(12) Patent Application Publication (10) Pub. No.: US 2011/0217623 A1 Jiang Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2011/0217623 A1 Jiang Et Al US 2011 0217623A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0217623 A1 Jiang et al. (43) Pub. Date: Sep. 8, 2011 (54) PROTON EXCHANGEMEMBRANE FOR Related U.S. Application Data FUEL CELL APPLICATIONS (60) Provisional application No. 61/050,368, filed on May (75) Inventors: San Ping Jiang, Singapore (SG); 5, 2008. Haolin Tang, Singapore (SG); Ee O O Ho Tang, Singapore (SG); Shanfu Publication Classification Lu, Singapore (SG) (51) Int. Cl. HOLM 8/2 (2006.01) DEFENCE SCIENCE & BOSD 5/12 (2006.01) TECHNOLOGY AGENCY, Singapore (SG) (52) U.S. Cl. ............................ 429/495; 521/27; 427/115 (21) Appl. No.: 12/991,377 (57) ABSTRACT (22) PCT Filed: May 5, 2009 The present invention refers to an inorganic proton conduct ing electrolyte consisting of a mesoporous crystalline metal (86). PCT No.: PCT/SG2O09/OOO160 oxide matrix and a heteropolyacid bound within the mesopo rous matrix. The present invention also refers to a fuel cell S371 (c)(1), including Such an electrolyte and methods for manufacturing (2), (4) Date: May 24, 2011 Such inorganic electrolytes. b are: er sai. ss. Silica - HPw - a H' transfer through HPW (E~13.02) -----> H transfer through Silica (E-54.88) Patent Application Publication Sep. 8, 2011 Sheet 1 of 17 US 2011/0217623 A1 F.G. 1 FG. 2 A1 With 35% HPW - with 15% HPW wo- with 20% HPW on with 25% HPW - with 35% HPW with 15% HPW With 20% HPW With 15% HPW O 1 2 3 4 5 6 7 8 2 theta / degree Patent Application Publication Sep. 8, 2011 Sheet 2 of 17 US 2011/0217623 A1 FG. 3 -- with 15% HAP -- with 20% HAP was we with 25%HAP i . .2 0.4 0.6 0.8 Relative Pressure PIP, 0.5 O 5 10 15 20 25 30 35 40 Pore diameter / nm FG. 4 0.2O O.15 i O.10 O.05 OOO O 50 1 OO 150 2OO Immersing time ?h Patent Application Publication Sep. 8, 2011 Sheet 3 of 17 US 2011/0217623 A1 F.G. 5 Temperature f 'C 50 1OO 150 200 3OO 350 E 9 E. S 0.01 O.O1 O O humidified G 100°C O.OO1 O.OO1 3.5 3.O 2.5 2.O 15 1000 | T 1 K Patent Application Publication Sep. 8, 2011 Sheet 4 of 17 US 2011/0217623 A1 F.G. 6 Preterated Siiga "HO-SiOS-OH, Multiphase self-asserably . to : Patent Application Publication Sep. 8, 2011 Sheet 5 of 17 US 2011/0217623 A1 FIG. 7 Temperature I'C 100 75 50 25 E= 13.02 kJ mol 1E3 N o E=36.27 kJ mol 1E-61 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 1000 T 1 K FG. 8 E E s b age Silica - HPW - N H transfer through HPW (E-13.02) -----> H transfer through Silica (E-54.88) Patent Application Publication Sep. 8, 2011 Sheet 6 of 17 US 2011/0217623 A1 FG. 9 1079, re-O 889.W-o-W 1400 120 1000 OC 60 400 200 Wavenumber 1 cm FIG 10 r" Before site c. 4 3 2 5 2.0 Q 1 nm' Patent Application Publication Sep. 8, 2011 Sheet 7 of 17 US 2011/0217623 A1 FIG 11 2D hexagonal Body-centered 3D Face-centered 3D Bicontinues 3D P6mm Im3m Fm3m a3d i . r a 100 oo oz o.4 os os 10 Relative pressure / P/Po Pore size / nm Patent Application Publication Sep. 8, 2011 Sheet 8 of 17 US 2011/0217623 A1 Patent Application Publication Sep. 8, 2011 Sheet 9 of 17 US 2011/0217623 A1 F.G. 15 Temperature IC 125 100 75 50 25 8 2D hexagonal HPWilsilica # 3D face-centered HPWIsilica 3D body-centered HPWisitica 2.4 2.6 2.8 3.0 3.2 3.4 1000 T 1 K Patent Application Publication Sep. 8, 2011 Sheet 10 of 17 US 2011/0217623 A1 FG 16 O.O.30 0.025A. : 0. O 1 O F.G. 17 AA AAA AA AA AAA A100-c. o O oio O 9 Pie o O o O soc 0.06................... 