Araneae, Caponiidae, Nopinae) from Colombia

Total Page:16

File Type:pdf, Size:1020Kb

Araneae, Caponiidae, Nopinae) from Colombia Zoosyst. Evol. 97 (2) 2021, 383–392 | DOI 10.3897/zse.97.69089 Three new species of the spider genus Nopsma (Araneae, Caponiidae, Nopinae) from Colombia Alexander Sánchez-Ruiz1, Leonel Martínez2, Alexandre B. Bonaldo1 1 Museu Paraense Emílio Goeldi, Coordenação de Zoologia, Laboratório de Aracnologia. Av. Perimetral, 1901, Terra Firme, CEP 66077–830, Belém, Pará, Brazil 2 Grupo de Investigación Biodiversidad del Caribe Colombiano, Semillero de Investigación Sistemática de Artrópodos Neotropicales, Departamento de Biología, Universidad del Atlántico, Barranquilla, Colombia http://zoobank.org/0D9C19DB-BBED-4F03-A691-AFBA7AA9195E Corresponding author: Alexander Sánchez-Ruiz ([email protected]) Academic editor: Danilo Harms ♦ Received 24 May 2021 ♦ Accepted 21 June 2021 ♦ Published 13 July 2021 Abstract Three new Colombian species of the spider genus Nopsma Sánchez-Ruiz, Brescovit & Bonaldo, 2020 are described and illustrat- ed: Nopsma leticia sp. nov. (male) from Amazonas department, Nopsma macagual sp. nov. (male) from Caquetá department and Nopsma paya sp. nov. (male and female) from Putumayo department. The collection data of the holotype of Nopsma florencia Sánchez-Ruiz, Brescovit & Bonaldo are corrected. Additionally, an updated identification key for all species of the genus and a dis- tribution map for the Colombian species are included. Key Words Arachnida, neotropical region, synspermiata, taxonomy Introduction graphed prior to the publication by the second author of this paper (L.M.), who unfortunately confused the type´s The two-eyed spider genus Nopsma was recently pro- data label with those of other Colombian Nopsma spec- posed by Sánchez-Ruiz et al. (2020) for four species oc- imens from Macagual in Caquetá department, while the curring in Colombia, Ecuador, Peru and Nicaragua. The actual locality of N. florencia is in Chocó department. The Ecuadorian species Nopsma juchuy (Dupérré, 2014) was collection data of this Colombian species is corrected be- transferred from Nyetnops Platnick & Lise, 2007 and low. On the bright side, this mislabeling event led to the was elected as the type species. Members of this genus discovery of a new Nopsma species, since the specimens can be distinguished from other two-eyed Nopinae (ex- from Macagual belong to an undescribed species. This cept Nyetnops), by lacking a crista and an arolium on finding also triggered the opportunity to review caponiids anterior metatarsi, and from Nyetnops by the presence from three Colombian collections, leading to the discov- of a gladius. Additionally, Nopsma species are charac- ery of two additional undescribed Nopsma species. These terized by having an elongated, prolaterally protruded three species are herein described, along with the correc- embolus, unique among nopines, and by the shape of tion of the type locality of N. florencia. Photos of the hab- endites, without projected outer sides on anterior margin itus, male palpal morphology and female genital organs, (Sánchez-Ruiz et al. 2020). line drawings of the male copulatory bulbs and schematic Members of Nopsma are poorly known in Colom- drawings of the female internal genitalia are provided. bia, being represented by only one species, N. florencia Additionally, a distribution map for all Colombian spe- Sánchez-Ruiz, Brescovit & Bonaldo, 2020. The species cies and an updated identification key for all species of was described from male specimens revised and photo- the genus are presented. Copyright Alexander Sánchez-Ruiz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 384 Sánchez-Ruiz, A. et al.: Three new