1 Running Head: Phylogenetic Synthesis 1 2 3 4 Synthesizing
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees. -
Vertebrate Outline 2014
Winter 2014 EVOLUTION OF VERTEBRATES – LECTURE OUTLINE January 6 Introduction January 8 Unit 1 Vertebrate diversity and classification January 13 Unit 2 Chordate/Vertebrate bauplan January 15 Unit 3 Early vertebrates and agnathans January 20 Unit 4 Gnathostome bauplan; Life in water January 22 Unit 5 Early gnathostomes January 27 Unit 6 Chondrichthyans January 29 Unit 7 Major radiation of fishes: Osteichthyans February 3 Unit 8 Tetrapod origins and the invasion of land February 5 Unit 9 Extant amphibians: Lissamphibians February 10 Unit 10 Evolution of amniotes; Anapsids February 12 Midterm test (Units 1-8) February 17/19 Study week February 24 Unit 11 Lepidosaurs February 26 Unit 12 Mesozoic archosaurs March 3 March 5 Unit 13 Evolution of birds March 10 Unit 14 Avian flight March 12 Unit 15 Avian ecology and behaviour March 17 March 19 Unit 16 Rise of mammals March 24 Unit 17 Monotremes and marsupials March 26 Unit 18 Eutherians March 31 End of term test (Units 9-18) April 2 No lecture Winter 2014 EVOLUTION OF VERTEBRATES – LAB OUTLINE January 8 No lab January 15 Lab 1 Integuments and skeletons January 22 No lab January 29 Lab 2 Aquatic locomotion February 5 No lab February 12 Lab 3 Feeding: Form and function February 19 Study week February 26 Lab 4 Terrestrial locomotion March 5 No lab March 12 Lab 5 Flight March 19 No lab March 26 Lab 6 Sensory systems April 2 Lab exam Winter 2014 GENERAL INFORMATION AND MARKING SCHEME Professor: Dr. Janice M. Hughes Office: CB 4052; Telephone: 343-8280 Email: [email protected] Technologist: Don Barnes Office: CB 3015A; Telephone: 343-8490 Email: don [email protected] Suggested textbook: Pough, F.H., C, M, Janis, and J. -
Timeline of the Evolutionary History of Life
Timeline of the evolutionary history of life This timeline of the evolutionary history of life represents the current scientific theory Life timeline Ice Ages outlining the major events during the 0 — Primates Quater nary Flowers ←Earliest apes development of life on planet Earth. In P Birds h Mammals – Plants Dinosaurs biology, evolution is any change across Karo o a n ← Andean Tetrapoda successive generations in the heritable -50 0 — e Arthropods Molluscs r ←Cambrian explosion characteristics of biological populations. o ← Cryoge nian Ediacara biota – z ← Evolutionary processes give rise to diversity o Earliest animals ←Earliest plants at every level of biological organization, i Multicellular -1000 — c from kingdoms to species, and individual life ←Sexual reproduction organisms and molecules, such as DNA and – P proteins. The similarities between all present r -1500 — o day organisms indicate the presence of a t – e common ancestor from which all known r Eukaryotes o species, living and extinct, have diverged -2000 — z o through the process of evolution. More than i Huron ian – c 99 percent of all species, amounting to over ←Oxygen crisis [1] five billion species, that ever lived on -2500 — ←Atmospheric oxygen Earth are estimated to be extinct.[2][3] Estimates on the number of Earth's current – Photosynthesis Pong ola species range from 10 million to 14 -3000 — A million,[4] of which about 1.2 million have r c been documented and over 86 percent have – h [5] e not yet been described. However, a May a -3500 — n ←Earliest oxygen 2016 -
Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both. -
Placing Birds on a Dynamic Evolutionary Map: Using Digital Tools to Update the Evolutionary Metaphor of the "Tree of Life"
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2012 Placing Birds On A Dynamic Evolutionary Map: Using Digital Tools To Update The Evolutionary Metaphor Of The "Tree Of Life" Sonia Stephens University of Central Florida Part of the Ecology and Evolutionary Biology Commons, Graphic Communications Commons, and the Rhetoric Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Stephens, Sonia, "Placing Birds On A Dynamic Evolutionary Map: Using Digital Tools To Update The Evolutionary Metaphor Of The "Tree Of Life"" (2012). Electronic Theses and Dissertations, 2004-2019. 2264. https://stars.library.ucf.edu/etd/2264 PLACING BIRDS ON A DYNAMIC EVOLUTIONARY MAP: USING DIGITAL TOOLS TO UPDATE THE EVOLUTIONARY METAPHOR OF THE “TREE OF LIFE” by SONIA H. STEPHENS B.S. University of Hawaii, 1999 M.S. University of Hawaii, 2003 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of English in the College of Arts and Humanities at the University of Central Florida Orlando, Florida Spring Term 2012 Major Professor: Paul Dombrowski ©2012 Sonia H. Stephens ii ABSTRACT This dissertation describes and presents a new type of interactive visualization for communicating about evolutionary biology, the dynamic evolutionary map. This web-based tool utilizes a novel map-based metaphor to visualize evolution, rather than the traditional “tree of life.” The dissertation begins with an analysis of the conceptual affordances of the traditional tree of life as the dominant metaphor for evolution. -