0.04 on 40 cc 0.02 O.OO : : : : O 10 2O 30 40 50 60 th Patent Application Publication Sep. 8, 2011 Sheet 11 of 17 US 2011/0217623 A1 F.G. 18 Keggin HPW also isosos, oror 'g o3. osos. s 3. structure odoo ascasioso, TEos Eto-S-oet acter c torsstroy Porous N O Meso-silica/HPW -Thin Porous Ni O Eyle Patent Application Publication Sep. 8, 2011 Sheet 12 of 17 US 2011/0217623 A1 F.G. 19 0.20 0.15 y E D 0.12 st s s 9. e y 0.08 O D f s 0.04 a f too o1 o2 o3 o os os 0.00 Current Density I Acm Patent Application Publication Sep. 8, 2011 Sheet 13 of 17 US 2011/0217623 A1 FIG. 20 O.7 (a)a) cell pperformance O.6 9 Y Y - 120 t O.5 s 2 - 100 9. 0.4 s S 8O O C 03 ExxKC - 60 5 O9 0.2 tax SXXi? 40 h -O- 10 Methanol, 80°C O.1 -- 16 M methanol, 80°C al - - 10 Methanol, 300°C - 20 &: -C)- 16M methanol, 300°C O.O O O 1OO 2OO 300 400 500 6OO Current density mA cm b) cell stabili O.50 (b) ty 16M methanol fuel, 300°C v 1.OMethanol fuel, 300°C D N. O.4O ()g O.35 O D is 0.30 O O.25 O.2O O 1O 2O 3O 4.O 50 6O 7O Time I min Patent Application Publication Sep. 8, 2011 Sheet 14 of 17 US 2011/0217623 A1 FG. 21 s O 2OO 400 6OO Current density fmA cm FIG. 22 Patent Application Publication Sep. 8, 2011 Sheet 15 of 17 US 2011/0217623 A1 FG, 23 FG. 24 Á Vacuum Patent Application Publication Sep. 8, 2011 Sheet 16 of 17 US 2011/0217623 A1 FG. 25 CC. -- Polarization curve 140 - Power densi 120 OO 3. S al 9, 8O i s 2. 9 60 3 P S O s 40 B. su 2O O O.O 0.1 0.2 0.3 O.4 0.5 Current density(A cm) a HPW/silica disc b. MEA Patent Application Publication Sep. 8, 2011 Sheet 17 of 17 US 2011/0217623 A1 US 2011/0217623 A1 Sep. 8, 2011 PROTON EXCHANGEMEMBRANE FOR surface of the catalyst is reduced. At high temperatures CO FUEL CELL APPLICATIONS does not constitute a poison for the fuel cell but can instead be used directly as fuel for the high temperature fuel cell. CROSS-REFERENCE TO RELATED 0008 Direct methanol fuel cells also benefit from APPLICATIONS improved oxidation kinetics at elevated temperatures, and 0001. This application claims benefit of priority of U.S. direct ethanol becomes a viable fuel in the range of 150 to provisional application No. 61/050,368, filed May 5, 2008, 300°C. In addition, the thermal enhancement for redox activ the contents of it being hereby incorporated by reference in its ity allows for the exploration of alternative catalysts which do entirety for all purposes. not function well at lower temperatures. 0009. The development of alternative electrocatalysts, FIELD OF THE INVENTION particularly those based on non-precious metal catalysts is 0002 The present invention relates generally to fuel cell critical for the commercial viability of PEMFC technologies. technology, in particular to the field of proton exchange mem Operating at high temperatures has also the advantage of branes for fuel cells operating at elevated temperatures. creating a greater driving force for more efficient cooling. This is particularly important for transport applications to BACKGROUND OF THE INVENTION reduce balance of plant equipment. Furthermore, high grade 0003 Polymer electrolyte fuel cells (PEMFCs), which exhaust heat can be integrated into fuel processing stages. employ proton exchange membranes (PEMs), are considered Operation of a fuel cell at ambient pressure and elevated to be promising Sources of electrical energy. An advantage of temperatures strongly indicates that an optimal high tempera a PEMFC is its high-energy conversion efficiency and sim ture membrane would be one whose proton conductivity is plicity in design, resulting in reliability and convenience. not or less dependent on the