Colombian species of Nopsma Materials and methods at the proportion of 1 tablet/5 ml. After cleaning, samples were immersed in clove oil for visualization of internal The specimens examined in this study were supplied by structures. The terminology for copulatory structures fol- the following collections (acronym and curator in pa- lows Sánchez-Ruiz et al. (2015). All digital photos were rentheses): Instituto Alexander Von Humboldt, Bogotá, edited using Adobe Photoshop CS ver. 12.0 and the dis- Colombia (IAvH-I, J.C. Neita) Instituto de Ciencias Na- tribution map was prepared in QGIS (QGIS 2021). Plates turales of the Universidad Nacional, Bogotá, Colombia were edited with Corel Draw X7 ver. 17.1. Geographic (ICN-Ar, E. Flórez) and Pontificia Universidad Javeriana, coordinates were extracted from original labels. Locality Bogotá (MPUJ-ENT, D. Forero). elevations refer to meters above sea level. Morphological observations and illustrations were The following abbreviations are used in the text and fig- made using a Leica MC125 stereomicroscope with a cam- ures: ap = anterior plate, as = anterior tracheal spiracles, dmr era lucida. Multifocal images were taken with the Leica = distal margin of receptaculum, e = embolus, ess = external MC-190 HD and Leica MC-170 HD digital cameras at- sclerotization around spiracles, go = genital opening (go- tached to Leica S8AP0 and Leica MC125 stereomicro- nopore), mk = membranous keel on embolus, re = recepta- scopes respectively with extended focal range. All mul- culun, pmr = proximal margin of receptaculum, pp = pos- tifocal images were assembled using Helicon Focus Pro terior plate, ps = posterior tracheal spiracles, t = tegulum. ver. 5.3.14. The measurements are in millimeters (mm) and were made using an ocular micrometer. Descriptions and measurements follow Sánchez-Ruiz and Bresco- Taxonomy vit (2018). Coloration patterns were described based on specimens preserved in 70–80% ethanol. The internal fe- Caponiidae Simon, 1890 male genitalia was dissected with fine forceps and their soft tissues were digested for 24 hours with Ultrazyme Genus Nopsma Sánchez-Ruiz, Brescovit & enzymatic eye lens cleaner, diluted with distilled water Bonaldo, 2020 Updated key to the species of Nopsma (males only) 1 Large tegulum, reaching or exceeding the palpal tibia length (Sánchez-Ruiz et al. 2020: figs 11B, 17B) ...................... 2 – Small tegulum, not reaching the palpal tibia length (Sánchez-Ruiz et al. 2020: figs 15B, 18B) .................................... 3 2 Elongated palpal tibia, two times the patella length (Sánchez-Ruiz et al. 2020: fig. 11B), embolus projecting from the prolateral distal surface of the tegulum with a keel bordering the tip (Sánchez-Ruiz et al. 2020: figs 11B, C, 14A, D–F) ..................................................................................................................................................N. enriquei – Short palpal tibia, just a little longer than patella length (Sánchez-Ruiz et al. 2020: fig. 17B), embolus projecting from the prolateral median surface of the tegulum with three very thin, long projections on the tip (Sánchez-Ruiz et al. 2020: fig. 17B, C, F) .............................................................................................................................................N. armandoi 3 Embolus posteriorly directed (Figs 1C, D, 2C, D, 4E, H) .............................................................................................. 4 – Embolus anteriorly directed (Fig. 3C, D) ........................................................................................N. macagual sp. nov. 4 Tegulum one-third of the cymbium length (Figs 2C, D, 3C, D, 4E, F) ........................................................................... 