gd Tb Dy Ho I Er Tm Yb Lu I I Or 101 I 0

HYDRATED MANGANESE DIOXIDE 4(HMD/6F) 6 M HF

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 0 0 0 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br e 0 0 0 0 0 e 0 ~ 0 0 0 0 e 0 Rb Sr y Zr Nb Mo •re Ru Rh Pd Ag Cd In Sn Sb Te I ere e 0 0 0 0 ~ C) e 0 0 e ~ ~ e Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At e,e e 0 0 0 0 0/J 0 0 0 Fr Ra Ac Th Pa u Np Pu ~~ Cm I Bk Cf

I 0 0 01 La Ce I Pr Nd Pm Sm Eu I Gd Tb Dy Ho Er Tm Yb Lu ttl 1e1 e - 20 -

HYDRATED MANGANESE DIOXIDE 5 (HWlD/14N) 14 M HNo 3

T' ~i Be B c i N I o f r I I Na I 1;g Al Si p s Cl

(~ ol It 0 '- ,' Ga Ge As Se Br K Ca Sc Ti V Cr lf.n i ?e 1 Co Ni I Cu Zn 0 0 0 e '100 010 0 01e1e e 0 Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I C) ~ 0 0 e e 0 0 0 e 0 0 e e e e Cs Ba R.E. Hf Ta '/I Re Os Ir Pt Au Hg Tl Pb Bi Po At ~ 0 0 0 e e ~o ()IQ 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

I e 0 I La Ce Pr Nd Pm Sm Eu Gd Tb I Dy Ho Er Tm Yb Lu

0 0 I 0 •

1()5

1e1w cpm 1e1w

1e1w 1e1w 1e1w IRRADIATED(STr) SAMPLE 103 64Cu • COUNT 56 Mn1s1w DISSOLUTION 51Cr 56Mn i ...... N 102 1M HCl 04

COUNT ,s1 10 ~~ u

1 250 500 750 1000 1250 E-y (KeV)

Figure 2 - 22 -

3.2 Anhydrous Manganese Dioxide (AND)

3. 2. 1 Material

AN.D was prepared by courtesy of the firm Carlo Erba, Italy. The X-ray powder diffraction pattern correspond Pd to a pirolusit.e st..,...1lct,1re.

3.2.2 Tracer_Pxperiments

Carried out in the following media:

a) 1 M HCl0 (50 ions): table 6 A.MD/1P 4 b) 6 M HF ( 50 ions): table 7 AIV!TI/6F

c)14 M HNo (51 ions): table 8 AJIIID/14N 3

3.2.3 Applications . 110m a) Determination of Ag 1n mollusks (Octopus): Ag was fixed on Al't!J from 6~.~ HF. Fe, Co and Zn were removed (figure 3).

b) Determination of Co and Cs in soil samples. The irradiated soil sample showed a·complex "I" -sn~ctra • in which 46 sc and the rare earths radioisotopes were prevailing. The irradiated sample ( 30 rrg) in '1 cc of ;::;!,T HF

solution was passed on a column "f AJlf'":J coupled to one with cerous oxalate. The first retained the 4 6 60 . 1 3 ~ rare earths, the second retainP:i Sc. Co and :-'s were measured in the eluate. - 23 -

ANHYDBOUS ~1:AJ'IGANESE DIOXIDE 6 ( ATfD/1 P) 1 IVi HCl0 4

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 0 u K Ca Sc Ti V er W.n Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 0 0 0 0 ~ e 0 0 Rb Sr y Zr Nb Mo •re Ru Rh Pd Ag Cd In Sn Sb Te I 1 (\ 0 0 CJ 0 ~ e u e 0 e () 0 8 e e 0 Cs Ba R,E, Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 () 0 0 e 0 ~ C}en e C) Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

• I 0 01 La Ce I Pr Nd Pm Sm Eu I Gd Tb Dy Ho Er Tm Yb Lu 01 101I 0

ANHYDROUS MANGANESE DIOXIDE 7(AMD/6F) 6 lVl HF

Li Be B c i N [ o ! r

I I Na I 1;g Al Si p s Cl ol 0 0 K Ca Sc i Ti V Cr Zn Ga Ge As Se Br Ni 1 Cu 1 1 0 OiO 0 000 0101 0 0 OIQ) e 0 Rb Sr I Y Zr Nb Mo Tc ·Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 io 0 0 0 () 0 e 0 0 0 0 ~ 0 Cs Ba R.E. Hf Ta N Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 1 e 0 0 0 0 0 ~ 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

I I 0 ~ I La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

e e I e - 24 -

ANHYDROUS rrANGANESi:.: T)to:,:-r]~ 8 ( l\]·· 1 J/ 11 1\T) 14 JVT HNO 3

Li Ba B C N 0 F

Na Mg Al Si p s Cl -,,_ ) 0 '-' ~./ K Ca Sc Ti V Cr Tu:n Fe Co Ni Cu Zn Ga Ge As Se Br (-~~\ \ '1 _,\ 0 0 0 0 ~ 0 0 ~ '- '-./ 0 e ere -· Rb Sr y Zr Nb Mo I ·re Ru Rh I Pd Ag Cd In Sn Sb Te I ,-) /;,o / ) ' I //~)re 0 0 0 0 0 "-/ , -Ji '-· . 0 ere .lr~ Cs Ba R.E. Hf Ta II Re / Os Ir Pt Au Hg Tl Pb Bi Po At ~l(J 0 0 ~ e 0/C),L),"~! 0 C) Fr Ra Ac Th Pa u Arn Cm I Bk Cf ,,- .\ (N~) I Pu I 0 '_) '-./ I • La Ce I Pr Nd Pm Sm Eu I Gd Tb Dy Ho Er Tm Yb Lu I ol 101 I 0 ..

cpm 65 59 60 IRRADIATED SAMPLE Zn + Fe+ Co ( MARINE OCTOPUS) ,er COUNT

MINERALIZATION

2 10 6M+ HF N) 11omAg c.n

10 ... COUNT I AMO

WASTE

1.5, E y (MeV) 0 0.5 1

Figure 3 - 26 -

3.3 (SDO)

3 • 3 • 1 Mat------e rial

Commercial Silicon dioxide ("R.P. 11 Reagent grade, Carlo Erba, Italy) was used.

3.3.2 Tracer_experiments.

Carried out in the following media:

a) 1M HC10 4 (49 ions): table 9 (SD0/1P)

b) 7M HNo 3 (49 ions): table10 (SD0/7N)

3.3.3 Applications

SDO does not seem to have a practical interest, at least in the two media of the tracer experiments. - 27 -

SILICON DIOXIDE 9(SD0/1P) 1N: HC10 4

Li Ba B C N 0 F

Na Mg Al Si p s Cl 0 0 0 Se Br K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As 0 0 0 0 0 0 0 0 0 0 0 ~ 0 0 0 Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 () () 0 0 0 0 0 0 0 0 ~ 0 Pb Bi Po At Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg Tl 010 0 () ~ 0 0 0 0 0 () 0 Fr Ra Ac Th Pa u Np Pu Arn Cm Bk Cf 0 0 Ho Er Tm Yb Lu La Ce I Pr Nd Pm Sm Eu I Gd I Tb Dy 01 01 i 0

SILICON DIOXIDE 10(SD0/7N) 7N. HN0 3

T'~l Ba B C ; N I O \ F

I I Na I i;g Al Si p s Cl ol 0 0 As Se Br K Ca Sc I Ti V Cr Kn I Fe I Co Ni Cu Zn Ga Ge 0 0 0 0 OOO 0 0 0 0 ~ 0 0 ~ Rb Sr I Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I

0 0 0 ~ CJ10 0 0 0 0 0 0 0 -~ 0 Bi Po At Cs Ba R.E. Hf Ta II Re Os Ir Pt Au Hg Tl Pb

1 0 ()IQ ~ ~ 0 0 0 0 0 0 Fr Ra Ac Th Pa u Np Pu Arn Cm Bk Cf - I I 0 0 l Sm Eu Gd Ho Er Tm Yb Lu La Ce Pr Nd Pm Tb IDy 0 0 I 0 - 28 -

~ydrated Antimony Pentoxide (HAP)]

3.4.1 Jltraterial

Commercial HAP ( "RA-1. "CRrlo-Erba, Italy) prepared according to reference (23), was used.

3.4.2 Tracer_experiments

Carried out in the followin~ media:

a) 1 M HNo (36 ions): table 11 (HAP/1N) 3 b) 1 M HCl0 (51 ions): table 12 (HAP/1P) 4 c) 6 M HCl (58 ions): table 1 3 (HAP/601)

d) 6 M HCl0 (36 ions): table 4 14 (HAP/6P) e) 6 M HF (53 ions): table 15 (HAP/6F)

f) 7 M HN0 (32 ions): table 16 3 (HAP/7N) ~)12 M HCl (60 ions): table 17 (HAP/1201)

h)14 M HNo (53 ions): table 18 (HAP/14N) 3

3.4.3 Applications

Various applications to the selective removal of radiosodium from neutron activated specimens were already reported ( 22, 23, 24, 25). Other applications, involving the separation of other radionuclides, were: - 29 -

a) Qetermination of Co, Rb, Sr, Sc, Zn, Fe, in mollusks. sample in n~ HN0 with mg amounts of 'The irradiated 3 carriers added fnr each element was passed on HAP. ;s, Rb, Sr and Sc are retained. See figure 4.

b) 1etermination of Ta in Zr: based on the adsorption nf Ta froIP 12 M HCl on HAP. 95 Carrier-free Nb95 from decay of zr was mostly retained on HAP. The addition of 5 mg Nb carrier :iuring the dissolution of the sample decreases the 2 amount retained by a factor 10 • see figure 5.

c) ryetermination of K, Cs, Sr and Cu in human lung tissues: the irradiated sample is dissolved in f~ing HNo and directly passed on a HAP column. 3 The eluate is diluted to 1 }t and passed on another HAP column (K, Cs, Sr retained; Cu and Mn eluted, see figure 6).

d) Determination of Cu and Zn in leaf tissues (see paragraph 3.17.3).

e) Determination of Na, K, Mn, Zn, Cs, Ba, Mg, Sr in fish muscle (see paragraph 3.8.3). 95 95 f) Preparation of carrier-free Nb from decay of zr. Neutron activated zirconium (100 mg) is dissolved and put in 20 cc of14 M HNo and passed on HAP. The 3 .. retained Nb is eluted with 6M HF • - 30 -

g ) A 'r c 99~ 1s0· t ope ~enera t nr was r orITe·d b y a d sorb' 1ng irradiated ~n (15 m~) on H~P from 30 8c of 14 N HNo • 3 Tcggm was "milkei" 10 times succ<2ssivelv with 00 1 14 M HNO and still no - f(n w::rn detected in the 3 eluate.