presence of water. PEMFCs 0004 APEMFC consists of a proton-conducting polymer based on perfluorosulfonic acid polymer (PFSA) electrolyte membrane, such as Nafion(R), sandwiched between two elec Such as Nafion(R) cannot be operated at temperatures higher trodes. In general, fuel cells generate electricity from a simple than 100°C. Owing to the dehydration or volatility of water at electrochemical reaction in which an oxidizer, typically oxy an elevated temperature. The hydration of the membrane is gen from air, and a fuel, typically hydrogen, combine to form crucial for the PEMFC performance since proton conductiv a product, which is water for the typical fuel cell. Oxygen (air) ity of the sulfonic polymer PEMs decreases drastically under continuously passes over the cathode and hydrogen passes dehydration. over the anode to generate electricity, by-product heat and 0010 Several approaches have been proposed to develop water. The electrolyte that separates the anode and cathode is high-temperature membranes for fuel cell application. One of an ion-conducting material. At the anode, hydrogen and its the approaches is to imbibitions the PFSA membranes with electrons are separated so that the hydrogen ions (protons) hygroscopic inorganic particles such as silica, TiO, or Zeolite pass through the electrolyte while the electrons pass through that could retain wateratelevated temperatures above 100° C.
Recommended publications
  • United States Patent (19) 11 Patent Number: 6,159,466 Yang Et Al
    USOO6159466A United States Patent (19) 11 Patent Number: 6,159,466 Yang et al. (45) Date of Patent: *Dec. 12, 2000 54 AQUEOUS COMPOSITION COMPRISING 4,348,483 9/1982 Skogerson ............................... 435/235 SACCHAROMYCES BOULARDII SEQUELA 4,923,855 5/1990 Jensen et al. ........................... 514/188 AND CHROMIUM GLYCINATE 5,614,553 3/1997 Ashmead et al. ....................... 514/505 DNICOTINATE OTHER PUBLICATIONS 75 Inventors: Ping Yang, Fullerton; Houn Simon Hsia, Foothill Ranch, both of Calif. Vinson et al., Nutrition Reports International, Oct. 1984, vol. 73 Assignee: Viva America Marketing, Inc., Costa 30, No. 4, pp. 911–918. Mesa, Calif. Saner et al., The American Journal of Clinical Nutrition. Oct. 1983, vol. 38, pp. 574–578. * Notice: This patent issued on a continued pros ecution application filed under 37 CFR Uusitupa et al., British Journal of Nutrition, Jul. 1992, vol. 1.53(d), and is subject to the twenty year 68, No. 1, pp. 209–216. patent term provisions of 35 U.S.C. 154(a)(2). Barnett et al. In: "Yeasts. Characterization and Identifica tion'. Cambridge University Press. Second Edition. 1990, 21 Appl. No.: 09/015,758 pp. 595-597. 22 Filed: Jan. 29, 1998 Primary Examiner Sandra E. Saucier Related U.S. Application Data ASSistant Examiner Vera Afremova Attorney, Agent, or Firm-Lyon & Lyon LLP 62 Division of application No. 08/719,572, Sep. 25, 1996. 57 ABSTRACT 51 Int. Cl." ............................. A01N 63/04; C12N 1/18; C12N 1/20; A23L 1/28 The present invention includes a novel yeast Strain of the 52 U.S. Cl. ..................................... 424/93.51; 435/255.2; genus Saccharomyces boulardii sequela PY31 ATCC 74366 435/900; 426/62 that is able to process certain metallic compounds into 58 Field of Search ..........................
    [Show full text]
  • Standard X-Ray Diffraction Powder Patterns
    NBS MONOGRAPH 25 — SECTION 1 Standard X-ray Diffraction U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scien- tific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world.
