Spiders (Arachnida: Araneae) in Agricultural Land Use Systems in Subtropical Environments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Phylogeny, Divergence Times and Biogeography of Spiders of the Subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang A, , Wayne P
Molecular Phylogenetics and Evolution 68 (2013) 81–92 Contents lists available at SciVerse ScienceDirect Molec ular Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang a, , Wayne P. Maddison a,b a Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 b Department of Botany and Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: We investigate phylogenetic relationships of the jumping spider subfamily Euophryinae, diverse in spe- Received 10 August 2012 cies and genera in both the Old World and New World. DNA sequence data of four gene regions (nuclear: Revised 17 February 2013 28S, Actin 5C; mitochondrial: 16S-ND1, COI) were collected from 263 jumping spider species. The molec- Accepted 13 March 2013 ular phylogeny obtained by Bayesian, likelihood and parsimony methods strongly supports the mono- Available online 28 March 2013 phyly of a Euophryinae re-delimited to include 85 genera. Diolenius and its relatives are shown to be euophryines. Euophryines from different continental regions generally form separate clades on the phy- Keywords: logeny, with few cases of mixture. Known fossils of jumping spiders were used to calibrate a divergence Phylogeny time analysis, which suggests most divergences of euophryines were after the Eocene. Given the diver- Temporal divergence Biogeography gence times, several intercontinental dispersal event sare required to explain the distribution of euophry- Intercontinental dispersal ines. Early transitions of continental distribution between the Old and New World may have been Euophryinae facilitated by the Antarctic land bridge, which euophryines may have been uniquely able to exploit Diolenius because of their apparent cold tolerance. -
Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden
Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden George Retseck Objectives • Learn about Spiders as Animals • Learn to recognize common spiders to family • Learn about spider ecology • Learn to Collect and Preserve Spiders Kingdom - Animalia Phylum - Arthropoda Subphyla - Mandibulata Chelicerata Class - Arachnida Orders - Acari Opiliones Pseudoscorpiones Araneae Spiders Arachnids of Illinois • Order Acari: Mites and Ticks • Order Opiliones: Harvestmen • Order Pseudoscorpiones: Pseudoscorpions • Order Araneae: Spiders! Acari - Soil Mites Characteriscs of Spiders • Usually four pairs of simple eyes although some species may have less • Six pair of appendages: one pair of fangs (instead of mandibles), one pair of pedipalps, and four pair of walking legs • Spinnerets at the end of the abdomen, which are used for spinning silk threads for a variety of purposes, such as the construction of webs, snares, and retreats in which to live or to wrap prey • 1 pair of sensory palps (often much larger in males) between the first pair of legs and the chelicerae used for sperm transfer, prey manipulation, and detection of smells and vibrations • 1 to 2 pairs of book-lungs on the underside of abdomen • Primitively, 2 body regions: Cephalothorax, Abdomen Spider Life Cycle • Eggs in batches (egg sacs) • Hatch inside the egg sac • molt to spiderlings which leave from the egg sac • grows during several more molts (instars) • at final molt, becomes adult – Some long-lived mygalomorphs (tarantulas) molt after adulthood Phenology • Most temperate -
Development of the Cursorial Spider, Cheiracanthium Inclusum (Araneae: Miturgidae), on Eggs of Helicoverpa Zea (Lepidoptera: Noctuidae)1
Development of the Cursorial Spider, Cheiracanthium inclusum (Araneae: Miturgidae), on Eggs of Helicoverpa zea (Lepidoptera: Noctuidae)1 R. S. Pfannenstiel2 Beneficial Insects Research Unit, USDA-ARS, Weslaco, Texas 78596 USA J. Entomol. Sci. 43(4): 418422 (October 2008) Abstract Development of the cursorial spider, Cheiracanthium inclusum (Hentz) (Araneae: Miturgidae), from emergence to maturity on a diet of eggs of the lepidopteran pest Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) was characterized. Cheiracanthium inclusum developed to adulthood with no mortality while feeding on a diet solely of H. zea eggs and water. The number of instars to adulthood varied from 4-5 for males and from 4-6 for females, although most males (84.6%) and females (66.7%) required 5 instars. Males and females took a similar time to become