(Arachnida: Araneae) of the Floodplain Forests of the Main Amazon River Channel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Phylogeny, Divergence Times and Biogeography of Spiders of the Subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang A, , Wayne P
Molecular Phylogenetics and Evolution 68 (2013) 81–92 Contents lists available at SciVerse ScienceDirect Molec ular Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang a, , Wayne P. Maddison a,b a Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 b Department of Botany and Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: We investigate phylogenetic relationships of the jumping spider subfamily Euophryinae, diverse in spe- Received 10 August 2012 cies and genera in both the Old World and New World. DNA sequence data of four gene regions (nuclear: Revised 17 February 2013 28S, Actin 5C; mitochondrial: 16S-ND1, COI) were collected from 263 jumping spider species. The molec- Accepted 13 March 2013 ular phylogeny obtained by Bayesian, likelihood and parsimony methods strongly supports the mono- Available online 28 March 2013 phyly of a Euophryinae re-delimited to include 85 genera. Diolenius and its relatives are shown to be euophryines. Euophryines from different continental regions generally form separate clades on the phy- Keywords: logeny, with few cases of mixture. Known fossils of jumping spiders were used to calibrate a divergence Phylogeny time analysis, which suggests most divergences of euophryines were after the Eocene. Given the diver- Temporal divergence Biogeography gence times, several intercontinental dispersal event sare required to explain the distribution of euophry- Intercontinental dispersal ines. Early transitions of continental distribution between the Old and New World may have been Euophryinae facilitated by the Antarctic land bridge, which euophryines may have been uniquely able to exploit Diolenius because of their apparent cold tolerance. -
Non-Insect Arthropod Types in the ZFMK Collection, Bonn (Acari, Araneae, Scorpiones, Pantopoda, Amphipoda)
03_huber.qxd 01.12.2010 9:31 Uhr Seite 217 Bonn zoological Bulletin Volume 58 pp. 217–226 Bonn, November 2010 Non-insect arthropod types in the ZFMK collection, Bonn (Acari, Araneae, Scorpiones, Pantopoda, Amphipoda) Bernhard A. Huber & Stefanie Lankhorst Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany; E-mail: [email protected] Abstract. The type specimens of Acari, Araneae, Scorpiones, Pantopoda, and Amphipoda housed in the Alexander Koenig Zoological Research Museum, Bonn, are listed. 183 names are recorded; of these, 64 (35%) are represented by name bearing (i.e., primary) types. Specific and subspecific names are listed alphabetically, followed by the original genus name, bibliographic citation, present combination (as far as known to the authors), and emended label data. Key Words. Type specimens, Acari, Araneae, Scorpiones, Pantopoda, Amphipoda, Bonn. INTRODUCTION The ZFMK in Bonn has a relatively small collection of Abbreviations. HT: holotype, PT: paratype, ST: syntype, non-insect arthropods, with an emphasis on arachnids LT: lectotype, PLT: paralectotype; n, pn, dn, tn: (proto-, (mostly mites, spiders, and scorpions), sea spiders (Pan- deuto-, trito-) nymph, hy: hypopus, L: larva topoda) and amphipods. Other arachnid and crustacean or- ders are represented, but not by type material. A small part of the material goes back to the founder of the museum, ACARI Alexander Koenig, and was collected around 1910. Most Acari were deposited at the museum by F. S. Lukoschus aequatorialis [Orycteroxenus] Lukoschus, Gerrits & (mostly Astigmata: Glyciphagidae, Atopomelidae, etc.), Fain, 1977b. PT, 2 slides. CONGO REP.: Mt de Braz- Pantopoda by F. Krapp (Mediterranean, Weddell Seas), za (near Brazzaville), host: Crocidura aequatorialis, and Amphipoda by G. -