. ~ . ~ 47 ~ h ) Preparation o, carrier free ~c !rnm the decay of 4 7 Ca • Neutron activated ]aC:0 ( 1 • 25 ~) was dissolved 3 in 30 cc of 6 rv: HClO and p9.sseJ on a PAP column. 4 4 7 ~c' is· re t aine.· d Dl~ u t ion· canoe- Jone.:;i wi.• th 6 ]'~- HF •

i) Determination of Mn and 8u in blooi and mollusk

shells: the irradiated material in 1 ~r H810 was 4 61 56 passed in HAP (Na and K removo,d). Cu and ~fn are determined in the eluate.

1) Determination of Fe, Cr, Zn in mnllusk shells: the irradiated shell in 6rr HCl0 vas passed on H<\P 4 46 59 51 6i.~ ( Sc r~moved, Fe, Cr, i.n in tr:e eluate).

m) Determination of Fe, Cr, Zn in blond (see paragraph 3.8.3).

n) Determination of /Ju and W:n in b0ne tissue ( see paragraph 3.8.3).

J.4.4 References

23) F.Girardi, E.Sabbioni; Journal of Radioanal.Chem. l, 16g (1968).

24) S.F.Peterson, A.Travesi and G.H.Nrorrison; Internat.Conf.Modern Trends in Activation Analysis 1968, paper n°112. - 31 -

25) E.D.Bird, J.F.:Smery, .:3.P.lupica ar:i N.~.~·10r1;

Internat.Conf .Iv"odern Tr0 n is iYJ. _'\.ctivatinr-i t.':·3..l,vsis 1968, paper n° 59. - 32 -

HYDRATED ANTIMONY PENTOXIJE 11 (HAP/1N) 1 M HN0 3

Li Be B C N 0 F

Na Mg Al Si p s Cl

•K Ca 1 Sc Ti V Cr I ri;n l Fe Co Ni Cu Zn Ga Ge As Se Br ~·"' ! ! ;~ e ~/~0 0 '· --~ 0 y Rb Sr • Zr Nb Mo f 're Ru Rh I Pd Ag Cd In Sn Sb •Te I I 0 io ~: /0 -"-- Cs Ba R,E, Hf Ta II Re Os Ir Pt Au Hg Tl Pb • • • •• -- -- Bi I Po I At () e,e ()10 0 0 0 i I Fr Ra Ac Th Pa u Np Pu Am Cf • • • Cm f Bk I I La Ge I Pr Nd /• Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu •l I 1e1 •

HYDRATED ANTIMONY PENTOXIDE 12(HAP/1P) 1 ~/' HClO 4

Li · Be j 0 --I1 I 1 B I I I C I ' j I I I I I

Na I 1;g Al I Si p j s Cl I ,r--,, 1 / - I~I \. I'-. ... '-~· e 1 I I Cu Br 50 V lrr~ !',,n / ~ e i Co I N.1 Zn I Ga j Ge As I Se I I ~i 1" l .\ ,;e1 OOtOiOC c: oc 1e1ee .. Rb Sr / Y / Zr Ag Cd In Sn Sb Te I Nb , " ' I ': I Ru I Rld ••fol() o,• "-. ,~, '-._/ 1 0 Cs Ba jR.E. Hf Ta / II Ir I Pt Au •0•~~Hg Tl Pb Bi Po At Re I Os • •ltt ~ 00 el~ 0 •Fr Ra Ac Th •'~Pa u Np Pu Am ICm Bk •Cf (--- I I I I '-/ I La Ce Pr Nd •Pm Sm Eu Gd Tb IDy Ho Er Tm Yb Lu • e I • - 33 -

HYDRATBD ANTII(ONY FENTOXI1JE 1 ~(HAP/6Cl) 6 Y H':;l

11 B2 B C i N 0 I --F I I I I ~ Na I 1;g Al Si p I s Cl el 0 C)i0 0 Ga Ge As Se Br K \ Ca Sc \ Ti V Cr r:.n i Fe I Co I Ni I Cu Zn I,--, I 0 CJlooc \._/ 0101010,0 0 CJl()IQ 0 (~) Rb I Sr I Y Zr Nb Mo Tc jRu I Rh Pd Ag Cd In Sn Sb Te I ,1 (\ 'l(~/(~10 \ ,,· ( iol C) 0 '-' OOO C 0 Cs Ba JR.E. Hf -~•ra II Re I Os Ir Pt Au Hg Tl Pb Bi Po At Q!Q 1 01 ~-"' (!) 0 e 0 0 0 I'LJ 0 0 " Fr Ra Ac Th Pa u Np Pu Am ICm Bk Cf {,..-·---, , ~ (f': /. \ I j\ (!) \..-·' u I • Pm Sm Eu Gd Ho Er Tm Yb Lu La Ce Pr Nd Tb I Dy (' \._) 0 0 I 0

HYDRATED ANTIMONY PENTOXIDE 14(HAP/6P) 6 rt HClO 4

Li Be B C N 0 F

Na Mg Al Si p s Cl e K Ca Sc Ti V Cr !Y,n Fe Co Ni Cu Zn Ga Ge As Se Br 0 e 0 0 0 0 (~_: (; 0 el Rb Sr y Zr Nb Mo I Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 () () ,0 I e 0 e e 0 Cs Ba R,E. Hf Ta w Re Os Ir Pt Au •Hg Tl Pb Bi Po At O,C) 0 0 e e 0 010 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

I e La Ce I Pr Nd Pm Sm Eu ! Gd Tb Dy Ho [ Er Tm Yb Lu I : ol 101 I I 0 - 34 -

HYDRATED ANTIMONY PENTOXIDE 15(HAP/6F) 6 lVl HF

Li Be B CiNIO(F-

I I Na / t;g Al Si p s Cl el 0 C 0 Zn Ga Ge As Se Br K Ca Sc f Ti V Cr l,'.n I Fe I Cc Ni Cu e ~o 0 ~o~ ol•I 0 01010 00 Rb Sr / Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I I e e/C10 0 0 0~ Oct e OOO 00 Cs Ba \ R.E. Hf Ta N Re Os Ir Pt Au Hg Tl Pb Bi Po At

1 e e 1 e 0 0 0 0 0 0 0 0 ~ Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

I 0 0 0 0 I I • La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

e e I e

HYDRATED ANTIMONY PENTOXIDE 16(HAP/7N) 7 M HN0 3

Li Be B C N 0 F

Na Mg Al Si p s Cl

-K Ca Sc Ti V Cr liin Fe Co Ni Cu Zn Ga Ge As Se Br e 0 ~ 0 0 0 0 e Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I e (!) 0 e 0 e C) ~ () 0 Cs Ba R.E. Hf Ta VI Re I Os Ir Pt Au Hg Tl Pb Bi Po At 0 et Q) e (I 00,0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

e I La Ce r Pr Nd Pm Sm Eu I Gd Tb Dy Ho Er Tm Yb Lu ct1 ()j () - 35 -

HYDRATED ANTIMONY PENTOXIDE 17(HAP/12Cl) 12 M HCl

Li I Be B CiNjO!P- I I I~ Na I tig Al Si p s Cl elo 0 0 0 0 K Ca Sc j Ti V Gr Ni Cu Zn Ga Ge As Se Br 1 0 0 OC> 0 0 0E)O 0 0 0 0 010 0 0 Rb Sr I Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 001 0 0 0 0 0 0 0 0 0 0 0 0 0 Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 0 e 0 0 0 0 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf I 01 0 0 0 l Yb Lu La Ce Pr Nd Pm Sm Eu Gd Tb I Dy Ho Er Tm 0 0 0 01 0 0

HYDRATED ANTIMONY PENTOXIDE 18(HAP/14N) 14 M HN0 3

Li Be B C N 0 F

Na Mg Al Si p s Cl e (1 0 0 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 0 0 0 0 e 0 Rb Sr y Zr Nb Mo I Tc Ru Rh Pd Ag Cd In •Sn • Sb Te I 0 0 0 0 010 0 0 ~ ~ ~ ~ 0 Bi Po At Cs Ba R.E. Hf •Ta - w Re Os Ir Pt •Au Hg Tl Pb O,C 0 ~ ~ 0 C>O 0 0 0 Fr Ra Ac Th •Pa u Np Pu Am Cm Bk Cf 01 e C) 01 Dy Ho Er Tm Yb Lu La Ge I Pr Nd Pm Sm Eu I Gd Tb 01 01 0 r,.----....------r------r------. cpm I 65zn IRRADIATED SAMPLE (MOLLUSK)

"If' 65Zn

MINERALIZATION 1<>4 i 1M HN03 134Cs c,.:, Cl) 134(5 eoco eoco 1<>3 59Fe

46Sc 46Sc 1e>2 86Rb .. COUNT I HAP 134Cs

WASTE 250 500 750 1000 1250 E-y (keV) 1500

?igure 4 cpm1 9sNb IRRADIATED SAMPLE ZIRCONIUM 5 95~r~ 10 ~ count ~ 9sz,. / I 1 ' DISSOLUTION ! 12M HCI

4 10 ~ " V I l 1a2 70 ~ 95 ! Nbl WASTE I I I w -.J 3 I 10 ~ V\ I\ 182 Ta 1a2 .70 1a2 70

2 10

250 500 750 1000 1250 Ey(KeV)

.B,igure 5 - 38 -

1cf,------,------,------.------.------.------r------.------,..----. IRRADIATED' SAMPLE cpm 24

------"' Na• COUNT (LUiNG) 10

MINERALIZATION

4 + 10 14M HN03

3 10

BRING TO 1M HN03

134(5

10 - 134(5 134(5

64(u 56 ~ Mn ~------«:

500 750 1000 1250 1500 1750 2000 E-y(KeV)

. Figure 6 - 39 -

3.5 Polyantimonic Acid (PAA)

3.5.1 Material

Commercial PAA (Applied Research, Bel~ium), was used. This material differs from HAP for a higher water content and a lower resistance to strong acide. By heating it to 270°0 (drying temperature of HAP) a material identical to HAP is obtained.

3.5.2 Tracer------, experiments -

Carried out in the following media:

a) 6 M HCl (33 ions): table 19 (PAA/6 Cl) b) 7 M HN0 (32 ions): 3 table 20 (PAA/7 N) c) 14 M HN0 (32 ions): 3 table 21 (PAA/14 N)

3.5.3 Applications

Its behaviour is similar to that of HAP. It has a higher retention capacity, but its lower resistance to high HCl and Hc10 molarities narrows its area of 4 application. No practical application was yet made.