5 – Tegulum conspicuously small, only one-fifth the cymbium length (Fig. 1C, D) .............................................. N. florencia 5 Embolus with a membranous keel at the opening, extended proximally towards the embolus shaft (Fig. 6E, F) ........... 6 – Embolus with membranous keel restricted to the opening of embolus tip (Fig. 6G, H) ........................... N. paya sp. nov. 6 Membranous keel long, reaching more than one-third of the embolus shaft (Fig. 6F) ........................... N. leticia sp. nov. – Membranous keel short, reaching only one-fourth or less of the embolus shaft (Sánchez-Ruiz et al. 2020: fig. 16B–E) ... ........................................................................................................................................................................N. juchuy Nopsma florenciaSánchez-Ruiz, Brescovit & Bonaldo, 2020 Remark. The type locality of this species is here cor- Figures 1A–D, 5A, B, 6A, B, 8 rected. The data labels of the holotype and paratype re- ported in the original description are actually those be- Nopsma florencia Sánchez-Ruiz, Brescovit & Bonaldo, 2020: 483, longing to Nopsma macagual sp. nov. fig. 18A–F. Diagnosis. Males of Nopsma florencia resemble those of Nopsma leticia sp. nov. by the similarly shaped mem- branous keel on embolus tip (Fig. 6A, B, E, F), but can Type material. Holotype ♂, COLOMBIA: Chocó de- be distinguished by the conspicuous small oval tegulum, partment, Jardín Botánico El Darién, Capurgana, Acan- with only one-fifth the cymbium length (Fig. 1C, D), dí, Camino a los Ríos; 8°37'53.95"N, 77°21'23.43"W; (one-third in N. leticia sp. nov., Fig. 2C, D) and by the 260 m; 14 April 2008; C. Peña leg; pitfall trap; MPUJ- enlarged embolus (Fig. 1C, D) (shorter in N. leticia sp. ENT 61986; examined, type locality corrected. nov., Fig. 2C, D). zse.pensoft.net Zoosyst. Evol. 97 (2) 2021, 383–392 385 Figure 1. Nopsma florencia Sánchez-Ruiz, Brescovit & Bonaldo, male
Recommended publications
  • Arachnida: Araneae) Para México Y Listado Actualizado De La Araneofauna Del Estado De Coahuila
    ISSN 0065-1737 (NUEVA SERIE) 34(1) 2018 e ISSN 2448-8445 NUEVOS REGISTROS DE ARAÑAS (ARACHNIDA: ARANEAE) PARA MÉXICO Y LISTADO ACTUALIZADO DE LA ARANEOFAUNA DEL ESTADO DE COAHUILA NEW RECORDS OF SPIDERS (ARACHNIDA: ARANEAE) FROM MEXICO AND LISTING OF SPIDERS FROM COAHUILA STATE Marco Antonio DESALES-LARA,1,2 María Luisa JIMÉNEZ3,* y Pablo CORCUERA2 1 Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I). Av. San Rafael Atlixco 186. Col. Vicentina Iztapalapa, C.P. 09340, Cd de México, México <[email protected]> 2 Laboratorio de Ecología Animal, Departamento de Biología, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I). Av. San Rafael Atlixco 186. Col. Vicentina Iztapalapa, C.P. 09340, Cd de México, México. <pcmr@ xanum.uam.mx> 3 Laboratorio de Aracnología y Entomología, Centro de Investigaciones Biológicas del Noroeste. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, Baja California Sur, México. <[email protected]> *Autor para correspondencia: <[email protected]> Recibido: 27/06/2017; aceptado: 01/12/2017 Editor responsable: Guillermo Ibarra Núñez Desales-Lara, M. A., Jiménez, M. L. y Corcuera, P. (2018) Nuevos Desales-Lara, M. A., Jiménez, M. L., & Corcuera, P. (2018) New registros de arañas (Arachnida: Araneae) para México y listado records of spiders (Arachnida: Araneae) from Mexico and listing actualizado de la araneofauna del estado de Coahuila. Acta Zooló- of spiders from Coahuila state. Acta Zoológica Mexicana (n.s), gica Mexicana (n.s), 34(1), 50-63. 34(1), 50-63. RESUMEN. Se dan a conocer cuatro nuevos registros de especies ABSTRACT.