First Photographic and Genetic Records of the Genus Martella (Araneae: Salticidae) Ryan Kaldari 1
Peckhamia 116.1 Photographic and genetic records of Martella 1 PECKHAMIA 116.1, 11 October 2014, 1―7 ISSN 2161―8526 (print) urn:lsid:zoobank.org:pub:C56F4D2F-64EB-419F-ACEC-B79B3CE0B5C0 (registered 10 OCT 2014) ISSN 1944―8120 (online) First photographic and genetic records of the genus Martella (Araneae: Salticidae) Ryan Kaldari 1 1 644 9th St. Apt. A, Oakland, California 94607, USA, email [email protected] ABSTRACT: Phylogenetic analysis of the 28S gene supports a close relationship between Martella Peckham & Peckham 1892, Sarinda Peckham & Peckham 1892, and Zuniga Peckham & Peckham 1892 within the Amycoida clade. The genus is recorded from Belize for the first time, with photographs of a single male specimen of a possibly undescribed species. KEY WORDS: Martella, jumping spider, Salticidae, Amycoida, phylogeny This article is distributed under the terms of the Creative Commons Attribution 4.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author is credited. Introduction Martella Peckham & Peckham 1892 is a genus of ant-like spiders in the family Salticidae, native to North and South America, with a range spanning from Mexico to northern Argentina. The genus is poorly known and currently consists of twelve recognized species, six of which are described only from a single sex (World Spider Catalog 2014). It was synonymized with Sarinda Peckham & Peckham 1892 by Simon in 1901, restored by Galiano in 1964, and most recently revised by Galiano in 1996. In this paper, the first photographic and genetic records for the genus are presented, as well as a limited analysis of its relationship to other genera in the Amycoida clade. -
Aranhas (Araneae, Arachnida) Do Estado De São Paulo, Brasil: Diversidade, Esforço Amostral E Estado Do Conhecimento
Biota Neotrop., vol. 11(Supl.1) Aranhas (Araneae, Arachnida) do Estado de São Paulo, Brasil: diversidade, esforço amostral e estado do conhecimento Antonio Domingos Brescovit1,4, Ubirajara de Oliveira2,3 & Adalberto José dos Santos2 1Laboratório de Artrópodes, Instituto Butantan, Av. Vital Brasil, n. 1500, CEP 05503-900, São Paulo, SP, Brasil, e-mail: [email protected] 2Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG, Av. Antonio Carlos, n. 6627, CEP 31270-901, Belo Horizonte, MG, Brasil, e-mail: [email protected], [email protected] 3Pós-graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG 4Autor para correspondência: Antonio Domingos Brescovit, e-mail: [email protected] BRESCOVIT, A.D., OLIVEIRA, U. & SANTOS, A.J. Spiders (Araneae, Arachnida) from São Paulo State, Brazil: diversity, sampling efforts, and state-of-art. Biota Neotrop. 11(1a): http://www.biotaneotropica.org. br/v11n1a/en/abstract?inventory+bn0381101a2011. Abstract: In this study we present a database of spiders described and registered from the Neotropical region between 1757 and 2008. Results are focused on the diversity of the group in the State of São Paulo, compared to other Brazilian states. Data was compiled from over 25,000 records, published in scientific papers dealing with Neotropical fauna. These records enabled the evaluation of the current distribution of the species, the definition of collection gaps and priority biomes, and even future areas of endemism for Brazil. A total of 875 species, distributed in 50 families, have been described from the State of São Paulo. -
No Pantanal De Mato Grosso, Brasil