    [Show full text]
  • Multivalent Metals and Polyatomic Ions 1
    Name Date Comprehension Section 4.2 Use with textbook pages 189–193. Multivalent metals and polyatomic ions 1. Define the following terms: (a) ionic compound (b) multivalent metal (c) polyatomic ion 2. Write the formulae and names of the compounds with the following combination of ions. The first row is completed to help guide you. Positive ion Negative ion Formula Compound name (a) Pb2+ O2– PbO lead(II) oxide (b) Sb4+ S2– (c) TlCl (d) tin(II) fluoride (e) Mo2S3 (f) Rh4+ Br– (g) copper(I) telluride (h) NbI5 (i) Pd2+ Cl– 3. Write the chemical formula for each of the following compounds. (a) manganese(II) chloride (f) vanadium(V) oxide (b) chromium(III) sulphide (g) rhenium(VII) arsenide (c) titanium(IV) oxide (h) platinum(IV) nitride (d) uranium(VI) fluoride (i) nickel(II) cyanide (e) nickel(II) sulphide (j) bismuth(V) phosphide 68 MHR • Section 4.2 Names and Formulas of Compounds © 2008 McGraw-Hill Ryerson Limited 0056_080_BCSci10_U2CH04_098461.in6856_080_BCSci10_U2CH04_098461.in68 6688 PDF Pass 77/11/08/11/08 55:25:38:25:38 PPMM Name Date Comprehension Section 4.2 4. Write the formulae for the compounds formed from the following ions. Then name the compounds. Ions Formula Compound name + – (a) K NO3 KNO3 potassium nitrate 2+ 2– (b) Ca CO3 + – (c) Li HSO4 2+ 2– (d) Mg SO3 2+ – (e) Sr CH3COO + 2– (f) NH4 Cr2O7 + – (g) Na MnO4 + – (h) Ag ClO3 (i) Cs+ OH– 2+ 2– (j) Ba CrO4 5. Write the chemical formula for each of the following compounds. (a) barium bisulphate (f) calcium phosphate (b) sodium chlorate (g) aluminum sulphate (c) potassium chromate (h) cadmium carbonate (d) calcium cyanide (i) silver nitrite (e) potassium hydroxide (j) ammonium hydrogen carbonate © 2008 McGraw-Hill Ryerson Limited Section 4.2 Names and Formulas of Compounds • MHR 69 0056_080_BCSci10_U2CH04_098461.in6956_080_BCSci10_U2CH04_098461.in69 6699 PDF Pass77/11/08/11/08 55:25:39:25:39 PPMM Name Date Comprehension Section 4.2 Use with textbook pages 186–196.
    [Show full text]
  • Gsaüiiveiwibte
    'C or GSAÜIIVEIWIBTE CUflIIITIIIi MïtiTHI AJIAlfïïf ,7 -' y/ . •'• .'7. 's -i, . \ STELLINGEN BEHORENDE BIJ HEJ FROEFSCHRIffT VAN R. FURLER 1. De episoomtheorie over het ontstaan van het mitochon- drion is weinig plausibel. R.A, Ratt and H.R. Mahler, Science 221 O972),575 2, Doordat S. Cirendini et al. de dragergassnelheid aan 'aet einde van een chromatografische kolom gebruiken, ontstaat een geflatteerd beeld van de weergegeven re- sultaten. Tevens is het niet mogelijk een dragergas- snelheid te berekenen zonder dat men de interstitiële porositeit kent» S, Cirendini, J. Vermont, J.C. Gressin and CL. Guilleain , J. Chromat. 84 (1973),24 3. De in de mode zijnde bepaling van RNA-moleculair ge- wichten door metingen aan formaldehyde behandelde RNA's berust op dubieuze aannamen. J.M. Kaper and M.E. v/aterworth,Virology 51 (1973),183 T.O. Diener and D.R. Smith, Virology *£ (^973), 359 M.M. El Manna and G. Bruening, Virology 56 (1973),198 4, Op grond van de zeer grote verschillen in stralingska- rakteristiek van de isotopen 1-131 en 1-123 is het streven van isotopenproducenten om een zo 'schoon' mogelijk 1-123 voor diagnostische doeleinden te leve- ren in strijd met de volksgezondheid, doordat de ver- tragingen#die dit oplevert onnodige stralingsbelasting voor patiënten veroorzaakt. H. ïlishiyama et al. J.Nucl.Med. 1£ (1974),261 5« De analogie die Gilbert et al. opmerken tussen de "exchange peak" in de kolom vloaistofchromatografie met behulp van ionenwisselaar en de luchtpi.ek bij gaschromatografie is twijfelachtig. T.W. Gilbert and R.A, Dobbs, Analyt.Chem. 45 (1>73), 1390.