3.5.4 References

26) L.H.Baetsle, D.Van Deyck, D.Huys and A.Guery; Report EUR 2497.e - 40 -

27) Jean Lefebvre; C.B.Acad.Sc.Paris, t. 260 (24 mai 1965).

28) Jean Lefebvre, Frangois Gaymard; C.R.Acad.Sc.Paris, t. 260 (28 juin 1967).

29) tT .H.Qureshi and W.Shabbir; J.Inorg.Nucl.Chem. 28, 2603 (1966).

30) L.H.Baetsle, D.Huys; J.Inorg.Nucl.Chem. 30, 619 (1968). - 41 -

POLYANTIMONIC ACID 19(PAA/6Cl) 6 M HCl

Li Be B C i N I 0 I r I I Na 1;g .Al Si p s Cl el K Ca Sc I Ti V Cr lr.n I Fe I Co Ni Cu Zn Ga Ge As Se Br 0 OOO 0 0 e Rb Sr I- Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I e 0 e 0 C) 0 0 0 0 Cs --Ba R.E. Hf Ta II Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 e 0 0 0 01 0 0 -Fr Ra Ac Th Pa u Np Pu Am Cm Bk er e I La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

0 0 I 0

POLYANTIMONIC ACID 20(PAA/7N) 7 M HN0 3

Li Ba B C N 0 F

Na Mg Al Si p s Cl e K Ca Sc Ti .y Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 e Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I e 0 0 e 0 e 0 0 e 0 Cs Ba R.E. Hf Ta VI Re I Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 0 e e 010 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk er

e I Dy Ho Er Tm Yb Lu La Ce I Pr Nd Pm Sm Eu Gd I Tb

01 0 i 0 - 42 -

POLYANTIMONIC ACID 21 (PAA/14N) 14 M HN0 3

Li Ba B C N 0 F

Na Mg Al Si p s Cl e Ge As Se Br K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga ~ C) 0 0 (!) 0 e Sn Sb Te I Rb Sr y Zr Nb Mo I Tc Ru Rh Pd Ag Cd In 0 ~ 0 ~ 0 e ~ ~ e 0 Hg Tl Pb Bi Po At Cs Ba R.E. Hf Ta VI Re Os Ir Pt Au 0 0 0 (!) e et 0 0 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

e I Tb Dy Ho Er Tm Yb Lu La Ce I Pr Nd Pm Sm Eu I Gd 01 01 0 - 43 -

J.6 Antimony tetroxide (ATO)

3. 6. 1 Material

ATO was obtained from hydrated antimony pentoxide by heating it at 800-850°c.

3.6.2 !racer_experiments

Carried out in the following media:

a) 1 M HNOJ (36 ions): table 22 (AT0/1N)

b) 6 lVI HC10 (36 ions): table 4 23 (AT0/6P) c) 6 lVI HF (36 ions): table -24 (AT0/6F) d) 7 M HN0 (36 ions): table 3 25 (ATO/?N) e) 10 M HCl (36 ions): table 26 (AT0/10C1) f) 14 M HN0 (36 ions): table 3 27 ( AT0/14N)

3.6.3 Applications

No special advant~es were found over HAP. The retention capacity is lower. No application was therefo.re made. - 44 -

ANTIMONY TETROXIDE 22(AT0/1N) 1 M HN0 3

Li Be B C N 0 F

Na Mg Al Si p s Cl e K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 0 0 ~ Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 ~ e 0 e 0 e ~ 0 -Cs Ba R.E. Hf Ta w Re Os Ir Pt Au •Hg Tl Pb Bi Po At ~ 0 0 (!) e ~ 0 0 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

e I La Ce I Pr Nd Pm Sm Eu I Gd Tb Dy Ho Er Tm Yb Lu 01 01 0

ANTIMONY TETROXIDE 23(AT0/6P) 6 M HCl0 4

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 K Ca Sc Ti V Cr Mn Fe CQ Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 0 0 e Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 e 0 e () 0 e ~ 0 Cs Ba R,E, Hf Ta w Re I Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 0 e a 00 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm I Bk Cf

I La Ge Pr Nd Pm Sm Eu I Gd Tb Dy Ho Er Tm Yb Lu - I 0 101 0 - 45 -

ANTIMONY TETROXIDE 24(AT0/6F) 6 M HF

Li Be B C i N o I r I

Na / i;g Al Si p s Cl el K Ca Sc I Ti V Cr Kn I ?e I Cc Ni I Cu Zn Ga Ge As Se Br 0 /O 0 OOO 010 0 I 0 Rb Sr / Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 e/ 0 0 0 e e 0 0 ~ 0 Cs Ba R.E. Hf Ta N Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 et e 0 0 0 0 0 01 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

I I 0 I La Ce Pr Nd Pm Sm Eu Gd Ho Er Tm Yb Lu Tb IDy e e I e

ANTB~ONY TET ROXIDE 25(AT0/7N) 7 lVI HN0 3

Li Be B 0 I F C i N i I I I Na i;g Al Si p s Cl el K Ca. V Cr Ni Cu Zn Ga Ge As Se Br Sc I Ti lr.n J ?e I Co 0 0 0 OOO 0 0 0 ~ Rb Sr / Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 e ~ e 0 0 e ~ 0 Cs Ba R.E. Hf Ta ·11 Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 0 e () 0 ~ 01 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

I I e I La Ce Pr Nd Pm Sm Eu Gd Ho Er Tm Yb Lu Tb IDy 0 0 I 0 - 46 -

26(AT0/10Cl) 10 rr HCl

Li B~ B C i N I 0 I r- I I I Na I ;1;g Al Si p s Cl e! K / Ca Sc / Ti V Cr !.'.n I ?e Co Ni -r Cu Zn Ga Ge As Se Br 0 010 0 010 0 I e ~I Sr I? Zr Nb Mo To Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 e 0 0 0 0 0 ~ 0 Cs Ba R.E. Hf Ta N Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 0 e ~ 0 0 01 0 0 Fr Ra Ac Th Pa u Np Pu Arn Cm Bk Cf

I I e I I La Ce Pr Nd Pm Sm Eu Gd Ho Er Tm Yb Lu Tb IDy 0 0 I 0

ANTIMONY 'ETROXIDE 27(AT0/14N) 14 lVI HN0 3

Li Ba B C N 0 F

Na Mg Al Si p s Cl 0 K Ca So Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 0 0 e Rb Sr y Zr Nb Mo •re Ru llh Pd Ag Cd In Sn Sb Te I 0 0 0 e 0 e C) 0 e ~ 0 Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Ilg Tl Pb Bi Po At 0 0 0 0 e e 0 0,0 0 0 Fr Ra Ao Th Pa u Np Pu Arn Cm Bk Cf

e I Sm Eu Gd Tb Dy Ho Er Tm Yb Lu La I Ce I Pr Nd Pm 101 10 I 0 - 47 -

3. 7 ( CDO )I

3. 7. 1 Material

Commercial cadmium oxide (Reagent grade R.P., Carlo Erba, Milan) was used. CDO is soluble in strong acids. It is only

slightly soluble in 0.1 JYT acids.

3.7.2 Tracer_experiments

Carried nut ~-1y i~ 0.1 M H~o (59 inns): table 28 3 (CD0/0.1N).

3.7.3 Applications

CDO was used in the determination of Cs, Sr, and

Rb in soils (see ~.10. 5) and m0llusks (see 3.9.3). - 48 -

CADMIUN~ OXIDE 28(CD0/0.1N) 0.1 M HN0 3

Li Ba B C N 0 F

Na Mg Al Si p s Cl 0 ·o e 0 0 0 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 e e e e 0 e 0 0 e e e e e e 0 Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 e e e 0 e e 0 e e e e e 0 Pb Bi Po At Cs Ba R,E, Hf Ta w Re I Os Ir Pt Au Hg Tl 0 0 e e e e 00 0 0 e e Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf e 0 e Lu La Ce I Pr Nd Pm Sm Eu I Gd I Tb Dy Ho Er Tm Yb e el e e 1e1 ie e e - 49 -

13. 8 Ac id ( AAO >I

3. 8. 1 Material

Chromatographic acid aluminium oxide (activity grade 1, Woelm, Germany) was used.

3.8.2 Tracer_experiments

Carried out in the following media:

a) 1 M HClo (50 ions): table 29 (AA0/1P) 4 b) 1 M HCl0 at go 0 c (46 ions): table 30 (AA0/1P 90°C) 4 c) 1 M HN0 at go 0 c (42 ions): table 31 (AA0/1N go 0 c) 3

d) 7 11/T HN0 (48 ions): table 32 (AA0/7N) 3 e) 7 M HN0 at go 0 c (42 ions): table 33 (AA0/7N 90°C). 3

3.8.3 Applications

AAO has been used frequently to prepare carrier-free 32P from irradiated sulphur compounds. The selectivity obtained is good enough to make AAO a suitable filter for removing 32P from irradiated samples (elimination of 32P bremsstrahlung from gamma spectra). 32 Removal of P was made:

a) From irradiated bone tissues, (5 mg) for the determination of Ba and Cr (in 5 cc of 1 M HClo at 4 go 0 c), and for the determination of Cu and Mn (in 1 M HClo ). An HAP column is connected in series to 4 - 50 -

retain. 24 Na and 42 K. 64 Cu and 56 Nn are eluted.

b) From leaf tissues, for the determination of Hg and Cr (in HNo 1 Mand 7 M) (figure 7). 3 c) From fish muscle, for the determination of Na, K, Mn, Zn, Cs, Ba, Mg, Sr. The irradiated sample, dissolved in fuming HN0 3 is directly passed on columns of AAO and HAP in 24 series (removal of 32P and Na). The eluate is diluted to 0.1 Mand passed on HMD at 70°C (removal o f 56M..nan d 42K) • 69m2n, · 134mc s, 27M1g, 139B a and 87msr are determined in the eluate.

3.8.4 References

31) M.Bresesti, R.Lanz and A.lVI.Del Turco; Annali di Chimica 2.1., 351 (1961).

32) A.Dean John; Anal.Chem. 23, 1 (1951).

33) Roger Rzekiecki; Report CEA - R 2851.