    [Show full text]
  • The Placement of the Spider Genus Periegops and the Phylogeny of Scytodoidea (Araneae: Araneomorphae)
    Zootaxa 3312: 1–44 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) The placement of the spider genus Periegops and the phylogeny of Scytodoidea (Araneae: Araneomorphae) FACUNDO M. LABARQUE1 & MARTÍN J. RAMÍREZ1 1Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina. [email protected] / [email protected] Abstract The relationships of Scytodoidea, including the families Drymusidae, Periegopidae, Scytodidae and Sicariidae, have been con- tentious for a long time. Here we present a reviewed phylogenetic analysis of scytodoid spiders, emphasizing Periegops, the only genus in the family Periegopidae. In our analysis the Scytodoidea are united by the fusion of the third abdominal entapo- physes into a median lobe, the presence of female palpal femoral thorns and associated cheliceral stridulatory ridges, a mem- branous lobe on the cheliceral promargin, and the loss of minor ampullate gland spigots. A basal split within Scytodoidea defines two monophyletic groups: Sicariidae and a group formed by Scytodidae as the sister group of Periegopidae plus Dry- musidae, all united by having bipectinate prolateral claws on tarsi I–II, one major ampullate spigot accompanied by a nubbin, and the posterior median spinnerets with a mesal field of spicules. Periegops is the sister group of Drymusidae, united by the regain of promarginal cheliceral teeth and a triangular cheliceral lamina, which is continuous with the paturon margin. Key words: Drymusa, Drymusidae, Haplogyne, morphology, Scytodes, Stedocys, Scytodidae, Sicariidae, Sicarius, Loxosceles Introduction The family Periegopidae currently comprises only the genus Periegops, with two species: the type species Perie- gops suteri (Urquhart) from the Banks Peninsula on the South Island of New Zealand (Vink 2006), and Periegops australia Forster, from southeastern Queensland (Forster 1995).
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • Alexander Sánchez-Ruiz
    ARTÍCULO: CURRENT TAXONOMIC STATUS OF THE FAMILY CAPONIIDAE (ARACHNIDA, ARANEAE) IN CUBA WITH THE DESCRIPTION OF TWO NEW SPECIES Alexander Sánchez-Ruiz Abstract: All information known about the spider species of the family Caponiidae recorded from Cuba is compiled. Two new species of the genus Nops MacLeay, 1839 (Araneae, Caponiidae) are described from eastern Cuba, raising to seven the number of species in the Caponiidae fauna of this archipelago. Key words: Araneae, Caponiidae, taxonomy, West Indies, Cuba. Taxonomy: Nops enae sp. n. Nops siboney sp. n. ARTÍCULO: Current taxonomic status of the Estado taxonómico actual de la familia Caponiidae (Arachnida, Araneae) en family Caponiidae (Arachnida, Cuba y descripción de dos especies nuevas Araneae) in Cuba with the description of two new species Resumen: Se recopila toda la información conocida acerca de las especies de arañas de la familia Alexander Sánchez-Ruiz Caponiidae registradas para Cuba. Se describen dos nuevas especies del género Nops Centro Oriental de Ecosistemas y MacLeay, 1839 (Araneae, Caponiidae) procedentes del oriente de Cuba, alcanzando las Biodiversidad, Museo de Historia siete especies la fauna de Caponiidae de este archipiélago. Natural “Tomás Romay”, José A. Palabras clave: Araneae, Caponiidae, taxonomía, Antillas, Cuba. Saco # 601, Santiago de Cuba Taxonomía: 90100, Cuba. Nops enae sp. n. [email protected] Nops siboney sp. n. Revista Ibérica de Aracnología ISSN: 1576 - 9518. Dep. Legal: Z-2656-2000. Introduction Vol. 9, 30-VI-2004 Sección: Artículos y Notas. The family Caponiidae in the New World is represented by nine genera: Calponia Pp: 95–102. Platnick 1993, Caponina Simon, 1891, Nops MacLeay, 1839, Nopsides Chamberlin, 1924, Notnops Platnick, 1994, Orthonops Chamberlin, 1924, Taintnops Platnick, Edita: 1994, Tarsonops Chamberlin, 1924 and Tisentnops Platnick, 1994.