    [Show full text]
  • Physical and Chemical Properties of Germanium
    Physical And Chemical Properties Of Germanium Moneyed and amnesic Erasmus fertilise her fatuousness revitalise or burrow incommunicatively. Creditable Petr still climbs: regarding and lissome Lazarus bully-off quite punctiliously but slums her filoplume devotedly. Zane still defilade venomous while improvident Randell bloodiest that wonderers. Do you for this context of properties and physical explanation of Silicon is sincere to metals in its chemical behaviour. Arsenic is extremely toxic, RS, carbon is the tongue one considered a full nonmetal. In nature, which name a widely used azo dye. Basic physical and chemical properties of semiconductors are offset by the energy gap between valence conduction! Other metalloids on the periodic table are boron, Batis ZB, only Germanium and Antimony would be considered metals for the purposes of nomenclature. Storage temperature: no restrictions. At room temperature, the semiconducting elements are primarily nonmetallic in character. This application requires Javascript. It has also new found in stars and already the atmosphere of Jupiter. Wellings JS, it is used as an eyewash and insecticide. He has studied in Spain and Hungary and authored many research articles published in indexed journals and books. What are oral health benefits of pumpkins? The material on this site may not be reproduced, germanium, the radiation emitted from an active device makes it locatable. Classify each statement as an extensive property must an intensive property. In germanium and physical chemical properties of the border lines from the! The most electronegative elements are at the nod in the periodic table; these elements often react as oxidizing agents. Atomic Volume and Allotropy of the Elements.
    [Show full text]
  • 4. Inorganic Flame Retardants. Plastics Can Be Given Flame Retardant Characteristics by Introducing Elements of Organic, Inorganic and Halogen Origin
    4. Inorganic Flame Retardants. Plastics can be given flame retardant characteristics by introducing elements of organic, inorganic and halogen origin. Such elements include magnesium, aluminium, phosphorous, molybdenum, antimony, tin, chlorine and bromine. Flame retardants are added in either the manufacturing step of the polymer or the compounding step of the polymeric article. Phosphorous bromine and chlorine are usually included as some organic compound. Inorganic flame retardants are usually added together with other flame retardants to provide a more efficient flame retardant action through synergism. Halogen flame retardants usually need an addition of about 40% in order to be effective, and this affects the properties of the polymer quite negatively. Structural integrity of the polymer article is often very important, and a drastic decrease in strength and other mechanical properties is simply not acceptable. The efficiency of halogen flame retardants is often enhanced by the addition of inorganic flame retardants. A smaller mass percentage halogen flame retardant is now needed, so the adverse effect on the polymer properties is also reduced (Touval, 1993) . 4.1 Antimony Compounds The antimony compounds used for flame retardancy include antimony trioxide, antimony pentoxide and antimony-metal compounds. In 1990 in the United States alone, the use of antimony trioxide amounted to 20 000 metric tons just for the flame retardancy of plastics. Antimony oxide is readily found in nature but in very impure form. This is not suitable for 29 direct use as flame retardant, so antimony oxide is often rather produced from antimony metal. There are therefore many different grades of antimony oxide that can be used for flame retardants.