adults (54.2 ± 4.0 and 53.9 ± 2.0 days, respectively). Egg consumption was similar between males and females for the first 4 instars, but differed for the 51 instar and for the total number of eggs consumed to reach adulthood (651.0 ± 40.3 and 866.5 ± 51.4 eggs for males and females, respectively). Individual consumption rates suggest the potential for high impact of C. inclusum individuals on pest populations. Development was faster and survival greater than in previous studies of C. inc/usum development. Key Words spider development, egg predation Spiders have been observed feeding on lepidopteran eggs in several crops (re- viewed by Nyffeler et al. 1990), but only recently has the frequency of these obser- vations (Pfannenstiel and Yeargan 2002, Pfartnenstiel 2005, 2008) suggested that lepidopteran eggs may be a common prey item for some families of cursorial spiders. -
New Or Little-Known Species of Agyneta and Nippononeta from Asia (Aranei: Linyphiidae)
Arthropoda Selecta 13 (3): 165170 © ARTHROPODA SELECTA, 2004 New or little-known species of Agyneta and Nippononeta from Asia (Aranei: Linyphiidae) Íîâûå è ìàëîèçâåñòíûå âèäû Agyneta è Nippononeta èç Àçèè (Aranei: Linyphiidae) A.V. Tanasevitch À.Â. Òàíàñåâè÷ All-Russian Research Institute for Nature Protection, Ministry of the Protection of the Environment and Natural Resources of the Russian Federation. Âñåðîññèéñêèé èíñòèòóò îõðàíû ïðèðîäû ïðè Ìèíèñòåðñòâå ïðèðîäíûõ ðåñóðñîâ ÐÔ. KEY WORDS: Spiders, Linyphiidae, Agyneta, Nippononeta, new species, Altai, Russian Far East, Eastern Kazakhstan. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Ïàóêè, Linyphiidae, Agyneta, Nippononeta, íîâûå âèäû, Àëòàé, Äàëüíèé Âîñòîê Ðîññèè, Âîñòî÷íûé Êàçàõñòàí. ABSTRACT: Two new species, Agyneta tibialis In addition, several interesting records of Agyneta sp.n. and Nippononeta embolica sp.n., are described species in Asia are provided. from the Altai Mountains, South Siberia and the Rus- sian Far East, respectively. Agyneta mongolica (Loksa, Material and Methods 1965) and A. nigra (Oi, 1960) are depicted based on new records in the Far East of Russia, while the Europe- This paper is based on the collections of Miss G. an A. simplicitarsis (Simon, 1884) is recorded in Asia Azarkina (Novosibirsk) from the Altai Mountains, of (Eastern Kazakhstan) for the first time. Drs R. Seifulina (Moscow) and E. Mikhaljova (Vladi- vostok) from the Russian Far East, as well as on my own ÐÅÇÞÌÅ: Äâà âèäà, Agyneta tibialis sp.n. (Àëòàé) material from the Maritime Province, Russia. è Nippononeta embolica sp.n. (Äàëüíèé Âîñòîê Types are deposited in the Zoological Museum of Ðîññèè), îïèñàíû êàê íîâûå äëÿ íàóêè. Ïðèâåäåíû the Moscow State University (ZMMU), whereas the ðèñóíêè è íîâûå íàõîäêè íà Äàëüíåì Âîñòîêå Ðîññèè other material is housed in the authors personal collec- âèäîâ Agyneta mongolica (Loksa, 1965) è A. -
Final Project Completion Report
CEPF SMALL GRANT FINAL PROJECT COMPLETION REPORT Organization Legal Name: - Tarantula (Araneae: Theraphosidae) spider diversity, distribution and habitat-use: A study on Protected Area adequacy and Project Title: conservation planning at a landscape level in the Western Ghats of Uttara Kannada district, Karnataka Date of Report: 18 August 2011 Dr. Manju Siliwal Wildlife Information Liaison Development Society Report Author and Contact 9-A, Lal Bahadur Colony, Near Bharathi Colony Information Peelamedu Coimbatore 641004 Tamil Nadu, India CEPF Region: The Western Ghats Region (Sahyadri-Konkan and Malnad-Kodugu Corridors). 2. Strategic Direction: To improve the conservation of globally threatened species of the Western Ghats through systematic conservation planning and action. The present project aimed to improve the conservation status of two globally threatened (Molur et al. 2008b, Siliwal et al., 2008b) ground dwelling theraphosid species, Thrigmopoeus insignis and T. truculentus endemic to the Western Ghats through systematic conservation planning and action. Investment Priority 2.1 Monitor and assess the conservation status of globally threatened species with an emphasis on lesser-known organisms such as reptiles and fish. The present project was focused on an ignored or lesser-known group of spiders called Tarantulas/ Theraphosid spiders and provided valuable information on population status and potential conservation sites in Uttara Kannada district, which will help in future monitoring and assessment of conservation status of the two globally threatened theraphosid species T. insignis and Near Threatened T. truculentus. Investment Priority 2.3. Evaluate the existing protected area network for adequate globally threatened species representation and assess effectiveness of protected area types in biodiversity conservation. -
