REVISION of the JUMPING SPIDERS of the GENUS PHIDIPPUS (ARANEAE: SALTICIDAE) by G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden
Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden George Retseck Objectives • Learn about Spiders as Animals • Learn to recognize common spiders to family • Learn about spider ecology • Learn to Collect and Preserve Spiders Kingdom - Animalia Phylum - Arthropoda Subphyla - Mandibulata Chelicerata Class - Arachnida Orders - Acari Opiliones Pseudoscorpiones Araneae Spiders Arachnids of Illinois • Order Acari: Mites and Ticks • Order Opiliones: Harvestmen • Order Pseudoscorpiones: Pseudoscorpions • Order Araneae: Spiders! Acari - Soil Mites Characteriscs of Spiders • Usually four pairs of simple eyes although some species may have less • Six pair of appendages: one pair of fangs (instead of mandibles), one pair of pedipalps, and four pair of walking legs • Spinnerets at the end of the abdomen, which are used for spinning silk threads for a variety of purposes, such as the construction of webs, snares, and retreats in which to live or to wrap prey • 1 pair of sensory palps (often much larger in males) between the first pair of legs and the chelicerae used for sperm transfer, prey manipulation, and detection of smells and vibrations • 1 to 2 pairs of book-lungs on the underside of abdomen • Primitively, 2 body regions: Cephalothorax, Abdomen Spider Life Cycle • Eggs in batches (egg sacs) • Hatch inside the egg sac • molt to spiderlings which leave from the egg sac • grows during several more molts (instars) • at final molt, becomes adult – Some long-lived mygalomorphs (tarantulas) molt after adulthood Phenology • Most temperate -
Rare Animals in the Hardwood Hills and Pine Moraines and Outwash Plains Ecological Subsections of West-Central Minnesota Final Report
Rare Animals in the Hardwood Hills and Pine Moraines and Outwash Plains Ecological Subsections of West-Central Minnesota Final Report Prepared by Elizabeth Harper Gerda Nordquist Steve Stucker Carol Hall Minnesota County Biological Survey Division of Ecological Services Minnesota Department of Natural Resources Biological Report No. 86 February 2006 Table of Contents Abstract ................................................................................................................................. 1 Introduction............................................................................................................................ 2 Methods.................................................................................................................................. 4 Survey Site Selection ................................................................................................. 4 Survey Timing and Techniques ................................................................................. 4 Small mammal Surveys ...................................................................................... 4 Foraging Bat Surveys........................................................................................... 5 Breeding-season Bird Surveys............................................................................. 6 Amphibian and Reptile Surveys .......................................................................... 7 Nongame Fish Surveys ....................................................................................... -
2017 AAS Abstracts
2017 AAS Abstracts The American Arachnological Society 41st Annual Meeting July 24-28, 2017 Quéretaro, Juriquilla Fernando Álvarez Padilla Meeting Abstracts ( * denotes participation in student competition) Abstracts of keynote speakers are listed first in order of presentation, followed by other abstracts in alphabetical order by first author. Underlined indicates presenting author, *indicates presentation in student competition. Only students with an * are in the competition. MAPPING THE VARIATION IN SPIDER BODY COLOURATION FROM AN INSECT PERSPECTIVE Ajuria-Ibarra, H. 1 Tapia-McClung, H. 2 & D. Rao 1 1. INBIOTECA, Universidad Veracruzana, Xalapa, Veracruz, México. 2. Laboratorio Nacional de Informática Avanzada, A.C., Xalapa, Veracruz, México. Colour variation is frequently observed in orb web spiders. Such variation can impact fitness by affecting the way spiders are perceived by relevant observers such as prey (i.e. by resembling flower signals as visual lures) and predators (i.e. by disrupting search image formation). Verrucosa arenata is an orb-weaving spider that presents colour variation in a conspicuous triangular pattern on the dorsal part of the abdomen. This pattern has predominantly white or yellow colouration, but also reflects light in the UV part of the spectrum. We quantified colour variation in V. arenata from images obtained using a full spectrum digital camera. We obtained cone catch quanta and calculated chromatic and achromatic contrasts for the visual systems of Drosophila melanogaster and Apis mellifera. Cluster analyses of the colours of the triangular patch resulted in the formation of six and three statistically different groups in the colour space of D. melanogaster and A. mellifera, respectively. Thus, no continuous colour variation was found. -