    [Show full text]
  • Short Description of the Gulaim Seisenbaeva´S Research Profile
    Short description of the Gulaim Seisenbaeva´s research profile My research work has always been concentrated on development of chemical synthetic approaches to new materials, aiming to influence purpose characteristics of the material by varying chemical and physicochemical parameters of its synthesis. In my projects I am always trying to trace and understand the transformation from molecular precursors to materials with desired properties. The focus of my work is in the search for Molecular Chemistry approaches to nano-level defined materials. During the work at SLU for the last 18 years my research became strongly directed toward the use of bio-based materials and to applications in the Green Sector in the domains of environmental science and protection of the environment, bio-energy and bio-catalysis. My original scientific training was in the field of chemical technology and heterogeneous catalysis. In my Master Thesis entitled “Applied ruthenium and copper-ruthenium catalysts in the liquid phase hydrogenation reactions” I investigated thermal decomposition of metal complexes at different temperatures and the influence of decomposition temperature on the activity of prepared catalysts [1]. Since then I have become interested in molecular chemistry tools for production of functional solid materials, in particular, thermal decomposition mechanisms and their influence on morphology and chemical composition of the resulting products. The Ph.D. research work, “Tricarboxylatouranylates(VI) of protonated amines”, was devoted to the development of synthetic approaches to anionic carboxylate complexes of uranium(VI), and investigation of their thermal decomposition mechanisms leading to formation of highly disperse uranium dioxide for application in nuclear fuel blocks. There have been developed general approaches to the synthesis of anionic carboxylate complexes of uranium(VI) using interaction of uranyl carboxylates with hydrated amines in aqueous solutions of carboxylic acids.
    [Show full text]
  • Properties and Human Exposure; Sanford Garner; Roc; Jan. 24, 2018
    Draft RoC Monograph on Antimony Trioxide Properties and Human Exposure Sanford Garner, PhD Integrated Laboratory Systems, Inc. Contractor supporting the Office of the Report on Carcinogens National Institute of Environmental Health Sciences January 24, 2018 Properties Antimony and antimony compounds • Antimony is a metalloid found in nature in over 100 mineral species – Exists as four oxidation states: -3, 0, +3 and +5 • +3 (trivalent) and +5 (pentavalent) are most common in environmental, biological, and geochemical systems – Antimony species can undergo transformation during manufacturing processes, in the environment, or in vivo • Elemental antimony is a silver-white metal used to make alloys • Antimony(III) trioxide exists as an odorless white powder or polymorphic crystals Properties Solubility of antimony oxides and antimony metal is higher in biological fluids than in water • Antimony trioxide: 3.3 mg/L in water • Antimony pentoxide: 0.043 mg/L in water • Antimony metal: Insoluble in water Source: ECHA Registration Dossiers for diantimony pentoxide and diantimony trioxide. Properties and Human Exposure Human Exposure Human Exposure A significant number of people in the United States are exposed to antimony(III) trioxide based on: • Consumption (~ 70 million lb/yr; 1 producer and 10 importers reported in the United States) in manufacturing • Widespread use in industrial applications (e.g., 273 companies in the flame retardant industry) • Occupational exposure • General population exposure – Consumer products – Environmental exposure Uses of Antimony(III) Trioxide Antimony(III) trioxide is the most commercially significant form of processed antimony • Workers in formulation, processing, and manufacturing of consumer products are exposed to antimony(III) trioxide Consumer Formulation Processing products flame retardant e.g., furniture, flame retardant plastics (including electrical and synergist PVC), textiles, electronic equipment rubbers e.g., PET containers PET packaging and PET catalyst for water, soft drinks, fibers etc.
    [Show full text]
  • The Separation of Germanium from Lead, Cadmium, and Zinc by Ion Exchange
    Scholars' Mine Masters Theses Student Theses and Dissertations 1962 The separation of germanium from lead, cadmium, and zinc by ion exchange Myra Sue Anderson Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Chemistry Commons Department: Recommended Citation Anderson, Myra Sue, "The separation of germanium from lead, cadmium, and zinc by ion exchange" (1962). Masters Theses. 2730. https://scholarsmine.mst.edu/masters_theses/2730 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. THE SEPARATION OF GERMANIUM FROM LEAD, CADMIUM, AND ZINC BY ION EXCHANGE BY MYRA SUE ANDERSON A THESIS submitted to the faculty of the SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI In partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN CHEMISTRY Rolla, Missouri 1962 Approved by (advisor) //f 11 TABLE OF CONTENTS Page List of Illustrations Iv List of Tables V Introduction 1 Review of the Literature 2 Separation Methods for Germanium 2 Analytical Methods for Germanium 3 Germanium Complexes Suitable for Ion Exchange 6 Ion Exchange Resins 7 Ion Exchange Theory 9 Ion Exchange Studies of Germanium 15 Experimental 17 Materials 17 Apparatus 18 Analytical Methods 19 Anion Exchange Studies 21 Cation Exchange Studies