UNIVERSIDADE FEDERAL DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP Programa de Pós-Graduação em Ciências Ambientais ARTRÓPODES EM COPAS DE Callisthene fasciculata (SPR.) MART. (VOCHYSIACEAE) NO PANTANAL DE MATO GROSSO, BRASIL LÚCIA YAMAZAKI Sinop, Mato Grosso Fevereiro, 2015 i LÚCIA YAMAZAKI ARTRÓPODES EM COPAS DE Callisthene fasciculata (SPR.) MART. (VOCHYSIACEAE) NO PANTANAL DE MATO GROSSO, BRASIL ORIENTADOR: PROF. DR. LEANDRO D. BATTIROLA Co-orientadora: Profa. Dra. Marinêz I. Marques Dissertação apresentada ao PPGCAM como parte dos requisitos para obtenção do título de Mestre em Ciências Ambientais. Sinop, Mato Grosso Fevereiro, 2015 ii iii iv Sinopse: Estudou-se a influência da variação temporal (seca e cheia) sobre a estrutura e a composição da comunidade de artrópodes em copas de Callisthene fasciculata (Spr.) Mart. (Vochysiaceae) na região norte do Pantanal de Mato Grosso, Brasil. Apresenta-se a descrição da estrutura e composição da comunidade de artrópodes em geral, Coleoptera, Formicidae e Araneae, além da possível estratégia de migração de Tityus paraguayensis Kraepelin, 1895 (Scorpiones: Buthidae). Palavras-chave: Áreas úmidas, Biodiversidade, Monodominância, Termonebulização. v Dedicatória Aos meus pais Kaoru Yamazaki e Antonia Haico Yamazaki que não mediram esforços para eu concluir mais uma etapa em minha vida. Ao meu filho amado, Gustavo Yamazaki Moreira, que me traz muitas alegrias em todos os dias desde a sua existência. vi Agradecimentos A todos que de alguma forma contribuíram para a realização deste trabalho, em especial: Aos meus pais Kaoru Yamazaki e Antonia Haico Yamazaki que em todos os momentos me incentivaram, apoiaram e me fizeram perceber o quanto a capacitação profissional é importante para qualquer pessoa. -
Notes on the Natural History of Three Glass Frogs Species (Anura: Centrolenidae) from the Andean Central Cordillera of Colombia*
BOLETÍN CIENTÍFICO ISSN 0123 - 3068 bol.cient.mus.hist.nat. 17 (2), julio - diciembre, 2013. 127 - 140 CENTRO DE MUSEOS MUSEO DE HISTORIA NATURAL NOTES ON THE NATURAL HISTORY OF THREE GLASS FROGS SPECIES (ANURA: CENTROLENIDAE) FROM THE ANDEAN CENTRAL CORDILLERA OF COLOMBIA* Julián Andrés Rojas-Morales1*;and Sergio Escobar-Lasso2 Abstract Between October 2008 and December 2010, we carried out surveys in different creeks at north of the municipality of Manizales in the Colombian Central Cordillera, in order to make observations on the natural history of three glass frogs species (Centrolene quindianum, Nymphargus grandisonae and N. spilotus). Centrolene quindianum presents clutches with 33–35 eggs (N= 2) located on the Upper of leaves at heights between 40–200 cm above water; one male was observed close to three egg-masses (< 1 m of distance of them in the same perch), suggesting the possibility of parental care. The spider Patrera armata (Anyphaenidae) is reported as a predator of the embryos of this species. In N. grandisonae both calling and oviposition occurs in the upper surfaces of large leaves, especially Araceas and Heliconias. These breeding sites are guarded territories by males for periods of up to six months. Their egg-masses have an average of 74 eggs (N = 4), located at a height and a distance from the edge of creeks between 57–218 cm (X = 113.21 ± 45.73 cm, N = 14) and 0–35 cm (X = 15.8 ± 6.7 cm, N = 14), respectively; males stay close to egg masses as they continue calling to attract females. In addition, we report for first timefly larvae (Drosophylidae) as parasitoid agent foregg-masses of N.grandisonae. -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
Download Download
Behavioral Ecology Symposium ’96: Cushing 165 MYRMECOMORPHY AND MYRMECOPHILY IN SPIDERS: A REVIEW PAULA E. CUSHING The College of Wooster Biology Department 931 College Street Wooster, Ohio 44691 ABSTRACT Myrmecomorphs are arthropods that have evolved a morphological resemblance to ants. Myrmecophiles are arthropods that live in or near ant nests and are considered true symbionts. The literature and natural history information about spider myrme- comorphs and myrmecophiles are reviewed. Myrmecomorphy in spiders is generally considered a type of Batesian mimicry in which spiders are gaining protection from predators through their resemblance to aggressive or