(ARANEAE: SALTICIDAE)* by WAYNE MADDISON Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138
DISTINGUISHING THE JUMPING SPIDERS ERIS MILITARIS AND ERIS FLA VA IN NORTH AMERICA (ARANEAE: SALTICIDAE)* BY WAYNE MADDISON Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138 The jumping spiders now identified as Eris marginata are among the most frequently encountered in North America, for they are common on trees, shrubs and herbs throughout much of the continent. However, two species have been confused under this name. One is an abundant transamerican species whose proper name is Eris militaris; the other is Eris flava, widely distributed in eastern North America though common only in the southeast. In this paper I describe how they may be distinguished. The abbrevia- tion MCZ refers to the Museum of Comparative Zoology; ZMB to the Zoologisches Museum, Humboldt-Universittt zu Berlin. Eris militaris (Hentz), NEW COMBINATION Figures 2-7, 14 Attus militaris Hentz 1845: 201, pl. xvii, fig. 10Q, 11. Type material lost or de- stroyed (see Remarks, below), from North Carolina and Alabama. Neotype here designated, 1 in MCZ from North Carolina with label "NC: JACISON CO., Coyle Farm, 1.5 mi SW of Webster, 7 Sept. 1975; F. Coyle." Plexippus albovittatus C. L. Koch 1846:118, fig. 1178. Syntypes in ZMB with labels "P. albovittatus 1739" and "1739", and 1 with label "P. albovittatus ZMB 1739", examined. Type locality Pennsylvania (Koch, 1846). YEW SYNONYMY. Eris aurigera C. L. Koch 1846: 189, fig. 1237. Syntypes in ZMB 1 with carapace and abdomen in alcohol with labels "Eris aurigera C. L. Koch*, 1774" and "Typus" and remaining body parts mounted on cover slip in small box with label "(Eris aurigera Koch*) Dendryphantes marginatus Walck., ZMB 1774a, D. -
Aranhas (Araneae, Arachnida) Do Estado De São Paulo, Brasil: Diversidade, Esforço Amostral E Estado Do Conhecimento
Biota Neotrop., vol. 11(Supl.1) Aranhas (Araneae, Arachnida) do Estado de São Paulo, Brasil: diversidade, esforço amostral e estado do conhecimento Antonio Domingos Brescovit1,4, Ubirajara de Oliveira2,3 & Adalberto José dos Santos2 1Laboratório de Artrópodes, Instituto Butantan, Av. Vital Brasil, n. 1500, CEP 05503-900, São Paulo, SP, Brasil, e-mail: [email protected] 2Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG, Av. Antonio Carlos, n. 6627, CEP 31270-901, Belo Horizonte, MG, Brasil, e-mail: [email protected], [email protected] 3Pós-graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG 4Autor para correspondência: Antonio Domingos Brescovit, e-mail: [email protected] BRESCOVIT, A.D., OLIVEIRA, U. & SANTOS, A.J. Spiders (Araneae, Arachnida) from São Paulo State, Brazil: diversity, sampling efforts, and state-of-art. Biota Neotrop. 11(1a): http://www.biotaneotropica.org. br/v11n1a/en/abstract?inventory+bn0381101a2011. Abstract: In this study we present a database of spiders described and registered from the Neotropical region between 1757 and 2008. Results are focused on the diversity of the group in the State of São Paulo, compared to other Brazilian states. Data was compiled from over 25,000 records, published in scientific papers dealing with Neotropical fauna. These records enabled the evaluation of the current distribution of the species, the definition of collection gaps and priority biomes, and even future areas of endemism for Brazil. A total of 875 species, distributed in 50 families, have been described from the State of São Paulo. -
(Opiliones: Monoscutidae) – the Genus Pantopsalis
Tuhinga 15: 53–76 Copyright © Te Papa Museum of New Zealand (2004) New Zealand harvestmen of the subfamily Megalopsalidinae (Opiliones: Monoscutidae) – the genus Pantopsalis Christopher K. Taylor Department of Molecular Medicine and Physiology, University of Auckland, Private Bag 92019, Auckland, New Zealand ([email protected]) ABSTRACT: The genus Pantopsalis Simon, 1879 and its constituent species are redescribed. A number of species of Pantopsalis show polymorphism in the males, with one form possessing long, slender chelicerae, and the other shorter, stouter chelicerae. These forms have been mistaken in the past for separate species. A new species, Pantopsalis phocator, is described from Codfish Island. Megalopsalis luna Forster, 1944 is transferred to Pantopsalis. Pantopsalis distincta Forster, 1964, P. wattsi Hogg, 1920, and P. grayi Hogg, 1920 are transferred to Megalopsalis Roewer, 1923. Pantopsalis nigripalpis nigripalpis Pocock, 1902, P. nigripalpis spiculosa Pocock, 1902, and P. jenningsi Pocock, 1903 are synonymised with P. albipalpis Pocock, 1902. Pantopsalis trippi Pocock, 1903 is synonymised with P. coronata Pocock, 1903, and P. mila Forster, 1964 is