Solubility Behaviour of Antimony(Iii) and Antimony(V) Solids in Basic Aqueous Solutions to 300°C
Total Page:16
File Type:pdf, Size:1020Kb
AECL SOLUBILITY BEHAVIOUR OF ANTIMONY(III) AND ANTIMONY(V) SOLIDS IN BASIC AQUEOUS SOLUTIONS TO 300°C bY Robert J. Lemire’, Nancy B. Tosello’ and James D. HaWay ‘Reactor Chemistry Branch 2Analytical Chemistry Branch Chalk River Laboratories Chalk River, Ontario, KOJ 1JO 1999 December AFCL-12064 EACL COMPORTEMENT DE LA SOLUBILII% DES MAT&ES SOLIDES D’ANTIMOINE(III) ET D’ANTIMOINE(V) DANS LES SOLUTIONS AQUEUSES BASIQUES JUSQU’A 3oO°C Par Robert J. Lemire’, Nancy B. Tosello’ et James D. Halliday’ Resume Le role et l’importance des isotors 122Sb et ‘%Sb dans le transport d’activite a l’int&ieur du circuit primaire d’un reacteur CANDU D ont Cte associes a l’entree d’oxygene lors de l’arr& du reacteur. Dans le cadre d’un programme visant a reduire au minimum la liberation et la redeposition de ces isotopes, on a mesure la solubilite des sels et des oxydes d’antimoine(IIl) et (V) dans des solutions basiques a des temperatures allant de 25 B 3OOOC. Les result&s fournissent des renseignements sur la charge et la stabi1it.e en fonction de la temperature des esp&ces d’antimoine en solution et servent de guide dans la d&ermination des variations de la solubilite des mat&es solides d’antomoine en fonction de la temperature. Dans les solutions dans lesquelles l’oxydation de l’antimoine (Ill) en antimoine (V) est reduite au minimum, la solubilid du Sb203 augmente d’environ deux ordres de grandeur entre 25 et 200°C, puis se stabilise ou decroit legerement. A 250°C, dans les solutions oxydantes, on a trouve que le SbzOs.xHzO et l’antimoniate de sodium simple Btaient instables dans les solutions d’hydroxyde de sodium en ce qui concerne la mat&e solide, Na&H(H20)]2_&b206, qui presente une structure de pyrochlore. La solubilite de cet antimoniate de sodium partiellement protone croit de 25 B 2OOOC et decroit aux temperatures sup&ieures a 250°C. Ces variations de solubilite des mat&es solides d’antimoine(V) correspondent aux variations de la stabilite des esp&ces anioniques de la solution d’antimoine (SbOj ou Sb(OH);), m&me si la composition des mat&es solides contenant de l’antimoine dans les solutions oxydantes basiques depend fortement des cations et de leur concentration en phase aqueuse. On pourrait s’attendre a ce que tous les solides utilises dans ces experiences produisent des concentrations totales d’antimoine en solution 2 0,00005 moldm” dans n’importe quelle solution aqueuse neutre ou basique (en supposant qu’aucun se1 de sodium ne soit ajot@. Par consequent, dans les conditions du circuit primaire, la precipitation d’oxydes d’antimoine ou d’oxydes mixtes est peu probable. On ne peut pas Bcarter l’hypothese que le Sbz05 hydrate (en particulier la forme de pyrochlore) puisse Ctre moins soluble dans des solutions presque neutres, de faible force ionique. ’ Chimie des reacteurs 2 Chimie analytique Laboratoires de Chalk River Chalk River (Ontario) KOJ 1JO Dt?cembre 1999 ABCL-12064 ABCL SOLUBILITY BEHAVIOUR OF ANTIMONY(II1) AND ANTIMONY(V) SOLIDS IN BASIC AQUEOUS SOLUTIONS TO 300°C Robert J. Len-rim’, Nancy B. Tosello’ and James D. Halliday2 Abstract The major contributions of the isotopes 122Sb and ‘“Sb to activity transport in a CANDU@ reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(lll) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300°C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. ln solutions in which oxidation of antimony(lll) to antimony(V) is minimized, the solubility of Sb203 increases by about two orders of magnitude between 25 and 2OO”C, and then levels out or decreases slightly. At 25O”C, in oxidizing solutions, Sb2Os.xHzO and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na2,[H(H20)]2_2,Sb206, which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200°C and decreases at temperatures above 250°C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbOj or Sb(OH)$, even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations 2 0.00005 moldrn-3 in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be ruled out that hydrated Sb205 (especially the pyrochlore form) might be less soluble in near-neutral, low-ionic-strength solutions. ‘Reactor Chemistry Branch 2Analytical Chemistry Branch Chalk River Laboratories Chalk River, Ontario, KOJ 1JO 1999 December ABCL- 12064 i CONTENTS 1. INTRODUCTION . 