34) T.A.Carlson, D.J.Coombe, J.S.Johnson, K.A.Kraus, H.O.Phillips; Report ORNL 2159. - 51 -

ACID ALUMINIUM OXIDE 1 M HCl0 29(AA0/1P) 4

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 0 e 0 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 0 0 0 0 e e 0 0 Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 0 e e 0 0 C 0 0 0 0 0 e 0 Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 0 ~ e 0 ~ 0 0 C, 0 Fr Ra Ac Th Pa u Np Pu Arn Cm Bk Cf

C, I La Ce I Pr Nd Pm Sm Eu Gd I Tb Dy Ho Er Tm Yb Lu

01 10 I 0

ACID ALUMINIUM OXIDE 30(AA0/1P 90°0) 1 U HCl0 at 90°0 4

Li Be B C i N I O I F

i Na ) t;g Al Si p s Cl olo e 0 V er rr.n I Fe Co Ni Cu Zn Ga Ge As Se Br OIOOl'i 0 00 0 0 0 0 e1e 0 0 Rb Sr ) Y I Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 Q I~ e e 0 0 0 0 0 e e 0 Ca Ba R.E. Hf Ta II Re Os Ir Pt Au Hg Tl Pb Bi Po At

1 0 C) 0 ~ ~ () 0 0 0 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf I I C, I La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 0 0 0 - 52 -

ACID ALUMINIUM OXIDE 1 M HN0 at gooc 31(AA0/1N 90°C) 3

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 0 e 0 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 0 0 0 e 0 0 Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 ~ 0 0 0 0 e ~ 0 Cs Ba R.E. Hf Ta w Re I Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 0 19 ~ 010 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf ~ Dy Er Tm Yb Lu La Ce I Pr Nd Pm Sm Eu Gd I Tb Ho

ol ,o I 0

ACID ALUMINIUM OXIDE 7 M HN0 32(AA0/7N) 3

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 e n\___,, K Ca Sc Ti V Cr W.n Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 0 0 0 0 ~ e 0 ~ y Zr Nb Mo •re Ru Rh I Pd Ag Cd In Sn Sb Te I Rb Sr 1 0 0 0 0 0 () 0 0 0 0 0 0 ~ 0 0 At Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po 0 0 0 0 ~ e 0 0 0 0 0 0 Fr Ra Ac Th Pa u Am Cm Bk Cf Np I Pu 0 01 Tm Yb Lu La Ce I Pr Nd Pm Sm Eu I Gd Tb Dy Ho Er 01 101 I 0 - 53 -

ACID ALU1V1INIUM OXIDE 33(AA0/7N go 0 c) 7 M HN0 at 90°C 3 ·- Li I i)~ B C i N 0 I I' I ' I I I ~ Na I\:g Al Si p s Cl 0 0 e 0 Zn Ga Ge As Se Br 1 1 2 OIO!c)i Ti ' ;J' ilcl)IOIO 0 I 1e 0 0 Cd · In I Sn Sb Te I obl' ~l~IJ,J22l ~1"0 o·oe~ 0 Hg Tl Pb Bi Po At Ca I Ru [R,E.1 Hf ;!t• j Re I Oa j fr [ PC Au 0'0!()0'9~C)10IOI 0 0 Fr Ac Th Pa u Bk Cf Ra Np I Pu I Am ! Cm

I ~ I i Ho Tm Yb Lu La Ce Pr Nd Pm Sm Eu Gd Tb I Dy Er

0 0 I 0 1051---,------,------.-----,------.--

cpm

104 32 P bremsstrahlung

46Sc 65 6 1<>3 Zn! Sc 59

CJl cpm >+'" 59fe +47Ca IRRADIATED SAMPLE (HURTICA LEAVES) 6oco 2 4 10 ~ 10 ! • 60(0 MINERALIZATION ~ 7M HN03 59fe ~41(e 59fe COUNT

1 3 COUNT 10 ~ 10

1.00 200 300 Ey( KeV) 250 500 750 1000 1250 Ey(KeV)

Figure 7 - 55 -

13. 9 Tin dioxide ( TDO)

3. 9. 1 Material

Commercial tin dioxide (Reagent grade@, Carlo Erba, Milan) was used.

3.9.2 Tracer_experiments

Carried out in the following media:

a) 0.1 lVI HNo at 60°C (41 ions): table 34 (TD0/0.1N 60°C) 3 b) 1 M HCl (57 ions): table 35 (TD0/1 Cl)

c) 1 M HNO (59 ions): table 36 (TD0/1N) 3 d) 1 lVI HCl0 (47 ions): table 37 (TD0/1P) 4 e) 6 M HF (46 ions): table 38 (TD0/6F)

f) 7 lVI HN0 (56 ions): table 39 (TD0/7N) 3 g) 14 M HN0 (46 ions): table 40 (TD0/14N) 3

3.9.3 Applications

TDO was applied to:

a) Determination of Cs, Sr, Rb in mollusk soft tissues. The irradiated samples in 0.1 M HN0 are passed over 51 3 46 65 TDO and CDO (removal of 59 Fe, cr, sc, zn, 122Sb 86 and 32P). ~34cs, 85sr and Rb are found in the eluate. (figure 8). - 56 -

b) Determination of Mo in mollusk shells. The samples in 1 M HNo ar8 passed over TDO, Mo is 3 retained. Major radioactivities are eluted.

c) An application to the determination of Gr in blood was reported in (22).

3.9.4 References

35) C.B.Amphlett, L.A.Mc Donald and N.J.Redman; J.Inorg. and Nuclear Chem.~' 236 (1958).

36) K.A.Kraus, H.O.Phillips, T.A.Carlson and J.S.Johnson; Proc. 2nd Conf.Peaceful Uses of Atomic Energy 28, 17 (1958).

37) K.A.Kraus, T.A.Carlson, D.J.Coombe, J.S.Johnson and H.O.Phillips; Report ORNL-2057.

38) M.Csajka; Talanta .1..1., 1360 (1967):

39) J. F.Goodman and S.,J .Gregg; J.Chem.Society 76, 1162 (1960).

40) T.A.Carl~on, D.J.Coombe, ,J.S.Johnson, K.A.Kraus and H.O.Phillips; Report ORNL-2159. - 57 -

TIN DIOXIDE 0.1 M HNo at 60°C 34(TD0/0.1N 60°C) 3

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 e 0 K Ca ' Sc Ti V Cr l'lin Fe Co Ni Cu Zn Ga Ge As Se Br 0 e 0 0 e 0 0 0 0 e Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 e e 0 0 0 e e e 0 Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi J'o At 0,0 0 e e e 0 e 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf e 0 e La Ce I .Pr Nd Pm Sm Dy Ho Er Tm Yb Lu ol Ol'l) 0

TIN DIOXIDE 35(TD0/1Cl) 1 IV: HCl

Li Be B C i N o I r I e Na 1;g Al Si p s Cl olo 0 e 0 0 0 K Ca Sc ' Ti V Cr !,'.n i Fe I Cc Ni Cu Zn Ga Ge As Se Br 0 0 00 0 0 OOO 0 0 0 0 e1e 0 Rb Sr I Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb •Te I 0 0 0 C 0 0 0 0 0 e 0 0 Cs Ba R.E. Hf Ta w Re Os Ir I Pt Au Hg Tl Pb •Bi Po At • • 1 • 0 0 0 e e e 0 0 0 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf I I e 0 0 I La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 0 0 0 - 58 -

TIN DIOXIDE 36(TD0/1N) 1 M HN0 3

Li Be B C ' N I O ! P

I • Na / I\lg Al Si p s Cl olo 0 0 0 I Zn Ga Ge As Se Br K Ca Sc Ti V Cr lr.n I ?e I Cc Ni I Cu • 0 0 00 0 0 OOO 010 0 0 e1e 0 Rb Sr I Y Zr Nb Mo :re Ru Rh Pd Ag Cd In Sn Sb Te I I 1 • 0 00 0 0 0 0 0 0 ~ 0 Cs Ba R.E. Hf •Ta •II Re Os Ir Pt Au Hg Tl •Pb •Bi Po At 0 0 0 (!) ~ 0 ~ 01~ ~ 0 Fr Ra Ac Th Pa •u Np Pu Am Cm Bk Cf I Or 0 0 i La Ce Pr Nd •Pm Sm Eu Gd Tb I Dy Ho Er Tm Yb Lu 0 0 0 0 Or 0

TIN DIOXIDE 37(TD0/1P) 1 M HCl0 4

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 e 0 K Ca Sc Ti V Cr W.n Fe Co Ni Cu Zh Ga Ge As Se Br 0 0 0 0 0 0 0 0 0 0 0 Rb Sr y Zr Nb Mo ·re Ru Rh Pd Ag Cd In Sn •Sb •Te I 0 0 0 ~ e 0 0 ~ 0 0 e ~ 0 Cs Ba R.E. Hf Ta •w Re Os Ir Pt Au Hg Tl Pb •Bi Po At 0 0 0 ~ 0 Q,~ 0 ~ ~ Fr Ra Ac Th •Pa •u Np Pu Am Cm Bk Cf 0 I Dy Er Lu La I Ce I Pr Nd Pm Sm Eu I Gd Tb Ho Tm I Yb • I

101 101 r I 10 - 59 -

TIN DIOXIDE 6 ~.' HF 38(TD0/6F)

Li Be B C i N I O I --F I I Na / 1;g Al Si p s Cl ol 0 0 K Ca Sc f Ti V Cr rln I Fe I Co Ni Cu Zn Ga Ge As Se Br 0 0 0 OOO 0 0 0 01 1e e 0 Rb Sr I Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 0 0 0 ~ e 0 0 0 ~ ~ 0 Cs Ba R.E. Hf Ta w Re I Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 1 e 0 0 0 00 0 0 e ~ Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

I I 0 0 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu e e e

TIN DIOXIDE 7 IvI HN0 39(TD0/7N) 3

Li Be B C N 0 F

Na Mg Al Si p s •Cl 0 0 0 e e 0 C) K Ca Sc Ti V Cr l\;n Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 0 0 0 0 0 0 e e e 0 Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 0 e e 0 0 0 (!) 0 0 e e (!) 0 Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 0 e e 0 0 0 0 (!) 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf 0 e 0 0 La Ce Pr Nd Pm Dy Ho Er Tm Yb Lu 0 0 Sm 101 Gd I Tb 0 - 60 -

TIN DIOXIDE 14 M HN0 40(TD0/14N) 3

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 e 0 K Ca Sc Ti V Cr !',;n Fe Co Ni Cu Zn Ga Ge As Se Br 0 (!) ~ ~ C, ~ 0 0 C) 0 e e 0 Rb Sr y Zr Nb Mo •re Ru Rh Pd Ag Cd In Sn Sb Te I ~ ~ 0 e e 0 C) ~ 0 ~ e e ~ 0 Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At ~ 0 C) 0 e C, 0 0 ~ 0 0 0 Fr Ra Ac Th Pa u Np Pu Arn Cm Bk Cf 0 e La Ce I Pr Nd Pm Sm Dy Ho Er Tm Yb Lu Gd I Tb Or 01 ~ - 61 -

cpm

105

65 Zn bremsstrahlung

IRRADIATED SAMPLE (MOLLUSK)

MINERALIZATION + 0.1 M HN03

TOO + coo

0 0.5 15 E y (M eV)

Figure 8 - - 62 -

3.10 Titanium phosphate(~

3.10.1 lVfaterial

Acid titanium phosphate for chromatographic applications (Abedem TiA 50-100 S.E.R.A.I., Belgium) was used. The preparation and properties of the material are described in reference (41).