Three New Species and a New Name in Southeast Asian <I>Gomphandra
Blumea 55, 2010: 189–195 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE doi:10.3767/000651910X527699 Three new species and a new name in Southeast Asian Gomphandra (Stemonuraceae / Icacinaceae s.l.) M. Schori1, T.M.A. Utteridge2 Key words Abstract Three new species of Gomphandra (Stemonuraceae / Icacinaceae s.l.) are described from Malesia, and a new name is proposed for a misidentified species. Gomphandra palustris is known from peat swamp forests Gomphandra in Borneo, Sarawak, G. halconensis is known from the Philippines, Mindoro, Mt Halcon, and G. conklinii from the Icacinaceae Philippines, Ifugao Province, Banaue. Gomphandra rarinervis is offered as a new name for Stemonurus puberulus, new species which was incorrectly synonymised with G. papuana by Sleumer. This commonly collected taxon is known from Southeast Asia Madang and Morobe Provinces in Papua New Guinea and does not overlap in distribution with G. papuana. Stemonuraceae Stemonurus Published on 20 August 2010 INTRODUCTION Gomphandra Wall. ex Lindl. is a genus of approximately 65 species of small trees and shrubs distributed from Sri Lanka and India to China, Indo-China, and throughout Southeast Asia to the Solomon Islands. The genus was revised by Sleumer in 1969 prior to its inclusion in Flora Malesiana (Sleumer 1971). Although it was traditionally placed in Icacinaceae, Kårehed (2001) provided evidence that the family is polyphyletic and placed Gomphandra in the segregate family Stemonuraceae. Gomphandra is the largest genus in the family, with 33 species previously recognized (Sleumer 1969) and approximately 30 new taxa. The genus is characterized by functionally dioecious flowers, a large sessile stigma, and fruit with longitudinal inner mesocarp ridges. -
Ruta Essential Oils: Composition and Bioactivities
molecules Review Ruta Essential Oils: Composition and Bioactivities Lutfun Nahar 1,* , Hesham R. El-Seedi 2, Shaden A. M. Khalifa 3, Majid Mohammadhosseini 4 and Satyajit D. Sarker 5,* 1 Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitel ˚u27, 78371 Olomouc, Czech Republic 2 Biomedical Centre (BMC), Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden; [email protected] 3 Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden; [email protected] 4 Department of Chemistry, College of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran; [email protected] 5 Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK * Correspondence: [email protected] (L.N.); [email protected] (S.D.S.); Tel.: +44-(0)-1512312096 (S.D.S.) Abstract: Ruta L. is a typical genus of the citrus family, Rutaceae Juss. and comprises ca. 40 different species, mainly distributed in the Mediterranean region. Ruta species have long been used in traditional medicines as an abortifacient and emmenagogue and for the treatment of lung diseases and microbial infections. The genus Ruta is rich in essential oils, which predominantly contain aliphatic ketones, e.g., 2-undecanone and 2-nonanone, but lack any significant amounts of terpenes. Three Ruta species, Ruta chalepensis L., Ruta graveolens L., and Ruta montana L., have been extensively studied for the composition of their essential oils and several bioactivities, revealing their potential medicinal and agrochemical applications. -
Ruta Chalepensis Methanol Extracts Against the Cariogenic Streptococcus Mutans
Vol. 7(46), pp. 5234-5237, 21 November, 2013 DOI: 10.5897/AJMR2013.5859 ISSN 1996-0808 ©2013 Academic Journals African Journal of Microbiology Research http://www.academicjournals.org/AJMR Full Length Research Paper In vitro antimicrobial activity of Ruta chalepensis methanol extracts against the cariogenic Streptococcus mutans Marcela A. Gloria-Garza1, Ricardo Gomez-Flores1*, Myriam A. De La Garza-Ramos2, Ramiro Quintanilla-Licea3, Reyes Tamez-Guerra1, Patricia Tamez-Guerra1 and Cristina Rodríguez- Padilla1 1Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, San Nicolás de los Garza, Nuevo León, México. 2Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Química, San Nicolás de los Garza, Nuevo León, México. 3Universidad Autónoma de Nuevo León, Facultad de Odontología, Monterrey, N. L., México. Accepted 28 October, 2013 Medicinal plants have been used for centuries and have become part of complementary medicine worldwide because of their potential health benefits. Since dental caries is one of the most common oral diseases and is considered a major public health problem, the present study evaluated in vitro antimicrobial potential of methanol extracts of Ruta chalepensis against the major etiologic agent of dental caries, Streptococcus mutans. The antimicrobial effect of R. chalepensis was evaluated in liquid medium by the dimethylthiazol-diphenyltetrazolium bromide (MTT) reduction colorimetric assay and in solid medium by the determination of colony forming units (CFU). We found that the minimum inhibitory concentration (MIC) was 250 μg/mL (p <0.05) in liquid medium and 3.9 μg/mL (p <0.05) in solid medium. Key words: Antimicrobial agents, plant extracts, Ruta chalepensis, dental caries, Streptococcus mutans. -