unpalatable ants. Selection pressure from spider predators and eggsac parasites may trigger greater integration into ant colonies among myrmecophilic spiders. Key Words: Araneae, symbiont, ant-mimicry, ant-associates RESUMEN Los mirmecomorfos son artrópodos que han evolucionado desarrollando una seme- janza morfológica a las hormigas. Los Myrmecófilos son artrópodos que viven dentro o cerca de nidos de hormigas y se consideran verdaderos simbiontes. Ha sido evaluado la literatura e información de historia natural acerca de las arañas mirmecomorfas y mirmecófilas . El myrmecomorfismo en las arañas es generalmente considerado un tipo de mimetismo Batesiano en el cual las arañas están protegiéndose de sus depre- dadores a través de su semejanza con hormigas agresivas o no apetecibles. La presión de selección de los depredadores de arañas y de parásitos de su saco ovopositor pueden inducir una mayor integración de las arañas mirmecófílas hacia las colonias de hor- migas. Myrmecomorphs and myrmecophiles are arthropods that have evolved some level of association with ants. Myrmecomorphs were originally referred to as myrmecoids by Donisthorpe (1927) and are defined as arthropods that mimic ants morphologically and/or behaviorally. -
Overview of the Anyphaenids (Araneae, Anyphaeninae, Anyphaenidae) Spider Fauna from the Chocó Forest of Ecuador, with the Description of Thirteen New Species
European Journal of Taxonomy 255: 1–50 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2016.255 www.europeanjournaloftaxonomy.eu 2016 · Dupérré N. & Tapia E. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:0E8DA4DC-FF4C-436E-94FB-CB89F6416C6E Overview of the Anyphaenids (Araneae, Anyphaeninae, Anyphaenidae) spider fauna from the Chocó forest of Ecuador, with the description of thirteen new species Nadine DUPÉRRÉ 1,* & Elicio TAPIA 2 1 Research Associate, Fundación OTONGA, Calle Rither y Bolivia, Quito, Ecuador, and Research Associate, American Museum of Natural History, New York, NY, U.S.A. 2 Researcher, Centro Jambatu de Investigación y Conservación de Anfibios, Geovanny Farina 566, San Rafael, Ecuador. * Corresponding author: [email protected] 2 Email: [email protected] 1 urn:lsid:zoobank.org:author:F15E1FF2-2DF5-479A-AD10-8076CE96E911 2 urn:lsid:zoobank.org:author:E842405B-5E5B-43AB-8BCD-586657AD5CFC Abstract. The spider diversity of the family Anyphaenidae in premontane, low evergreen montane and cloud forest from the Chocó region of Ecuador is examined. A total of 287 adult specimens were collected and 19 morphospecies were identified based on male specimens. Thirteen new species are described and one new genus is proposed. Five new species are described in the genus Katissa Brescovit, 1997: Katissa kurusiki sp. nov., K. puyu sp. nov., K. tamya sp. nov., K. yaya sp. nov. and K. guyasamini sp. nov. The new genus Shuyushka gen. nov. is proposed and includes three species: Shuyushka achachay gen. et sp. nov., S. moscai gen. et sp. nov. and S. -
A LIST of the JUMPING SPIDERS of MEXICO. David B. Richman and Bruce Cutler
PECKHAMIA 62.1, 11 October 2008 ISSN 1944-8120 This is a PDF version of PECKHAMIA 2(5): 63-88, December 1988. Pagination of the original document has been retained. 63 A LIST OF THE JUMPING SPIDERS OF MEXICO. David B. Richman and Bruce Cutler The salticids of Mexico are poorly known. Only a few works, such as F. O. Pickard-Cambridge (1901), have dealt with the fauna in any depth and these are considerably out of date. Hoffman (1976) included jumping spiders in her list of the spiders of Mexico, but the list does not contain many species known to occur in Mexico and has some synonyms listed. It is our hope to present a more complete list of Mexican salticids. Without a doubt such a work is preliminary and as more species are examined using modern methods a more complete picture of this varied fauna will emerge. The