1 2. THB CI-IFMISTRY OF ANTIMONY(III) AND ANTIMONY(V) ............................. 2 2.1 The Aqueous Species ......................................................................................... 2 2.2 The Solids ........................................................................................................... 2 2.3 Previous Solubility Measurements ..................................................................... 3 2.3.1 Previous Solubility Measurements for Sb203 ........................................... 3 2.3.2 Previous Solubility Measurements for Sb205 ........................................... 5 2.3.3 Previous Solubility Measurements for Sodium Antimonate(V) ............... 6 3. EXPERIMENTAL SOLUBILITY MEASUREMENTS .............................................. 7 3.1 General Procedures for Measurements for T 2 200°C ....................................... 7 3.2 Antimony(III) ..................................................................................................... 7 3.3 Antimony(V) ...................................................................................................... 7 3.3.1 Preparation and Characterization of the Solid Phases .......................... 7 3.3.2 Solubility Experiments for Temperatures Below 100°C.. .................... 12 3.3.2.1 Preliminary Results ............................................................. 12 3.3.2.2 The Solubilities of Solids B and C at 25 and 75°C ............ 12 3.3.2.3 Other Experiments .............................................................. 13 3.3.3 Solubilities for Temperatures from 200 to 300°C ................................ 15 3.3.3.1 Preliminary Results ............................................................. 15 3.3.3.2 The Solubility of Solid B as a Function of Temperature and Hydroxide Ion Concentration....................................... 17 4. DISCUSSION . 17 4.1 Antimony(IlI) . 19 4.2 Antimony(V) . 23 4.2.1 Rationale for the Measurements Using “NaSb(OH)h(s)” and Other Sodium Antimonates . 23 4.2.2 Solubility of NaSb03.3H20(s) (NaSb(OH)h) in Basic Solutions . 24 4.2.3 Solubility of Na2,[H(H20)]2_2$b206.H20, a = 0.75 in Basic Solutions 27 4.2.3.1 Comparison of the Solubility with Other Solids at 25 and 75°C . 27 4.2.3.2 Solubility of Na2,[H(H20)]2_2aSb206.H20 from 25 to 300°C . 28 5. CONCLUSIONS . 30 6. ACKNOWLEDGMENTS . 31 7. RBFBRBNCES . 31 ii Appendix A: Literature Thermodynamic Data for Aqueous Antimony Species and Selected Oxide Solids............................................................................................... A.1 Simple Aqueous Ions and Hydrolysis Species of Antimony.. .......... 37 A.2 Antimony(III) and Antimony(V) Oxide Solids ................................ 37 A.3 Chemical Thermodynamic Measurements for Mixed Oxides Containing Antimony ....................................................................... 40 LIST OF TABLES Table 2- 1: Reported Solubilities of Sb203 ......................................................................... 4 Table 2-2: Reported Solubilities of SbzOS ......................................................................... 6 Table 2-3: Reported Solubilities of Sodium Antimonate in Water .................................... 6 Table 3-l: Experimental Solubility Measurements for SbzOs/Sb Mixtures ...................... 8 Table 3-2: Results of neutron activation analyses of solid B ............................................. 11 Table 3-3: Molar Mass per Mole Sb of Various Antimony(V) Compounds Containing Oxygen, Sodium or Hydroxide Ions or Water .................................................. 11 Table 3-4: Experimental Solubilities of NaSb(OH)e (initially Solid A) from the Present Study ................................................................................................................. 13 Table 3-5: Total Antimony Concentrations for Solids B and C as Measured for Basic Oxidizing Solutions at 25 and 75°C ................................................................. 14 Table 3-6: Results of Equilibration of Mixed Antimony Solids with Water at 75°C (unless otherwise noted) ................................................................................... 15 Table 3-7: Total Antimony Concentrations as Measured over Solid B (initially solid A, but converted to solid B during the experiment) for Basic Oxidizing Solutions