~.10.2 Tracer_experiments

Carried out in the following media:

a) 1 M H so ( 34 ions): table 41 (TPH/1S) 2 4 b) 6 1\/] HCl (38 ions): table 42 (TPH/6 Cl)

c) 6 NT HCl0 (18 ions): table 43 (·rPH/6P) 4 d) 7 ]'I_[ HN0 ( 4 1 ions): table 44 (TPH/7N) 3

3.10.3 Applications

TPH was used with CDO to determine Cs, Sr and ~b in soil samples. The irradiated sample ( 50 mg) in 5 cc of 0.1 lV- HN0 were passed on CDO (removal of major radioactivities), 3 86 134 brought to 7 N' HN0 and passed on TPH ( ~band Cs 3 85 are measured on the column, sr in the eluate).

3.10.4 ~eferences

41) J.Piret, J.Henry, G.Balon and C.Beaudet: Bull.Sec.Chim. France 12 3590 (1965). - 63 -

42) Yvonne K.Jones; Report BNWL-270.

43) C.B • .Amphlett; Geneve 1968 session C9 pp. 271.

44) G.Balon, C.A.Beaudet and J.Piret; Euronuclear, 85 (1966).

45) G.Alberti, G.Giammari and G.Grazzini-Strazza; J.Chromatog. 28, 118 (1967).

46) I.J.Gal and O.S.Gal; Geneve 1958 session C9 pp. 468. - 64 -

TITANIUIVI PHOSPHATE .4 1 ( 'T'PH / 1 S) 1 1V' H so 2 4

Li Ba B C N 0 F

Na Mg Al Si p s Cl ~ C) K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br e e 0 0 C, 0 0 e Rb Sr y Zr Nb Mo •re Ru Rh Pd Ag Cd In Sn Sb Te I e 0 e e 0 () CJ ele 10 Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi P1At 0 ~ e e 0 00 0 0 i -IFr Ra Ac Th Pa u Np Pu Am Cm Bk Cf I e 01 Lu La Ce I Pr Nd Pm Sm Eu I Gd Tb Dy Ho Er Tm Yb 01 101 I 0

TITANIUM PHOSPHATE 42(·rPH/6Cl) 6 M HCl

Be B C i N o I F Li I

Na I 1;g Al Si p s Cl (2)1 C) K Ca Sc i Ti V Cr rr.n i ?e I Cc Ni Cu Zn Ga Ge As Se Br e .- 0 OOO 0 I Rb Sr I Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb "Te I e 0 0 e (.___,,'1 (J 0 0 0 0 0 0 0 Cs Ba R.E. Hf Ta N Re Os Ir Pt Au Hg Tl Pb Bi Po At e ~ 0 () e ~ 0 0 O' 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf I e () I La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

0 0 I 0 - 65 -

TITANIUM PHOSPHATE 43(TPH/6P) 6 IV: HCl0 4

T· ~1 Be B C i N I O I F I l Na I i;g Al Si p s Cl ol () K Ca V Gr Zn Ga Ge As Se Br Sc f Ti l,'.n I ?e I Co Ni I Cu

~ el 0 o~o I 0 ~ y In Sn Sb Te I Rb Sr I Zr Nb Mo Tc Ru Rh Pd Ag Cd e 0 e e·e 0 0 e 0 0 ~ e 0 Cs Ba R.E. Hf Ta N Re Os Ir Pt Au Hg Tl Pb Bi Po At e ~ 0 () e 0 0 0 0 0 Fr Ra Ac --Th Pa u Np Pu Am Cm Bk Cf e 0 I La Ge Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

0 0 I 0

TITANIIDn PHOSPI-iATE 44(TPH/7N) 7 l\iT HNO 3

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 ~ Br K Ca Sc Ti V Gr Win Fe Co Ni Cu Zn Ga Ge As Se ~ ~ 0 0 ~ 0 0 0 0 Rb Sr y Zr Nb Mo •re Ru Rh Pd Ag Cd In Sn Sb --Te I e 0 0 ~ ~ e 0 0 e 0 0 ~ e 0 Pb Bi Po At Cs Ba R.E. Hf Ta w Re I Os · Ir Pt Au Hg Tl e 0 0 () ~ 010 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf "e 0 Dy Ho Er Tm Yb Lu La Ge I Pr Nd Pm Sm Eu I Gd I Tb

01 01 I I 0 - 66 -

3. 11 Zirconium phosphate ( ZPH)I

3.11.1 Materials

Two commercial products for chromatographic applications (ZP BioRad, USA, Zirconium phosphate "Applied Research SPRL'; Belgium) were used.

3.11.2 Tracer_experiments

Carried out in the following media:

a) 1 M H so on Bio'Rad (35 ions): table 4.5 (ZPH BioRad/1 S) 2 4 b) 6 M HCl on BioRad (32 ions): table 46 (ZPH BioRad/6Cl)

c) 6 M HCl on Appl.Res.(33 ions): table 47 (ZPH Appl.Res./6Cl)

d) 6 M HCl0 on BioRad (33 ions): table 48 (ZPH BioRad/6P) 4 e) 6 M HCl0 on Appl.Res.(34 ions): table 49 (ZPH Appl.Res./6P) 4 f) 7 M HN0 on BioRad (36 ions): table 50 (ZPH BioRad/7N) 3 g) 7 M HN0 on Appl.Res.(34 ions): table 51 (ZPH Appl.Res./7N) 3

3.11.3 Applications

ZPH has long been used for fission products separation, and much literature is available. No application has yet been made by us. - 67 -

3.1 ~. :J. ;:,pfer~n-;es

47) I.Gal and A.Ruvarac; Bull.Boris Kidrich Institute of Nuclear Science Vol. 1l N°1-P/267 (1962).

4E) Y.Cllivier and T.Kikindai; 8.~.Acad.Sci.Paris T.262, 10-1-66, P 176.

19) LBaetsle and D.Huys; J.Inorg.Nucl.Chem. £l., 131 (1961).

10) t.qaetsle; J .Inorg.Nucl.Chem. Q, 271 (1963).

51) 8.B.Amphlett, Ii.A.Mc Donald and D.H.T?.edman; ~.Inor?.~ucl.Chem. ~' 220 (1958).

52) ~. 1-<.A:t1prlett, L.A.Mc Donald and D.H. Redman; J.Inorg.Nucl.Chem • .l.Q., 69 (1959).

53) G.Alberti, A.Cont~; ~ner~ia Nucleare 2, 1 (1962).

54) :;;.P.Horwi tz; J.Inorg.Nucl.Chem. 28, 1469 (1966).

55) N.J.~raeck, lV'.E.Kussy and J.E.Rein; Anal.Chem. 35, ?086 (1963).

56) K.A.Kraus and H.O.Phillips; J.An1.Chem.S0c. 78, 694 (1956).

57) N.Michael, W.D. 7 letcher, ~.J.Bell, D.E.Croucher; -qeport CVNA-135. - 68 -

58) G.H.Nancollas; Report AERE C/R 2755.

59) V.Vasely and V.Pekarek; J.Inorg.Nucl.Chem. 25, 697 (1963).

60) B.E.Chidley and J.R.Grover; Report AERE-R-3357.

61 ) J • Van R. Smit , J • J • Jacobs and F . C • W. Pumrri e r,r : Report AERE-R-4245.

62) J.Nunes da Costa and M.A.S.Jeronimo; J.Chromat. 2, 456 (1961).

63) H.O.Phillips, F.Nelson and K.A.Kraus; Report ORNL 2159.

64) T.A.Carlson, D.J.Coombe, J.S.Johnson, H.O.Phillips and K.A.Kraus; Report ORNL 2004.

65) V.S.Slobin; Radiokhimiya 4, 54, (1962).

66) C.B.Amphlett; Geneva (1958) P/271, Session C-9.

67) Y.J.Gal and o.S.Gal;

Geneva (1958), P 68 1 Session C-9. 68) N.Michael, R.F.Sterling and P.Cohen; Nucleonics, 62 (Feb. 1963). - 69 -

69) S.Ahrland and K.E.Holmberg; Geneva (1964), Session Z-7, p. 609.

70) H.O.Phillips, K.A.Kraus and T.A.Carlson; qeport ORNL 2386.

71) E.Merz; Z. fur Elektrochemie 63, 288 (1959).

72) H.J.Riedel; Nuckleonik-Band 5, heft Z (Feb. 1963).

73) R.Platzer, J.Hure and R.Bittel; Geneva (1958), P-1155, Session C-9.

74) T.A.Carlson, D.J.Coombe, ,J.S.Johnson, H.O.Phillips and K.A.Kraus; Report ORNL 2057.

75) J.Van R.Smit; Report AERE-R-4006.

76) M.J.Riedel; • Report JUL-32-RC-Janv. 62.

77) J.Albertsson; Acta Chemica Scandinavia 20, 1689 (1966).

78) Zsinka Laszlo, Szirtes Laszlo, ;VJagyar Kem, Lapja 21, 5V5 ( 1966). - - - 79) S.Ahrland and J.Albertsson; Acta Chem.Scand • .:!..§., 8 (1964). - 70 -

80) E.M.Larsen and D.R.Vissers; J.Phys.Chem. 64, 1732 (1960).

81) G.H.Nancollas and V.Pekarek; J.Inorg.Nucl.Chem. 27, 1409 (1965).

82) A.M.Trofinov, G.N.Covalev and V.G.Pitalev; Radiokhimiya 9, 409 (1966).

83) L.Baetsle, D.Van Deyck, D.Huys and A.Guery; Report BLG-267.

84) P.A.Baron; French Patent l, 344, 497 (1963).

85) J.R.Grover and B.E.Chidley; The Industrial Chemist, January 1963.