synonymised with P. johnsi Forster, 1964. A list of species described to date from New Zealand and Australia in the Megalopsalidinae is given as an appendix. KEYWORDS: taxonomy, Arachnida, Opiliones, male polymorphism, sexual dimorphism. examines the former genus, which is endemic to New Introduction Zealand. The more diverse Megalopsalis will be dealt with Harvestmen (Opiliones) are abundant throughout New in another publication. All Pantopsalis species described to Zealand, being represented by members of three different date are reviewed, and a new species is described. suborders: Cyphophthalmi (mite-like harvestmen); Species of Monoscutidae are found in native forest the Laniatores (short-legged harvestmen); and Eupnoi (long- length of the country, from the Three Kings Islands in the legged harvestmen; Forster & Forster 1999). -
Spiders of the Hawaiian Islands: Catalog and Bibliography1
Pacific Insects 6 (4) : 665-687 December 30, 1964 SPIDERS OF THE HAWAIIAN ISLANDS: CATALOG AND BIBLIOGRAPHY1 By Theodore W. Suman BISHOP MUSEUM, HONOLULU, HAWAII Abstract: This paper contains a systematic list of species, and the literature references, of the spiders occurring in the Hawaiian Islands. The species total 149 of which 17 are record ed here for the first time. This paper lists the records and literature of the spiders in the Hawaiian Islands. The islands included are Kure, Midway, Laysan, French Frigate Shoal, Kauai, Oahu, Molokai, Lanai, Maui and Hawaii. The only major work dealing with the spiders in the Hawaiian Is. was published 60 years ago in " Fauna Hawaiiensis " by Simon (1900 & 1904). All of the endemic spiders known today, except Pseudanapis aloha Forster, are described in that work which also in cludes a listing of several introduced species. The spider collection available to Simon re presented only a small part of the entire Hawaiian fauna. In all probability, the endemic species are only partly known. Since the appearance of Simon's work, there have been many new records and lists of introduced spiders. The known Hawaiian spider fauna now totals 149 species and 4 subspecies belonging to 21 families and 66 genera. Of this total, 82 species (5596) are believed to be endemic and belong to 10 families and 27 genera including 7 endemic genera. The introduced spe cies total 65 (44^). Two unidentified species placed in indigenous genera comprise the remaining \%. Seventeen species are recorded here for the first time. In the catalog section of this paper, families, genera and species are listed alphabetical ly for convenience. -
A Review of the Anti-Predator Devices of Spiders* Invaders Away Or Kill and Eat Them
Bull. Br. arachnol. Soc. (1995) 10 (3), 81-96 81 A review of the anti-predator devices of spiders* invaders away or kill and eat them. The pirate spiders (Mimetidae) that have been studied feed almost J. L. Cloudsley-Thompson exclusively on other spiders, whilst certain Salticidae 10 Battishill Street, (Portia spp.) feed not only upon insects, but sometimes London Nl 1TE also on other jumping spiders, and even tackle large orb-weavers in their webs (see below). Several other Summary families and genera, including Archaeidae, Palpimanus (Palpimanidae), Argyrodes and Theridion (Theridiidae), The predators of spiders are mostly either about the and Chorizopes (Araneidae) contain species that include same size as their prey (arthropods) or much larger (vertebrates), against each of which different types of de- other spiders in their diet. Sexual cannibalism has been fence have evolved. Primary defences include anachoresis, reviewed by Elgar (1992). Other books in which the phenology, crypsis, protective resemblance and disguise, enemies of spiders are discussed include: Berland (1932), spines and warning coloration, mimicry (especially of ants), Bristowe (1958), Cloudsley-Thompson (1958, 1980), cocoons and retreats, barrier webs, web stabilimenta and Edmunds (1974), Gertsch (1949), Main (1976), Millot detritus, and communal webs. Secondary defences are flight, dropping to the ground, colour change and thanatosis, (1949), Preston-Mafham, R. & K. (1984), Savory (1928), web vibration, whirling and bouncing, autotomy, venoms Thomas (1953) and Wise (1993). (For earlier references, and defensive fluids, urticating setae, warning sounds and see Warburton, 1909). deimatic displays. The anti-predator adaptations of spiders The major predators of spiders fall into two cate- are extremely complex, and combinations of the devices gories: (a) those about the same size as their prey (mainly listed frequently occur. -
Records of the Hawaii Biological Survey for 1996