    [Show full text]
  • Arachnides 76
    Arachnides, 2015, n°76 ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 76 2015 0 Arachnides, 2015, n°76 LES PREDATEURS DES SCORPIONS (ARACHNIDA : SCORPIONES) G. DUPRE Dans leur revue sur les prédateurs de scorpions, Polis, Sissom & Mac Cormick (1981) relèvent 150 espèces dont essentiellement des espèces adaptées au comportement nocturne de leur proie (chouettes, rongeurs, carnivores nocturnes) mais également des espèces diurnes (lézards, rongeurs, carnivores....) qui débusquent les scorpions sous les pierres ou dans leurs terriers. Dans une précédente note (Dupré, 2008) nous avions effectué un relevé afin d'actualiser cette étude de 1981. Sept ans après, de nouvelles données sont présentées dans cette synthèse. Voici un nouveau relevé des espèces prédatrices. Nous ne faisons pas mention des scorpions qui feront l'objet d'un futur article traité avec le cannibalisme. Explication des tableaux: La première colonne correspond aux prédateurs, la seconde aux régions concernées et la troisième aux références. Dans la mesure du possible, les noms scientifiques ont été rectifiés en fonction des synonymies ou des nouvelles combinaisons appliquées depuis les dates de publication d'origine. ARTHROPODA ARACHNIDA SOLIFUGAE Solifugae Afrique du Nord Millot & Vachon, 1949; Punzo, 1998; Cloudsley-Thompson, 1977 Eremobates sp. USA Bradley, 1983 ARACHNIDA ARANEAE Acanthoscurria atrox Brésil Lourenço, 1981 Aphonopelma sp. et autres Amérique centrale Mazzotti, 1964 Teraphosidae Phormictopus auratus Cuba Teruel & De Armas, 2012 Brachypelma vagans Mexique Dor et al., 2011 Epicadus heterogaster Brésil Lourenço et al. 2006 Latrodectus sp. USA Baerg, 1961 L. hesperus USA Polis et al., 1981 L. mactans Cuba Teruel, 1996; Teruel & De Armas, 2012 L.
    [Show full text]
  • Five Papers on Fossil and Extant Spiders
    BEITR. ARANEOL., 13 (2020) Joerg Wunderlich FIVE PAPERS ON FOSSIL AND EXTANT SPIDERS BEITR. ARANEOL., 13 (2020: 1–176) FIVE PAPERS ON FOSSIL AND EXTANT SPIDERS NEW AND RARE FOSSIL SPIDERS (ARANEAE) IN BALTIC AND BUR- MESE AMBERS AS WELL AS EXTANT AND SUBRECENT SPIDERS FROM THE WESTERN PALAEARCTIC AND MADAGASCAR, WITH NOTES ON SPIDER PHYLOGENY, EVOLUTION AND CLASSIFICA- TION JOERG WUNDERLICH, D-69493 Hirschberg, e-mail: [email protected]. Website: www.joergwunderlich.de. – Here a digital version of this book can be found. © Publishing House, author and editor: Joerg Wunderlich, 69493 Hirschberg, Germany. BEITRAEGE ZUR ARANEOLOGIE (BEITR. ARANEOL.), 13. ISBN 978-3-931473-19-8 The papers of this volume are available on my website. Print: Baier Digitaldruck GmbH, Heidelberg. 1 BEITR. ARANEOL., 13 (2020) Photo on the book cover: Dorsal-lateral aspect of the male tetrablemmid spider Elec- troblemma pinnae n. sp. in Burmit, body length 1.5 mm. See the photo no. 17 p. 160. Fossil spider of the year 2020. Acknowledgements: For corrections of parts of the present manuscripts I thank very much my dear wife Ruthild Schöneich. For the professional preparation of the layout I am grateful to Angelika and Walter Steffan in Heidelberg. CONTENTS. Papers by J. WUNDERLICH, with the exception of the paper p. 22 page Introduction and personal note………………………………………………………… 3 Description of four new and few rare spider species from the Western Palaearctic (Araneae: Dysderidae, Linyphiidae and Theridiidae) …………………. 4 Resurrection of the extant spider family Sinopimoidae LI & WUNDERLICH 2008 (Araneae: Araneoidea) ……………………………………………………………...… 19 Note on fossil Atypidae (Araneae) in Eocene European ambers ………………… 21 New and already described fossil spiders (Araneae) of 20 families in Mid Cretaceous Burmese amber with notes on spider phylogeny, evolution and classification; by J.