The Placement of the Spider Genus Periegops and the Phylogeny of Scytodoidea (Araneae: Araneomorphae)
Zootaxa 3312: 1–44 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) The placement of the spider genus Periegops and the phylogeny of Scytodoidea (Araneae: Araneomorphae) FACUNDO M. LABARQUE1 & MARTÍN J. RAMÍREZ1 1Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina. [email protected] / [email protected] Abstract The relationships of Scytodoidea, including the families Drymusidae, Periegopidae, Scytodidae and Sicariidae, have been con- tentious for a long time. Here we present a reviewed phylogenetic analysis of scytodoid spiders, emphasizing Periegops, the only genus in the family Periegopidae. In our analysis the Scytodoidea are united by the fusion of the third abdominal entapo- physes into a median lobe, the presence of female palpal femoral thorns and associated cheliceral stridulatory ridges, a mem- branous lobe on the cheliceral promargin, and the loss of minor ampullate gland spigots. A basal split within Scytodoidea defines two monophyletic groups: Sicariidae and a group formed by Scytodidae as the sister group of Periegopidae plus Dry- musidae, all united by having bipectinate prolateral claws on tarsi I–II, one major ampullate spigot accompanied by a nubbin, and the posterior median spinnerets with a mesal field of spicules. Periegops is the sister group of Drymusidae, united by the regain of promarginal cheliceral teeth and a triangular cheliceral lamina, which is continuous with the paturon margin. Key words: Drymusa, Drymusidae, Haplogyne, morphology, Scytodes, Stedocys, Scytodidae, Sicariidae, Sicarius, Loxosceles Introduction The family Periegopidae currently comprises only the genus Periegops, with two species: the type species Perie- gops suteri (Urquhart) from the Banks Peninsula on the South Island of New Zealand (Vink 2006), and Periegops australia Forster, from southeastern Queensland (Forster 1995). -
(Arachnida: Araneae) of the Floodplain Forests of the Main Amazon River Channel
ARTÍCULO: A contribution to the knowledge of the spider fauna (Arachnida: Araneae) of the floodplain forests of the main Amazon River channel Felipe N. A. A. Rego, Eduardo M. Venticinque, Antonio D. Brescovit, Cristina A. Rheims & Ana L. K. M. Albernaz Abstract: ARTÍCULO: We collected spiders during an expedition along 3000 km of the floodplains of the Brazilian part of the main channel of the Amazon River and identified them A contribution to the knowledge of to family, genus and species / morphospecies level whenever possible. More the spider fauna (Arachnida: Ara- than half of the collected species represented new records. The percentage of neae) of the floodplain forests of the singletons (35.6%) and doubletons (17.4%), the lack of overlapping between main Amazon River channel the data obtained in this study and that of the literature, and the under sampling Felipe N. A. A. Rego emphasizes the need for more inventories in the Amazon River floodplain and Pós-Graduação em Ecologia, Univer- a more complete set of sampling methods, such as canopy fogging and pitfall sidade de Brasília, 70919-970, Brasí- trapping. Therefore, knowledge on the fauna of the Amazon floodplains will lia, DF, Brazil. [email protected] remain an enormous challenge, regarding the still superficial collecting efforts, Eduardo M. Venticinque the lack of long-term samplings, taxonomic knowledge and capacity. Wildlife Conser. Soc., Rua dos Jato- Key words: Arachnida, Araneae, spiders, inventory, Amazon River, várzea, Amazo- bás, 274, Coroado 3, 69085-000 and nia. INPA, 69011-970, C.P. 478, Manaus, AM, Brazil. [email protected] A. D. -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
Spider Biodiversity Patterns and Their Conservation in the Azorean