The Origin and Evolution of Model Organisms
REVIEWS THE ORIGIN AND EVOLUTION OF MODEL ORGANISMS S. Blair Hedges The phylogeny and timescale of life are becoming better understood as the analysis of genomic data from model organisms continues to grow. As a result, discoveries are being made about the early history of life and the origin and development of complex multicellular life. This emerging comparative framework and the emphasis on historical patterns is helping to bridge barriers among organism-based research communities. Model organisms represent only a small fraction of the these species are receiving an unusually large amount of biodiversity that exists on Earth, although the research attention from the research community and fall under that has resulted from their study forms the core of bio- the broad definition of “model organism”. logical knowledge. Historically, research communities Knowledge of the relationships and times of origin of — often in isolation from one another — have focused these species can have a profound effect on diverse areas on these model organisms to gain an insight into the of research2. For example, identifying the closest relatives general principles that underlie various disciplines, such of a disease vector will help to decipher unique traits — as genetics, development and evolution. This has such as single-nucleotide polymorphisms — that might changed in recent years with the availability of complete contribute to a disease phenotype. Similarly, knowing genome sequences from many model organisms, which that our closest relative is the chimpanzee is crucial for has greatly facilitated comparisons between the different identifying genetic changes in coding and regulatory species and increased interactions among organism- genomic regions that are unique to humans, and are based research communities. -
Ancistrocladaceae
Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100 -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M. -
Honey Bee from Wikipedia, the Free Encyclopedia
Honey bee From Wikipedia, the free encyclopedia A honey bee (or honeybee) is any member of the genus Apis, primarily distinguished by the production and storage of honey and the Honey bees construction of perennial, colonial nests from wax. Currently, only seven Temporal range: Oligocene–Recent species of honey bee are recognized, with a total of 44 subspecies,[1] PreЄ Є O S D C P T J K Pg N though historically six to eleven species are recognized. The best known honey bee is the Western honey bee which has been domesticated for honey production and crop pollination. Honey bees represent only a small fraction of the roughly 20,000 known species of bees.[2] Some other types of related bees produce and store honey, including the stingless honey bees, but only members of the genus Apis are true honey bees. The study of bees, which includes the study of honey bees, is known as melittology. Western honey bee carrying pollen Contents back to the hive Scientific classification 1 Etymology and name Kingdom: Animalia 2 Origin, systematics and distribution 2.1 Genetics Phylum: Arthropoda 2.2 Micrapis 2.3 Megapis Class: Insecta 2.4 Apis Order: Hymenoptera 2.5 Africanized bee 3 Life cycle Family: Apidae 3.1 Life cycle 3.2 Winter survival Subfamily: Apinae 4 Pollination Tribe: Apini 5 Nutrition Latreille, 1802 6 Beekeeping 6.1 Colony collapse disorder Genus: Apis 7 Bee products Linnaeus, 1758 7.1 Honey 7.2 Nectar Species 7.3 Beeswax 7.4 Pollen 7.5 Bee bread †Apis lithohermaea 7.6 Propolis †Apis nearctica 8 Sexes and castes Subgenus Micrapis: 8.1 Drones 8.2 Workers 8.3 Queens Apis andreniformis 9 Defense Apis florea 10 Competition 11 Communication Subgenus Megapis: 12 Symbolism 13 Gallery Apis dorsata 14 See also 15 References 16 Further reading Subgenus Apis: 17 External links Apis cerana Apis koschevnikovi Etymology and name Apis mellifera Apis nigrocincta The genus name Apis is Latin for "bee".[3] Although modern dictionaries may refer to Apis as either honey bee or honeybee, entomologist Robert Snodgrass asserts that correct usage requires two words, i.e.