    [Show full text]
  • SANSA News, No 26, June-August 2016
    SANSA NEWS No 26 JUNE– AUGUST 2016 12th AFRAS COLLOQUIUM—WESTERN CAPE The AFRICAN ARACHNOLOGICAL SOCIETY (AFRAS) is a scientific society devoted to the Inside this issue: study of spiders, scorpions and other arach- nids in Africa. It was initiated in 1986 in 2017 AFRAS colloquium …......1 SANSA 20 years………..……....1 Pretoria and was first called "The Research ISA Congress feedback….….2-3 Group for the Study of African Arachnida". Bonnet award …………………..3 Red Listing……………...……....4 In 1996 the name was changed to the Afri- Augrabies National Park……….5 can Arachnological Society. Membership of Richtersveld National Park ……5 AFRAS is free of charge and is mainly used Nursery-web observations…..6-7 to report on and facilitate arachnid re- New horned trapdoor spider ….8 search undertaken in Africa. This is done Spiders on bark………………….8 Araneid mimics……………...9-10 through an annual newsletter, website and Spider Club…...…………..…...11 a colloquium held every three years. National Museum ...…………..11 New project UFS……………...12 The 12th Colloquium of the African Arach- New projects at ARC …….12-13 nology Society will be hosted by members Student project ………………14 Connie retire ………………....14 of AFRAS and will be held from 22-25 Janu- Literature…………………......14 ary 2017 at Goudini Resort near Worcester Last Word…………………….15 in the Western Cape, South Africa. The resort is about an hour’s drive from Cape SANSA 20 YEARS OLD Town. The venue is situated in the Cape THE SOUTH AFRICAN NATIONAL Floral Kingdom, with an amazing array of SURVEY (SANSA) started in 1997 at tourist attractions and the opportunity to Editors and coordinators: the ARC and will be 20 years old in sample arachnids in a global biodiversity 2017.
    [Show full text]
  • Araneae (Spider) Photos
    Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison.
    [Show full text]
  • Scorpion Predation in Cuba: New Cases and a Review
    Scorpion predation in Cuba: new cases and a review Tomás M. Rodríguez-Cabrera, Rolando Teruel & Ernesto Morell Savall April 2020 — No. 306 Euscorpius Occasional Publications in Scorpiology EDITOR: Victor Fet, Marshall University, ‘[email protected]’ ASSOCIATE EDITOR: Michael E. Soleglad, ‘[email protected]’ TECHNICAL EDITOR: František Kovařík, ‘[email protected]’ Euscorpius is the first research publication completely devoted to scorpions (Arachnida: Scorpiones). Euscorpius takes advantage of the rapidly evolving medium of quick online publication, at the same time maintaining high research standards for the burgeoning field of scorpion science (scorpiology).Euscorpius is an expedient and viable medium for the publication of serious papers in scorpiology, including (but not limited to): systematics, evolution, ecology, biogeography, and general biology of scorpions. Review papers, descriptions of new taxa, faunistic surveys, lists of museum collections, and book reviews are welcome. Derivatio Nominis The name Euscorpius Thorell, 1876 refers to the most common genus of scorpions in the Mediterranean region and southern Europe (family Euscorpiidae). Euscorpius is located at: https://mds.marshall.edu/euscorpius/ Archive of issues 1-270 see also at: http://www.science.marshall.edu/fet/Euscorpius (Marshall University, Huntington, West Virginia 25755-2510, USA) ICZN COMPLIANCE OF ELECTRONIC PUBLICATIONS: Electronic (“e-only”) publications are fully compliant with ICZN (International Code of Zoological Nomenclature) (i.e. for the purposes of new names and new nomenclatural acts) when properly archived and registered. All Euscorpius issues starting from No. 156 (2013) are archived in two electronic archives: • Biotaxa, http://biotaxa.org/Euscorpius (ICZN-approved and ZooBank-enabled) • Marshall Digital Scholar, http://mds.marshall.edu/euscorpius/.