86) Von Karl-Heinz Konig, H~Shafer and Fritz Hoyer; Gerard Rassl. Radiochimica Acta, l, 213 (1963). - 71 -

ZIRCONIUM PHOSPHATE (BioRad) 45(ZPH BioRad/1S) 1 M H so 2 4

Li Be B I F C i N I 0 I I I Na I t;g Al Si p s Cl ol K Ca Sc I Ti V Cr lr.n I ?e I Co Ni Cu Zn Ga Ge •As Se Br 0 () 0 0(!)0 0 I C) Rb Sr I Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I e 0 e e 0 0 ~ 0 (!) () 0 Cs Ba R.E. Hf Ta w Re Os Ir Pt Au l:ig Tl Pb Bi Po At e. 0 e e 0 0 01 0 0 Fr Ra Ac Th Pa -u Np Pu Am Cm Bk Cf I I e 0 i I Ho Er Tm Yb Lu La Ce Pr Nd Pm Sm Eu Gd Tb I Dy 0 0 I 0

ZIRCONIUM PHOSPHATE (BioRad) 46(ZPH BioRad/6Cl) 6 Iv! HCl

Li I Be B I F C i N I 0 I I I I I Na I 1;g Al Si p s Cl ol K Ca Sc I Ti V Cr J.'.n I ?e Co Ni I Cu Zn Ga Ge -As Se Br 0 ~ 0 00 0 I 0 0 Rb Sr I Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I C, 0 e 0 0 0 0 0 0 0 0 0 0 Cs Ba R.E. •Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At e 0 0 () e ~ 0 0 01 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

I I e 0 l La Ce Pr Nd Pm Sm Eu Gd Ho Er Tm Yb Lu Tb IDy 0 0 I 0 - 72 -

ZIRCONIUM PHOSPHATE (Appl.Res.) 6 M HCl 47(ZPH Appl.Res./6Cl)

Li Be B C i N I 0 I F I I I Na I 1;g Al Si p s Cl 0 C) K Ca Sc ' Ti V Cr rr.n I Fe Cc Ni Cu Zn Ga Ge As Se Br 0 0 00 0 0 0 Rb Sr I Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I (!) 0 () () 0 0 0 0 a 0 Cs Ba R.E. Hf Ta N Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 '9 e 0 0 01 0 0 Fr Ra Ac Th Pa -u Np Pu Am Cm Bk Of - I I e La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

0 0 I 0

ZIRCONIUM PHOSPHATE (BioRad) 6 M HCl0 48(ZPH BioRad/6P) 4

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 e K Ca Sc Ti V Or Mn Fe Co Ni Cu Zn Ga Ge As Se Br () 0 0 0 0 0 0 Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 e e C, 0 0 0 0 0 0 0 ~ 0 Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 e e e 0 0 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm I Bk Of e ~ La Ce I Pr Nd Pm Sm Eu I Gd I Tb Dy Ho Er Tm Yb Lu

01 01 I 0 - 73 -

ZIRCONIUN PHOSPHATE (Appl.Res.) 49(ZPH App1.Res./6P) 6 M HCl0 4

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 C) K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br (!) 0 0 0 0 0 C) Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn. Sb Te I 0 0 C) () 0 e 0 0 e (!) Cs Ba R.E. Hf Ta w Re I Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 e (!) () 00 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf e 0 Dy Er Tm Yb Lu La Ce Pr Nd Pm Sm Eu Gd I Tb Ho

0 0 i 0

ZIRCONIUM PHOSPHATE (BioRad) 50(ZPH BioRad/7N) 7 M HN0 3

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 e K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 0 0 0 Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 e e (!) e 0 0 0 0 ~ ~ 0 Cs Ba R.E. Hf Ta w Re I Os Ir Pt Au Hg Tl Pb Bi Po At () 0 0 e e () 010 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf e 0 La Ce I Pr Nd Pm Sm Eu Gd I Tb Dy Ho Er Tm Yb Lu

o/ 0 I 0 - 74 -

ZIRCONIUM PHOSPHATE (Appl.Res.) '1(7'"'HJ .:.J.t' •• ;,:pp~ l .11es•) ../'7•T) -'~ 7 rt HN0 3

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 C) K Ca Sc Ti V Gr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 Rb Sr y Zr Nb Mo 're Ru Rh Pd Ag Cd In Sn Sb Te I 1 0 0 ~ (} 0 C) 0 0 C) 0 Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At (!),C) 0 e e 0 0 0,0 0 0 Fr Ra Ac Th Pa u Np Pu Am. Cm Bk Cf ~ 01 La Ce I. Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu of 10 0 - 75 -

[3.12 Stannic Phosphate (SPH)

3 • 1 ? • 1 ~,'Rt P. ri. al

jormnercial SPH for chromatographic applications (AbedeIT Sn 50-100 S.E.R.A.I. Belgium) was used.

3.12.2 Tracer_experiments

Carried out in the following media:

a) 1 M H so (33 elements): table 52 (SPH/1S) 2 4 b) 6 IVl HCl0 (33 elements): table (SPH/6P) 4 53 c) 7 M HN0 ( 3-4 elements): table (SPH/7N) 3 54

3.12.3 Applications

The behaviour of tin phosphate seems less interesting than that of the Zr and Ti phosphate, at least in the limited amount of experiments done. No practical application was attempted.

3.12.4 References

87) J.Piret, J.Henry, G.Balon and C.Beaudet; Bull.Soc.Chimique de France 11,, 3590 (1965).

88) Yasushi Inove; J.Inorg.Nucl.Chem. 26, 2241 (1964).

89) Yvonne M.Jones; Report BNWL 270.

90) E.Merz; Report CEA-tr. A-715. - 76 -

STANNIC PHOSPHATE 52(SPH/1S) 1 M H so 2 4

Li Ba B C N 0 F

Na Mg Al Si p s Cl 0 () K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 ~ 0 0 C) Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I e 0 ~ ~ 0 () ~ () C) 0 Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At e (!> ~ ~ ~ 0 0 0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm I Bk Cf e ~ La Ce I Pr Nd Pm Sm Dy Ho Er Tm Yb Lu ~I ~I" ITb I ~

STANNIC PHOSPHATE j 53(SPH/6P) 6 l\fT HCl0 4

Li Be B C i N I 0 I r I I Na 1;g I Al Si p s Cl 0 () K ~a Sc j Ti V Cr l,'.n I Fe I Co Ni Cu Zn Ga Ge As Se Br ~ 0 OOO 0 I ~ Rb Sr I Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 o/ 0 C) 0 () 0 ~ 0 0 Cs Ba R.E. Hf Ta N Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 () ~ ~ 0 0 0 0 0 Fr Ra Ac Th Pa u Np Pu Arn Cm Bk Cf

I I e I La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 0 0 0 - 77 -

STANNIC PHOSPHATE 7 JIil HN0 54(SPH/7N) 3

Li Ba B C N 0 F

Na Mg Al Si p s Cl 0 0 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 ~ Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I (!) 0 0 e 0 0 0 0 0 0 Cs Ba R,E, Hf Ta tl Re I Os Ir Pt Au Hg Tl Pb Bi Po At ~ 0 0 ~ ~ 0 010,0 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf e ~ La Ce I Pr Nd Pm Sm Eu / Gd I Tb Dy Ho Er Tm Yb Lu

01 01 1 0 - 78 -

13. 1 3 Cupric sulphide ( c~

3 • 1 3 • 1 JI/I at e rial

Reagent grade cupric sulphide (L.R., BDH, United Kingdom) was used. 15 ml of the eluent were usea for the preliminary washing of the prepared column, to remove traces of sul~hate formed by air oxidation of the sulphide.

3.13.2 Tracer_experiments

Carried out in the following media:

a) 1 M H so (33 ions): table 55 (CUS/1S) 2 4 b) 6 M HCl (34 ions): table 56 (CUS/6Cl)

c) 6 M HCl0 (34 ions): table 57 (CUS/6P) 4 d) 7 M HN0 (34 ions): table 58 (CUS/7N) 3

3. 13. 3 Applications

CDS is fairly selective for retaining Cu, .Ag, Au, Se in most media. Its behaviour is similar to that of CuCl (see 3.14). - 79 -

CUPRIC SULPHIDE 55(CUS/1S) 1 M H so 2 4

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 e 0 e Rb Sr y Zr Nb Mo I Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 0 0 e 0 ~ 0 C) Cs Ba R,E. Hf Ta VI Re Os Ir Pt Au Hg Tl Pb Bi Po At 01 0 0 0 0 0 ~,O e C) Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf 0 01 La Ce I Pr Nd Pm Sm Eu / Gd Tb Dy Ho Er Tm Yb Lu 01 01 I 0

CUPRIC SULPHIDE 56(CUS/6Cl) 6 lVI HCl

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 K Ca Sc Ti V Cr l\;n Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 e Rb Sr y Zr Nb Mo I Tc Ru Rh Pd Ag Cd In Sn Sb Te I I " 0 0 0 0 0 I (!) 0 e 0 ~ Cs Ba R.E. Hf Ta VI Re Os Ir Pt Au Hg Tl Pb Bi Po At 010 0 0 0 0 0 0,0 e C) Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

I 0 01 La Ce I Pr Nd I Pm Sm Eu ! Gd Tb Dy Ho Er Tm Yb Lu I o! I 101 I 0 - 80 -

CUPRIC SULPHIDE 57(CUS/6P) 6 lVl HGl0 4

Li Be B C i N I 0 I r

I I Na i;g Al Si p s Cl ol K Ca Sc I Ti V Cr rr.n I Fe Co Ni Cu Zn Ga Ge As Se Br . 0 0 00 0 e 0 e Rb Sr I Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 0 0 e 0 () 0 e Cs Ba R,E, Hf Ta N Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 0 0 () 0 0 ~I e ~ Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

0 I ' I 0 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 0 0 0

CUPRIC SULPHIDE 58(CUS/7N) 7 M HN0 3

Li Be B C i N I 0 I r

I I Na• i;g Al Si p s Cl ol K Ca Sc I Ti V Cr rr.n I Fe I Co Ni Cu Zn Ga Ge As Se Br 0 0 OOO 0 0 I 0 .Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I ,0 0 0 0 0 C> 0 0 0 e Cs Ba R,E, Hf Ta N Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 0 0 0 0 0 01 0 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf

I 0 0 I La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

0 0 I 0 - 81 -

3.14 Cuprous chloride (cue)

3.14.1 Material

Reagent grade cuprous chloride ("Analar", BDH, United Kingdom) was used. 15 ml of eluent were used for the preliminary washing of the prepared columns, to remove traces of cupric chloride formed by air oxidation of cuprous chloride.