Records of the Hawaii Biological Survey for 1996. Bishop Museum Occasional Papers 49, 71 p. (1997) RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1996 Part 2: Notes1 This is the second of 2 parts to the Records of the Hawaii Biological Survey for 1996 and contains the notes on Hawaiian species of protists, fungi, plants, and animals includ- ing new state and island records, range extensions, and other information. Larger, more comprehensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 48]. Foraminifera of Hawaii: Literature Survey THOMAS A. BURCH & BEATRICE L. BURCH (Research Associates in Zoology, Hawaii Biological Survey, Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA) The result of a compilation of a checklist of Foraminifera of the Hawaiian Islands is a list of 755 taxa reported in the literature below. The entire list is planned to be published as a Bishop Museum Technical Report. This list also includes other names that have been applied to Hawaiian foraminiferans. Loeblich & Tappan (1994) and Jones (1994) dis- agree about which names should be used; therefore, each is cross referenced to the other. Literature Cited Bagg, R.M., Jr. 1980. Foraminifera collected near the Hawaiian Islands by the Steamer Albatross in 1902. Proc. U.S. Natl. Mus. 34(1603): 113–73. Barker, R.W. 1960. Taxonomic notes on the species figured by H. B. Brady in his report on the Foraminifera dredged by HMS Challenger during the years 1873–1876. Soc. Econ. Paleontol. Mineral. Spec. Publ. 9, 239 p. Belford, D.J. -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
Order in Council 462/1919
462 Approved and ordered this day of Lleutenant.Governor. At the Executive Council Chamber, Victoria, PRESENT: The Honourable c)- Mr.Ulivar in the Chair. Mr.B tall° Mr.liacLe tut Mr.2ar ri 8 Mr.klar t Mr.Bur row Mr.310 an Mr.1.: inc To His Honour The Lieutenant-Governor in Council: The undersigned has the honour to 7HAT Section 5 of Chapter 17 of the Statutes of 1912, provides for the Division of tne Province into Forest Districts; AID to recommend that Districts be established in accordance with the Schedule attoched hereto. DATED THIS 1' A.D. 1919. 1-.ioter of Lands. l".7] /4 DAY OF a L.D. 1919. 2ToL-Aain:: :.ember of the ILIxecutive Coun-::. ( DESCRInTIO1:S OF 70nEJTET DISTnICTS. NELSONFOE:2TRY DISTRICT: Commencing It a'point on tne International Boundary line being the S.E. corner of Section 4, Township b6, Osoyoos now Similkameen Division of Yale District; thence due North to the Coutherly boundary of the waterehne cf ..lanen Creek; thence Northerly following the .lesterly boundary of the watershed of LIM:annoy Creek and Kettle :aver and its tributaries to point whore such boundary intersects the nestorly boundary of the Kootenay Land District. Thence Northerly along the said nestern boundary of Kootenay Land District to the South boundary of the Dominion Government railway -.3elt. Thence Easterly along the Southerly boundary of said Railway Belt to the Eastern boundary of the watershed of Duncan River. Thence Southerly along the height of land between the miters flowing the Kootenay Lake to the West and the Columbia and Kootenay Rivers to the East to a point due East of Kuskanook; thence Jesterly to the South-west corner of Sub-lot'145 of Lot 4595, L:ootenay District. -
Raphaël Royauté November 2018
Dr. Raphaël Royauté November 2018 Raphaël Royauté Department of Biological Sciences; North Dakota State University Website: www.raphaelroyaute.com; Email: [email protected] Phone: (+1) 701-799-9224 PROFESSIONAL APPOINTMENTS AND EDUCATION • Postdoctoral Researcher. (2014-present), North Dakota State University, Fargo. (Adviser: N.A. Dochtermann) • Ph.D. (2014), McGill University, Montréal, QC, Canada. (Advisers: CM. Buddle and C. Vincent) • Diplôme d’Agronomie Approfondi (2008), École Nationale Supérieure Agronomique de Toulouse, Toulouse, France. (M.Sc. level degree with specialisation in Environmental Sciences) • Classes Préparatoires aux Grandes Écoles (2005), Lycée Thiers, Marseille, France. (B.Sc. level degree with specialisation in Biology, Chemistry, Physics and Earth Sciences) GRANTS AND FUNDING • Grants Written o Bee Challenge Grant. Crowdfunding for summer undergraduate assistant (Experiment.com). Does insecticide exposure affect solitary bee nesting behavior? Summer 2017. Total funded: $3,440. (co-PI) o National Science Foundation (IOS preproposal). Development, feedback, and maternal effects on behavioral variation. 2015. Not funded (PI) • Fellowships o Margaret Duporte Fellowship, McGill University. 2010-2012. Total awarded: $15,330. • Prizes and awards o Marie Sklodowska-Curie Actions Seal of Excellence for the “ContaminAnts” proposal, given to proposal with a > 85% score o York Environment Fellowship Development Award. Travel grant to work on a Marie Curie Fellowship Application at the University of York. 2016. Total awarded: £800. o Entomological Society of Canada. Graduate Student Showcase. 2013. Total awarded: $100. o Entomological Society of Canada President’s Prize. Poster presentation runner up. 2013. o Quebec Center for Biodiversity Sciences Symposium. Best Oral Presentation. 2012. Total awarded: $350. 1 Dr. Raphaël Royauté November 2018 o International Society for Behavioural Ecology.