    [Show full text]
  • The Spiders and Scorpions of the Santa Catalina Mountain Area, Arizona
    The spiders and scorpions of the Santa Catalina Mountain Area, Arizona Item Type text; Thesis-Reproduction (electronic) Authors Beatty, Joseph Albert, 1931- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 16:48:28 Link to Item http://hdl.handle.net/10150/551513 THE SPIDERS AND SCORPIONS OF THE SANTA CATALINA MOUNTAIN AREA, ARIZONA by Joseph A. Beatty < • • : r . ' ; : ■ v • 1 ■ - ' A Thesis Submitted to the Faculty of the DEPARTMENT OF ZOOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College UNIVERSITY OF ARIZONA 1961 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfill­ ment of requirements for an advanced degree at the Uni­ versity of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for per­ mission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in their judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Phylogeny and Classification of Spiders
    18 FROM: Ubick, D., P. Paquin, P.E. Cushing, andV. Roth (eds). 2005. Spiders of North America: an identification manual. American Arachnological Society. 377 pages. Chapter 2 PHYLOGENY AND CLASSIFICATION OF SPIDERS Jonathan A. Coddington ARACHNIDA eyes, jumping spiders also share many other anatomical, Spiders are one of the eleven orders of the class Arach- behavioral, ecological, and physiological features. Most nida, which also includes groups such as harvestmen (Opil- important for the field arachnologist they all jump, a useful iones), ticks and mites (Acari), scorpions (Scorpiones), false bit of knowledge if you are trying to catch one. Taxonomic scorpions (Pseudoscorpiones), windscorpions (Solifugae), prediction works in reverse as well: that spider bouncing and vinegaroons (Uropygi). All arachnid orders occur in about erratically in the bushes is almost surely a salticid. North America. Arachnida today comprises approximately Another reason that scientists choose to base classifica- 640 families, 9000 genera, and 93,000 described species, but tion on phylogeny is that evolutionary history (like all his- the current estimate is that untold hundreds of thousands tory) is unique: strictly speaking, it only happened once. of new mites, substantially fewer spiders, and several thou- That means there is only one true reconstruction of evolu- sand species in the remaining orders, are still undescribed tionary history and one true phylogeny: the existing clas- (Adis & Harvey 2000, reviewed in Coddington & Colwell sification is either correct, or it is not. In practice it can be 2001, Coddington et ol. 2004). Acari (ticks and mites) are complicated to reconstruct the true phylogeny of spiders by far the most diverse, Araneae (spiders) second, and the and to know whether any given reconstruction (or classifi- remaining taxa orders of magnitude less diverse.
    [Show full text]
  • Noaa 13648 DS1.Pdf
    r LOAI<CO Qpy N Guide to Gammon Tidal IVlarsh Invertebrates of the Northeastern Gulf of IVlexico by Richard W. Heard UniversityofSouth Alabama, Mobile, AL 36688 and CiulfCoast Research Laboratory, Ocean Springs, MS39564" Illustrations by rimed:tul""'"' ' "=tel' ""'Oo' OR" Iindu B. I utz URt,i',"::.:l'.'.;,',-'-.,":,':::.';..-'",r;»:.",'> i;."<l'IPUS Is,i<'<i":-' "l;~:», li I lb~'ab2 Thisv,ork isa resultofreseaich sponsored inpart by the U.S. Department ofCommerce, NOAA, Office ofSea Grant, underGrani Nos. 04 8 Mol 92,NA79AA D 00049,and NA81AA D 00050, bythe Mississippi Alabama SeaGrant Consortium, byche University ofSouth Alabama, bythe Gulf Coast Research Laboratory, andby the Marine EnvironmentalSciences Consortium. TheU.S. Government isauthorized toproduce anddistribute reprints forgovern- inentalpurposes notwithstanding anycopyright notation that may appear hereon. *Preseitt address. This Handbook is dedicated to WILL HOLMES friend and gentleman Copyright! 1982by Mississippi hlabama SeaGrant Consortium and R. W. Heard All rightsreserved. No part of thisbook may be reproduced in any manner without permissionfrom the author. Printed by Reinbold Lithographing& PrintingCo., BooneviBe,MS 38829. CONTENTS 27 PREFACE FamilyMysidae OrderTanaidacea Tanaids!,....... 28 INTRODUCTION FamilyParatanaidae........, .. 29 30 SALTMARSH INVERTEBRATES ., FamilyApseudidae,......,... Order Cumacea 30 PhylumCnidaria =Coelenterata!......, . FamilyNannasticidae......,... 31 32 Class Anthozoa OrderIsopoda Isopods! 32 Fainily Edwardsiidae. FamilyAnthuridae
    [Show full text]