    [Show full text]
  • 123. Antimony
    1998:11 The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals 123. Antimony John Erik Berg Knut Skyberg Nordic Council of Ministers arbete och hälsa vetenskaplig skriftserie ISBN 91–7045–471–x ISSN 0346–7821 http://www.niwl.se/ah/ah.htm National Institute for Working Life National Institute for Working Life The National Institute for Working Life is Sweden's center for research and development on labour market, working life and work environment. Diffusion of infor- mation, training and teaching, local development and international collaboration are other important issues for the Institute. The R&D competence will be found in the following areas: Labour market and labour legislation, work organization and production technology, psychosocial working conditions, occupational medicine, allergy, effects on the nervous system, ergonomics, work environment technology and musculoskeletal disorders, chemical hazards and toxicology. A total of about 470 people work at the Institute, around 370 with research and development. The Institute’s staff includes 32 professors and in total 122 persons with a postdoctoral degree. The National Institute for Working Life has a large international collaboration in R&D, including a number of projects within the EC Framework Programme for Research and Technology Development. ARBETE OCH HÄLSA Redaktör: Anders Kjellberg Redaktionskommitté: Anders Colmsjö och Ewa Wigaeus Hjelm © Arbetslivsinstitutet & författarna 1998 Arbetslivsinstitutet, 171 84 Solna, Sverige ISBN 91–7045–471–X ISSN 0346-7821 Tryckt hos CM Gruppen Preface The Nordic Council is an intergovernmental collaborative body for the five countries, Denmark, Finland, Iceland, Norway and Sweden. One of the committees, the Nordic Senior Executive Committee for Occupational Environmental Matters, initiated a project in order to produce criteria documents to be used by the regulatory authorities in the Nordic countries as a scientific basis for the setting of national occupational exposure limits.
    [Show full text]
  • A Review of the Structural Architecture of Tellurium Oxycompounds
    Mineralogical Magazine, May 2016, Vol. 80(3), pp. 415–545 REVIEW OPEN ACCESS A review of the structural architecture of tellurium oxycompounds 1 2,* 3 A. G. CHRISTY ,S.J.MILLS AND A. R. KAMPF 1 Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 2 Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA [Received 24 November 2015; Accepted 23 February 2016; Associate Editor: Mark Welch] ABSTRACT Relative to its extremely low abundance in the Earth’s crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances.
    [Show full text]
  • Experimental Studies on the Dynamic Memcapacitance Modulation of the Reo3@Res2 Composite Material-Based Diode
    nanomaterials Article Experimental Studies on the Dynamic Memcapacitance Modulation of the ReO3@ReS2 Composite Material-Based Diode Joanna Borowiec 1,2,* , Mengren Liu 3 , Weizheng Liang 4, Theo Kreouzis 2 , Adrian J. Bevan 2 , Yi He 1, Yao Ma 1 and William P. Gillin 1,2 1 College of Physics, Sichuan University, Chengdu 610064, China; [email protected] (Y.H.); [email protected] (Y.M.); [email protected] (W.P.G.) 2 Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS, UK; [email protected] (T.K.); [email protected] (A.J.B.) 3 Sichuan University—Pittsburgh Institute, Chengdu 610207, China; [email protected] 4 The Peac Institute of Multiscale Sciences, Chengdu 610031, China; [email protected] * Correspondence: [email protected]; Tel.: +86-028-854-12323 Received: 4 October 2020; Accepted: 19 October 2020; Published: 23 October 2020 Abstract: In this study, both memcapacitive and memristive characteristics in the composite material based on the rhenium disulfide (ReS2) rich in rhenium (VI) oxide (ReO3) surface overlayer (ReO3@ReS2) and in the indium tin oxide (ITO)/ReO3@ReS2/aluminum (Al) device configuration is presented. Comprehensive experimental analysis of the ReO3@ReS2 material properties’ dependence on the memcapacitor electrical characteristics was carried out by standard as well as frequency-dependent current–voltage, capacitance–voltage, and conductance–voltage studies. Furthermore, determination of the charge carrier conduction model, charge carrier mobility, density of the trap states, density of the available charge carrier, free-carrier concentration, effective density of states in the conduction band, activation energy of the carrier transport, as well as ion hopping was successfully conducted for the ReO3@ReS2 based on the experimental data.
    [Show full text]