3.14.2 !racer_experiments

Carried out from the following media:

a) 1 1VI H so elements): 2 4 (34 table 59 (CUC/1S) b) 6 M HCl0 4 (36 elements): table 60 ( CUC/6P) c) 6 M HF (36 elements): table 61 (CUC/6F)

3.14.3 Applications

CUC mainly differs from CUS by a different in acid media. It was used for the determination of copper: 64 a) in b0nes (15 mg): from 7 cc of 1 1VI H so ( cu 24 2- 4 measured on the column, Na removed, a partial precipitation of Ca so did not affect the separation). 4 - 82 -

b) in aluminium (50 mg): frorE 5 cc of 6 H';l0 re 1 64 241 5r; 7 72;, ( Cu measured on the column, Na, f,n, 1ra eluted). - 83 -

CUPROUS CHLORIDE 59(CUC/1S) 1 M H SO 2 4

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 C) K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 e 0 e 0 Rb Sr y Zr No Mo I ·re Ru Rh Pd Ag Cd In Sn Sb Te I

00 0 0 I I~ 0 0 e IC) Po At Cs Ba R.E. Hf Ta ,'J;e 1? fr Pt Au Hg Tl Pb Bi 01 0 0 0 ()010,01 e e Fr Ra Ac Th Pa u Np I Pu Am Cm Bk Cf

I 0 01 Lu Pm I Sm Eu I Gd Tb Dy Ho Er I Tm Yb La IClld i 101 : l 0

r_;UPROUS CHLOUI f)/; riO(CUC/6P) 6 F H;l0 4

N 0 F Li I Be B C _J_ p Na J\lg Al Si s Cl 0 0 I As Se Br K Ca Sc Ti V Cr Tu:n Fe Co Ni Cu Zn Ga Ge 0 0 0 0 0 e 0 e1e Sb Rb Sr y Zr No Mo I ·re I Ru Rh I Pd Ag Cd In I Sn Te I I 0 0 0 0 10 I e ·O 0 ~ (!) 1e Tl Pb Bi Po At Cs Ba R.E. Hf Ta w Re I Os Ir Pt Au H& 0 (_) 0 0 ~ e OiO,O e C} Fr Ra Ac Th Pa u Np ! Pu Am Cm Bk Cf

i () C)! I Yb Lu Nd I Pm Sm Eu I Gd Tb Dy Ho Er Tm La IOI P, I I 101 0 - 84 -

QUPROUS CHLORIDE 61(CUC/6F) 6 M HF

Li Be B C ; N I O I P I I Na 1;g Al Si p s Cl 0 0 K Ca I Sc \ Ti V Cr Win I Fe Co Ni Cu Zn Ga Ge As Se Br ,~ 0 0 10 0 e 0 e e Rb Sr I Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 0 0 e 0 0 0 0 e Cs Ba R.E. Hf' Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 e 0 0 0 0 0 01 e ~ Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf I I 0 C) I La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

e e I e - 85 -

3.15 Cadmium sulphide (CDS)

3 • 1 5 • 1 Material

Reagent grade CdS ("L.R.", B.D.H., United Kingdom) was used.

3.15.2 Tracer_experiments

Carried out from 6 N HF (36 elements): table 62 (CDSl6F).

3.15.3 Applications

The behaviour of CDS does not seem particularly interesting. Among all materials which were tested, it was the only one which retained . No practical application was made.

3.15.4 References

91) Harold O.Phillips, Kurt A.Kraus; J.Am.Chem.Soc. 85,481 (1963). - 86 -

CADMIUM SULPHIDE 62(CDS/6F) 6 M HF

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 0 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 ~ 0 e ~ Rb Sr y Zr Nb Mo ·re Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 0 ~ e 0 ~ 0 1e Cs Ba R,E, Hf Ta VI Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 e 0 0 0 e ~,Q 0 e Fr Ra Ac Th Pa u Np Pu Am Cm I Bk Cf C) I I I La · Ce I Pr Nd Pm Sm Eu I Gd Tb Dy Ho Er Tm Yb Lu I e1 1e1 I e - 87 -

3.16 Lead fluoride (LDF)

3.16.1 Material

Reagent grade PbF ("L.R.", grade, BDH, United Kingdom) was used.

3.16.2 Tracer_experiments

Carried out in the following media:

a) 1 M H so (32 ions): table 63 (LDF/1S) 2 4 b) 6 M HF (32 ions): table 64 (LDF/6F)

3.16.3 Applications

LDF does not seem particularly interesting. No application was done. - 88 -

LEAD FLUORIDE 63(LDF/1S) 1 M H so 2 4

Li Be B C N 0 F

Na I Mg Al Si p s Cl 0 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br ~ 0 0 0 0 0 C, Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 e ~ 0 ~ () 0 0 0 () Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 ~ ~ 0 0 0 0 0 e C) Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf ~ 01 La Ce I Pr Nd Pm Dy Ho Er Tm Yb Lu Sm !01 Gd I Tb ~I I 0

LEAD FLUORIDE 64(LDF/6F) 6 M HF

Li Be B C ' N 0 I F I I I Na 1:g Al Si p s Cl ol K Ca Sc I Ti V Cr rr.n I Fe I Co Ni Cu Zn Ga Ge As Se Br ~ (!) o~o 0 I 0 Rb Sr I Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 e) et 0 0 e (!) 0 () 0 Cs Ba R.E. Hf Ta N Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 ~ e ~ 0 0 0 ~ 0 e 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf 0 I La. Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

e e I e - 89 -

13 .17 Cerous oxalate ( COX )

3 • 1 7 • 1 Material

Technical grade cerous oxalate (B.D.H., United Kingdom), was used.

3.17.2 Tracer_experiments

Carried out in the following media:

a) 1 M H so (37 ions): table 65 (COX/1S) 2 4 b) 6 M HF (39 ions): table 66 (COX/6F)

3.17.3 Applications

The following applications were done:

a) Determination of Cu and Zn in leaf tissues. The sample in 6 M HF, was passed on columns of COX . 24 56 and HAP in series. The first retains Na and Mn, 42 64 69 the second retains K. cu and mzn are determined in the eluate.

b) Determination of Co and Cs in soils (see 3.2.3). - 90 -

CEROUS OXALATE 65(COX/1S) 1 M H SO 2 4

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 K Ca Sc Ti V er Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 0 Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 0 0 0 0 e 0 0 0 e 0 Cs Ba R,E, Hf Ta w Re I Os Ir Pt Au Hg Tl Pb Bi Po At 0 e (!) 0 0 0 00 0 (9 (!) Fr Ra Ao Th Pa u Np Pu Arn Cm Bk Cf (!) (9 La Ce Pr Nii Pm Sm Eu Gd Tb .Dy Ho Er Tm Yb Lu ~ ~ ~

CEROUS OXALATE 66(COX/6F) 6 M HF

Li Be B C ' N I O I F

I I Na ~jg Al Si p s Cl e 0 K Ca Sc Ti V er rr.n \ Fe Co Ni Cu Zn Ga Ge As Se Br 0 le () ec, 0 0 (!) 0 Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 e e 0 0 0 (!) e e e 0 ~ 0 Cs Ba R,E, Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 e e e 0 0 0 0 0 e ~ Fr Ra Ao Th Pa u Np Pu Am Cm Bk Cf ~ e La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu e e e - 91 -

3.18 Anion exchange Resin (AE~

3 • 1 8 • 1 Mat e rial

Dowex 1 x 8 100-200 Mesh (BioRad, USA) was used. Preliminary conditioning was done with 15 ml of eluent.

3.18.2 Tracer_experiments

Carried out in the following media:

a) 6 M HCl (33 ions): table 67 (AER/6Cl)

b) 6 M HCl0 (32 ions): tablP 68 (AER/6P) 4 c) 6 M HF ( 33 ions): table f;9 (AER/6F)

d) 7 M HN0 (32 ions): table 70 (AER/7N) 3

3.18.3 Applications

Anion exchange resins are at the base of many re~orted separation schemes. They couple very well with inorganic exchangers as their behaviour is often different. They afford therefore a means for removing elements which are not affected by most inorganic exchangers tested in the present work, such as Zn. No application in connection with inorganic exchangers was yet done by us. - 92 -

ANION EXCHANGE ~ESIN 67(AER/6Cl) 6 1\/r" HCl

Li B2 B C i N o I F-- I

Na I l\7g Al Si p s Cl ol Cu Zn Ga Ge As Se Br K Ca Sc j Ti V Gr rr.n I ?e I Cc Ni 0 0 oeo e I 0 Rb Sr y Zr Tc Ru Rh Pd Ag Cd In Sn Sb Te Nb IM 0 I I 0 0 ~ ~ ~ 0 ~ e e e Ca Ba R.E. Hf Ta N Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 0 ~ e e e 01 e e Fr Ra Ac Pa u Np Pu Am Cm Bk Cf I Th I I ~ 0 I La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

0 0 I 0

ANION EXCHANGE RESIN 68(AER/6P) 6 :f,,1! HClO 4

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 K Ca Sc Ti V Gr l\fo Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 Rb Sr y Zr Nb Mo I Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 0 0 ~ 0 0 e (!) Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg. Tl Pb Bi Po At 0 0 0 0 (!) e 0 Q,Q ~ 0 Fr Ra Ac Th Pa u Np Pu Am Cm I Bk Cf

0 I La Ge I Pr Nd Pm Sm Eu I Gd Tb Dy Ho Er Tm Yb Lu

OJ ol I 0 - 93 -

ANION EXCHANGE RESIN 69(AER/6F) 6 M. HF

B I F Li I Be C I N I 0 I I I I Na I 1;g Al Si p s Cl ol K Ca Sc I Ti V Cr lln i Fe I Co Ni Cu Zn Ga Ge As Se Br ~ 0 OOO 0 0 Rb Sr I Y Zr Nb Mo Tc Ru Rh Pd Ag - Cd In Sn Sb Te I 0 0 ie e ~ 0 e CJ Ca Ba R.E. Hf Ta N Re Os Ir Pt -Au Hg Tl Pb -Bi Po At 0 ~ e e e e e e 01 e ~ Cf Fr Ra Ac Th Pa u Np Pu Am I Cm Bk I I 0 C, I La Ce Pr Nd Pm Sm Eu Gd Tb I Dy Ho Er Tm Yb Lu I e e I e

ANION EXCHANGE RESIN 70(AER/7N) 7 W HN0 3

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 K Ca I Sc Ti V Cr rr.n Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 0 0 0 0 0 C) Cs Ba R.E. Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po --At 0,0 C) 0 ~ e 0 e,o e 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bit Cf

I ~ I La Ce I Pr Nd j Pm Sm Eu I Gd Tb Dy Ho Er Tm Yb Lu o! I C)I C) - 94 -

3.19 Cation Exchange Resin (CER)I

3.19.1 Material

Dowex 50 x 8, 100-200 mesh (BioRad, USA) was used. Preliminary conditioning was done with 15 ml of eluent.