total of 200 species indicates more a lack of study than a sparse fauna. We would be surprised if the salticid fauna of Chiapas, for example, was not larger than for all of the United States. Unfortunately, much of the tropical forest may disappear before this fauna is fully known. The following list follows the general format of our earlier (1978) work on the salticid fauna of the United States and Canada. We have not prepared a key to genera, at least in part because of the obvious incompleteness of the list. We hope, however, that this list will stimulate further work on the Mexican salticid fauna. Acragas Simon 1900: 37. -
The Jumping Spider Genus Thiodina Simon, 1900 Reinterpreted, And
Zootaxa 4012 (1): 181–190 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4012.1.10 http://zoobank.org/urn:lsid:zoobank.org:pub:7456A0A0-F83F-47C0-9835-A500434B5659 The jumping spider genus Thiodina Simon, 1900 reinterpreted, and revalidation of Colonus F.O.P-Cambridge, 1901 and Nilakantha Peckham & Peckham, 1901 (Araneae: Salticidae: Amycoida) ABEL A. BUSTAMANTE1,3, WAYNE P. MADDISON2 & GUSTAVO R.S. RUIZ3,4 1Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará / Museu Paraense Emílio Goeldi, Brazil. E-mail: [email protected] 2Departments of Zoology and Botany, and Beaty Biodiversity Museum, University of British Columbia, 6270 University Boulevard, V6T 1Z4, Vancouver, BC, Canada. E-mail: [email protected] 3Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01, CEP 66075-110, Belém, PA, Brazil. E-mail: [email protected] 4Corresponding author Abstract In this paper we call attention to the identity of the type species of Thiodina Simon, 1900, T. nicoleti Roewer, 1951. When Simon proposed the genus, he characterized it based on morphological features found in species he described, but not found in the type species he designated, and whose type specimens, apparently, he had not examined. Nicolet’s original description makes it clear that the type species is not closely related to the more familiar species placed in the genus. This misinterpretation was followed by contemporary researchers and survives until today. Here we designate and describe a neotype for T. nicoleti. -
Spider Assemblages in Widely-Separated Patches Of
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital de Periódicos da UFPR (Universidade Federal do Paraná) Acta Biol. Par., Curitiba, 37 (3, 4): 165-180. 2008 165 Spider Assemblages in widely-separated patches of cerrado in São Paulo State, Brazil Assembléias de aranhas em manchas de cerrado amplamente separadas no Estado de São Paulo, Brasil ISABELA M. P. RINALDI 1 & LUZIA A. TRINCA 2 Spiders are abundant, ubiquitous generalist predators in terrestrial eco- systems. The distribution and abundance of these arachnids and insects largely depends on the physical structure of their habitat (reviews in UETZ, 1991; WISE, 1993). The plants provide the spiders with hiding places from predators, attachment sites for webs, sites for feeding and reproduction, all factors effectively affected by the habitat architecture (HALAJ, CADY & UETZ, 2000 a; STUNTZ et al. 2002; RIIHIMÄKI et al. 2006). Several authors (reviews in TURNBULL,1973) have discussed about the factors that influence the spider distribution. It has been suggested that structural components in the habitats maybe especially important to the composition and evolution of plant-living arthropod communities (GUNNARSSON, 1990) including insects (LAWTON, 1983) that are preys of spiders. SCHICK (1965) was convinced that many species of Thomisidae are host-plant specific and DUFFY (1966) considered that the physical form of the vegetation is the more important factor to determine the dis- 1Department of Zoology, Instituto de Biociências, UNESP Distrito de Rubião Jr. s/nº, Caixa Postal 510 CEP: 18618-000 Botucatu – SP – Brazil. e-mail: [email protected].