Systematics and Biodiversity 6 (2): 249–282 Issued 6 June 2008 doi:10.1017/S1477200008002648 Printed in the United Kingdom C The Natural History Museum ∗ Paulo A.V. Borges1 & Joerg Wunderlich2 Spider biodiversity patterns and their 1Azorean Biodiversity Group, Departamento de Ciˆencias conservation in the Azorean archipelago, Agr´arias, CITA-A, Universidade dos Ac¸ores. Campus de Angra, with descriptions of new species Terra-Ch˜a; Angra do Hero´ısmo – 9700-851 – Terceira (Ac¸ores); Portugal. Email: [email protected] 2Oberer H¨auselbergweg 24, Abstract In this contribution, we report on patterns of spider species diversity of 69493 Hirschberg, Germany. the Azores, based on recently standardised sampling protocols in different hab- Email: joergwunderlich@ t-online.de itats of this geologically young and isolated volcanic archipelago. A total of 122 species is investigated, including eight new species, eight new records for the submitted December 2005 Azorean islands and 61 previously known species, with 131 new records for indi- accepted November 2006 vidual islands. Biodiversity patterns are investigated, namely patterns of range size distribution for endemics and non-endemics, habitat distribution patterns, island similarity in species composition and the estimation of species richness for the Azores. Newly described species are: Oonopidae – Orchestina furcillata Wunderlich; Linyphiidae: Linyphiinae – Porrhomma borgesi Wunderlich; Turinyphia cavernicola Wunderlich; Linyphiidae: Micronetinae – Agyneta depigmentata Wunderlich; Linyph- iidae: -
A Summary List of Fossil Spiders
A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature. -
Redalyc.RECORDS of EPIGEAL SPIDERS in BAHÍA BLANCA IN
Acta Zoológica Mexicana (nueva serie) ISSN: 0065-1737 [email protected] Instituto de Ecología, A.C. México ZANETTI, Noelia Inés RECORDS OF EPIGEAL SPIDERS IN BAHÍA BLANCA IN THE TEMPERATE REGION OF ARGENTINA Acta Zoológica Mexicana (nueva serie), vol. 32, núm. 1, abril, 2016, pp. 32-44 Instituto de Ecología, A.C. Xalapa, México Available in: http://www.redalyc.org/articulo.oa?id=57544858004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative ISSN 0065-1737 (NUEVA SERIE) 32(1) 2016 RECORDS OF EPIGEAL SPIDERS IN BAHÍA BLANCA IN THE TEMPERATE REGION OF ARGENTINA Noelia Inés ZANETTI Laboratorio de Entomología Aplicada y Forense, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal (1876), Prov. Buenos Aires, Argentina / Cátedra de Parasitología Clínica, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca (8000), Prov. Buenos Aires, Argentina. E-mail: <[email protected]> Recibido: 05/03/2015; aceptado: 28/10/2015 Zanetti, N. I. 2016. Records of epigeal spiders in Bahía Blanca, in the Zanetti, N. I. 2016. Registros de arañas epigeas en Bahía Blanca, en temperate region of Argentina. Acta Zoológica Mexicana (n. s.), la región templada de Argentina. Acta Zoológica Mexicana (n. s.), 32(1): 32-44. 32(1): 32-44. ABSTRACT. Ecological surveys of diversity and seasonal patterns RESUMEN. A pesar del alto potencial de la diversidad de especies y of spiders in relation with cadavers have rarely been conducted, de- abundancia de arañas, raramente han sido conducidos censos ecológi- spite the high potential species diversity and abundance of spiders. -
Note on Suspected Brown Recluse Spiders (Araneae: Sicariidae) in South Carolina
Faculty Research Note Note on Suspected Brown Recluse Spiders (Araneae: Sicariidae) in South Carolina Robert J. Wolff* South University, 9 Science Court, Columbia, SC 29203 The general public believes that brown recluse spiders (Loxosceles Filistatidae (Kukulcania hibernalis) 22 specimens reclusa) are widespread where they live and that these spiders are Lycosidae 21 (3 in one package, 5 in another) frequent causes of bites resulting in dermonecrosis. Research over the Pholcidae 17 past twenty years shows these reports to be unfounded. Vetter (2005) Miturgidae 8 examined 1,773 specimens sent in from across the U.S. as brown recluse Theridiidae 8 spiders and no specimens were found from areas outside the species Agelenidae 7 range, with the exception of a specimen from California. Araneidae 6 Clubionidae 6 The reported range of the brown recluse spider includes all or major Thomisidae 6 portions of Arkansas, Oklahoma, Texas, Louisiana, Alabama, Tennessee, Gnaphosidae 4 Kentucky, Illinois, Missouri and Kansas. Minor portions of the brown Corinnidae 3 recluse range were previously reported in Iowa, Indiana, Ohio, New Philodromidae 3 Mexico, North Carolina, Georgia, and South Carolina. The most recent Amaurobiidae 1 map (Vetter, 2015) does not include South Carolina, and only the far Pisauridae 1 western tip of North Carolina and northwestern corner of Georgia. Scytodidae (Scytodes thoracica) 1 Unidentifiable 4 Schuman and Caldwell (1991) found that South Carolina physicians reported treating 478 cases of brown recluse spider envenomations in 1990 alone. This seems like a very high number, unfortunately all or No brown recluses were identified from the specimens obtained in this almost all of these are probably not brown recluse spider bites.