3.19.2 Tracer_experiments

Carried out in the following media:

a) 6 lVf HCl (32 ions): table 71 (CE-q/6Cl)

b) 6 M HCl0 (11 ions): table 72 (CER/6P) 4 c) 6 M HF en ions): table 73 (CER/6F)

d) 7 lVf HN0 (32 i0ns) : table 74 (CER/7N) 3

3.19.3 Applications

The behaviour of cation exchangers in the experiments done is less interesting than that of the anion exchangers. No application in connection with inorganic exchan~ers was yet done by us. - 95 -

CATION EXCHANGE RESIN 71(CER/6Cl) 6 M HCl

Li Be B C N / 0 I F I Na 1jg Al Si p s Cl ol K Ca I Sc Ti V er r1~n I Fe Co Ni Cu Zn Ga Ge As Se Br 10 0 0 0 0 0 0 Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 0 0 0 0 0 0 '9 (!) Cs Ba R.E, Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 0 0 e 0 0 0 (!) 0 Fr Ra Ac Th Pa u Np Pu Am Cm Bk Cf 0 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 0 0 0

CATION EXCHANGE RESIN 72(CER/6P) 6 M HCl0 4

Li Be B C N 0 F

Na Mg Al Si p s Cl 0 K Ca Sc Ti V er Mn Fe Co Ni Cu Zn Ga Ge As Se Br e 0 0 ~ 0 0 0 Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 ~ 0 0 0 0 0 0 '9 Cs Ba R.E, Hf Ta w Re I Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 ~ 0 e ~ 010 ~ C) 0 Fr Ra Ao Th Pa u Np Pu Am Cm Bk Cf I e ~ La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ~ ~ ~ - 96 -

CATION EXCHANGE RESIN 73(CER/6F) 6 M HF

Li Be B C i N I 0 I F I I I Na Th;g Al Si p s Cl ol K Ca Sc I Ti V Cr Zn Ga Ge As Se Br C)IC)el Ni I Cu 0 ~ I I 0 Rb Sr I Y Zr Nb Mo Tc Ru Rh Pd Ag •Cd In Sn Sb Te I 0 0 0 ~ 0 0 0 ~ Cs •Ba R.E. Hf Ta N Re Os Ir Pt •Au Hg Tl Pb Bi Po At ~ e 0 0 0 0 0 01 ~ 0 Fr Ra -Ac Th Pa u Np Pu Am Cm Bk Cf I I 0 0 ! La Ce Pr Nd Pm Sm Eu Gd Ho Er Tm Yb Lu Tb IDy 6t 6t I -- CATION EXCHANGE RESIN 74(CER/7N) 7 M HN0 3

Li Ba B C N 0 F

Na Mg Al Si p • s Cl 0 ·-1--- K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 0 0 0 0 0 0 0 Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 0 0 C) 0 0 0 0 0 0 ~ Cs Ba R.E. Hf Ta w Re I Os Ir Pt Au Hg Tl Pb Bi Po At 0 0 0 0 (!) (!) 010 0 0 0 Fr Ra Ac Th Pa u Am Cm Bk Cf Np I Pu (!) I La Ce I Pr Nd Pm Dy Ho Er Tm Yb Lu 101 Sm 101 Gd I Tb 0 - 97 -

4. AKNOWLEDGN.iENTS

The authors gratefully aknowled~e the technical assistance of Ludovico Bianchi and Mirella Bianchi. Thanks are also due to Carla Biglincca, Tommaso Candelieri, Marc Cuypers, Giampaolo Guzzi and Francis Mousty for suggestions and criticism. TABLE I - Manufactures of ionic precipitates used in this work.

Ionic precipitate -I

1 Scro. Carlo Erba I HMD, AMD, SDO, HAP, CDO, TDO Via Imbonati, 24 - MILANO - Italy '-· ·-··------~-- --·----~- -- B.D.H. International Ltd I cus, cue, CDS, LDF, cox Poole, Dorset, United Kingdom I

BioRad Laboratories !1 I co ZPH, A.ER, CER CX) 32nd and Griffin Ave, RICHMOND, California, U.S.A. I Applied Research s.p.r.l. I PAA, ZPH I 29 Hue Herkaliers, BRUXELLES ·8, Belgium ! I M.Woelm ' AAO L_Post Office Box 840, Eschwege, Wester Germany

S.E.R.A.I. TPH, SPH I 1 I 1091 Chaussee d Alsemberg, BRUXELLES, 18, Belgium TABLE II. Radiotracer used and carrier concentrations.

RADT01rRACER CONCENTRATION RADIOTRA0ER CONCENTRATION uglcc ug/cc

F-18 (-I) 0.02 Ag-110m (I) 0.02 Na-22 (I) 0.02 Cd-11S (II) 5 Al-28 (III) 1 Tn-114m (III) 0.06 Sn-117m (*) 10-40 l\''.o-27 (II) 1 ' ' "P-~2 (V) 0.02 Sb-124 ( *) 0.05 S-35 (VI) 0.02 Te-1 31 (IV) 1 5 Cl-38 (-I) 0. ,1 I-131 (-I) 0. 1 K-42 (I) 10 Cs-134 (I) 0 .02 8a-4'7 (II) LlOO Ba-131 (IT) 30-100 Sc-46 (III) 0.0? Ta-110 (III) 0.02 Ti-51 (TV) 1 Ce-141 (III) 0.2 V-52 (*) 0.005 Nd-147 (III) 0.1-0.5 Cr-51 (III) 0.2 -Pyn-1 51 (III) carrier free Il'"n-S.{ (II) 0.02 Eu-152;Bu154 0.02 (III) Fe-50 (III) 20 Tb-160 (III) 0.01 Co-60 (II) 0. O5 Yb-16° (III) 0.01 l\Ti-65 (II) 20 Lu-177 (III) 0.002-0.01 Cu-64 (II) o.8 Hf-181 (IV) 0.01 Zn-65 (II) 2 Ta-182 (V) 0.01 Ga-72 (III) 0.2 N-185 (VI) 2 Ge-77 (IV) 20 lte-186 (VII) 0. 1-1 lls-76 (*) 0.2 Os-191 (IV) 0.05-0.1 Se-75 (IV) 0.2 Ir-192 (III) 0.001 Br-82 (-I) 0.05 Pt-199 (IV) 2-3 Pb-86 (I) 1 Au-198 (III) 0.02-0.1 Sr-85 (II) 10 Hg-203 (II) n.05 Y-90 (III) 0.05 Th-2~3 (IV) 0. 1 ?ir-95 (IV) 1-10 Pa-233 (V) carrier free l'Tb-95 (V) 0.0? U-239 (VI) 0.02-0.1 }"o-99 (VI) 0.2 Np-13g (IV) carrier free Tc-99m(VII) carrier free Ru-103(IV) 0. 1 Pd-103(II) 1 (*) Unc~rtain . T\~lE III. Surr~ary of exr,erirrents done and keys of the code used in indexing the tables. The figures are the n1lr!lber of ion, whose behaviour was tested for the particular couple material/medium.

o. 1.1,: 0. 1!.'. H' 1M H.' 11': 1M ON' rn l 6:11'. 6~ 1 6M 7M I 71,• 1 121,: 1411'. ¥.EDIL'1•' HH03 HNO HCl HN0 HN03 HC10 HCl04 H so HCl HCl , HF I HCl HCl HN03 '!'01' a.L bi>- 3 3 4 2 4 HNo 3 I rI.No 3 60°C 90°c oooc 90°c ' o. rn O. 1N 1Cl 1N 1N 1P 1P 1S 6Cl 6P 7N 10Cl 12Cl 14N CODE ~ 6? l 7N 6ooc 90°c 90°c 1 , 90°c MATERIAL CODE

Hydrated llanganese Dioxide 1-:1\'D 61 50 51 52 51 265 Anhydrous ~anganese Dioxide AJI.I) 50 50 51 151 Silicon Dioxide SOO 49 49 98 Hydrated Antimony Pentoxide P.AP 36 51 58 36 53 32 60 53 379 Folyantimonic Acid FA.A 33 32 32 97 Antimony Tetroxiie ATO 36 36 36 36 36 36 216 Ca:l.!T'itun Oxide c~ 59 59 Ar::i :l. Aluminium Oxide A.AO 42 50 46 I 48 42 228 Tin Dioxide TOO 41 57 59 47 46 1 56 46 352 Titanium Phosphate TFH 34 38 38 I 41 1 51 Zi?"Conium Fhosphate (Bio Rad) ZPH 35 33 33 36 137 Zircor,ium Phosphate (Appl.Res.) 33 34 34 101 Stannic Phosphate SFH 33 33 34 100 Cupric Sulphide cus 33 34 34 34 135 Cuprous Chloride CUC 34 36 36 106 Ca:l.mi= Sulphide CDS 35 35 Lead P'luoride LD? 32 32 64 Cerous Oxalate cox 37 39 76 Anion Exchange Resin AER 33 32 33 32 130 l Cation Exchan~e Rerisin CE'l 32 33 32 1 30 33 I ! -- I l I l'OT.U 102 181 I 59 57 42 298 I 46 238 1294 345 445 j 496 A? I ~E 60 269 3010 I I NOTICE TO THE READER

All Euratom reports are announced, as and when they are issued, in the monthly periodical EURATOM INFORMATION, edited by the Centre for Information and Documentation (CID). For subscription (1 year : US$ 15, £ 6.5) or free specimen copies please write to :

Handelsblatt GmbH "Euratom Information" Postfach 1102 D-4 Diisseldorf (Germany)

or

Centrale de vente des publications des Communautes europeennes 37, rue Glesener Luxembourg

To disseminate knowledge is to disseminate prosperity - I mean general prosperity and not individual riches - and with prosperity disappears the greater part of the evil which is our heritage from darker times.

Alfred Nobel SALES OFFICES

All Euratom reports are on sale at thaoffices listed below, at the prices given on the back of th~ front cover (when ordering, specify clearly the EUR number and the title of the report, which are shown on the front cover). '

CENTRALE DE VENTE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES ~7. rue Glesener, Luxembourg (Compte cheque postal N° 191-90)

BELGIQUE - BELGI! LUXEMBOURG MONITEUR BELGE CENTRALE DE VENTE 40-42, rue de Louvain - Bruxelles DES PUBLICATIONS DES f BELGISCH STAATSBLAD COMMUNAUTES EUROPEENNES ~ Leuvenseweg 40-42 · Brussel 37, rue Glesener - Luxembourg ,

DEUTSCHLAND BUNDESANZEIGER Postfach - KOln l NEDERLAND FRANCE STAATSDRUKKERIJ , Christoffel Plantijnstraat - Den Haag, SERVICE DE VENTE EN FRANCE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES 26, rue Desaix - Paris 115•

ITALIA UNITED KINGDOM LIBRERIA DELLO STATO H. M. STATIONERY OFFICE Piazza G. Verdi, 10 - Roma P. 0. Box 569 • London S.E.l

EURATOM - C.I.D. 29, rue Aldringer Luxembourt