SUMMARY of PRODUCT CHARACTERISTICS 1. NAME of the MEDICINAL PRODUCT < Invented Name > 60 Mg Capsules, Hard 2. QUALITATIVE

Total Page:16

File Type:pdf, Size:1020Kb

SUMMARY of PRODUCT CHARACTERISTICS 1. NAME of the MEDICINAL PRODUCT < Invented Name > 60 Mg Capsules, Hard 2. QUALITATIVE SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE MEDICINAL PRODUCT < invented name > 60 mg capsules, hard 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each capsule, hard contains 60 mg acemetacin. Excipients with known effects: 55 mg lactose (as monohydrate) per capsule, hard 0,022 mg Azorubine (E122) per capsule, hard For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Capsule, hard Hard gelatine capsule, size 4 (14.3 mm x 53 mm) with an ivory-coloured opaque body and a violet opaque cap. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Symptomatic treatment of pain and inflammation in acute arthritis (including gout) chronic arthritis, particularly in rheumatoid arthritis (chronic polyarthritis) ankylosing spondylitis (Bechterew’s Disease) and other inflammatory rheumatic spinal disorders osteoarthritis soft tissue inflammatory rheumatic disorders painful inflammation and swelling due to trauma 4.2 Posology and method of administration Posology with single and daily doses: Acemetacin is dosed according to the severity of the disease. Adults: The recommended dose range is between 60 and 180 mg per day divided into 1 – 3 three single doses. Age: Single-dose: Daily dose Adults 60 mg Acemetacin 60 - 180 mg Acemetacin The physician should decide on the duration of treatment. Undesirable effects may be minimised by using the lowest effective dose for the shortest duration necessary to control the symptoms (see section 4.4). Treatment of rheumatic diseases may require intake of < invented name > over a longer period. Acute gout: For the treatment of acute gout a daily dose of 180 mg is recommended until symptoms subside. Higher doses may occasionally be required for the first 24 to 48 hours. Treatment with a daily dose higher than 180 mg should only occur under the close supervision of the prescribing physician. Elderly: The elderly are at increased risk of the serious consequences of adverse reactions. If an NSAID is considered necessary, the lowest effective dose should be used and for the shortest possible duration. The patient should be monitored regularly for GI bleeding during NSAID therapy. Paediatric population: < invented name > is not recommended for use in children and adolescents due to insufficient data on safety and efficacy in this patient-group. Method of administration For oral use. < invented name > should be swallowed unchewed and with a sufficient amount of liquid. < invented name > should not be taken on an empty stomach. For patients with a sensitive stomach it is recommended to take < invented name > during a meal. 4.3 Contraindications hypersensitivity to the active substance, indometacin or to any of the excipients listed in section 6.1. known reactions of bronchospasm, asthma attacks, rhinitis or urticaria in response to acetylsalicylic acid or other non-steroidal anti-inflammatory medicinal products unexplained disturbance of hemopoiesis active, or history of recurrent peptic ulcer/hemorrhage (at least two or more different episodes of proven ulceration or bleeding) a history of gastrointestinal bleeding or perforation, related to previous NSAIDs therapy cerebrovascular or other active bleeding severe heart failure severe renal and hepatic failure < invented name > is also contraindicated during the third trimester of pregnancy 4.4 Special warnings and precautions for use Gastrointestinal safety: The use of < invented name > in combination with other NSAIDS, including cyclooxygenase-2 selective inhibitors, should be avoided. Undesirable effects may be minimized by using the lowest effective dose for the shortest duration necessary to control symptoms (see section 4.2, and gastrointestinal and cardiovascular risks below). Elderly The elderly have an increased frequency of adverse reactions to NSAIDs especially gastrointestinal bleeding and perforation which may be fatal (see section 4.2). Gastrointestinal bleeding, ulceration and perforation: Gastrointestinal bleeding, ulceration or perforation, which can be fatal, has been reported with all NSAIDs, and may occur at any time during treatment, with or without warning symptoms or a previous history of serious gastrointestinal events. The risk of gastrointestinal bleeding, ulceration or perforation is higher with increasing NSAID doses, in patients with a history of ulcer, particularly if complicated with haemorrhage or perforation (see section 4.3), and in the elderly. These patients should commence treatment on the lowest dose available. Combination therapy with protective agents (e.g. misoprostol or proton pump inhibitors) should be considered for these patients, and also for patients requiring concomitant low dose acetylsalicylic acid,, or other medicinal products likely to increase gastrointestinal risk (see below and 4.5). Patients with a history of gastrointestinal toxicity, particularly the elderly, should report any unusual abdominal symptoms (especially GI bleeding), particularly in the initial stages of treatment. Caution is advised in patients receiving concomitant medications, such as oral corticosteroids, anticoagulants such as warfarin, selective serotonin-reuptake inhibitors or anti-platelet agents such as acetylsalicylic acid (see section 4.5), which could increase the risk of ulceration or bleeding. When gastrointestinal bleeding or ulceration occurs in patients receiving < Invented Name >, the treatment should be withdrawn. NSAIDs should be given with caution to patients with a history of gastrointestinal disease (e.g. ulcerative colitis, Crohn’s disease) as their condition may worsen (see section 4.8). Cardiovascular and cerebrovascular effects: Appropriate monitoring and advice are required for patients with a history of hypertension and/or mild to moderate congestive heart failure as fluid retention and oedema have been reported in association with NSAID therapy. Clinical trial and epidemiological data suggest that the use of some NSAIDs (particularly at high doses and in long term treatment) may be associated with a slightly increased risk of arterial thrombotic events (for example myocardial infarction or stroke). There are insufficient data to exclude such a risk for acemetacin. Patients with uncontrolled hypertension, congestive heart failure, established ischaemic heart disease, peripheral arterial disease, and/or cerebrovascular disease should only be treated with acemetacin after careful consideration. Similar consideration should be made before initiating longer-term treatment of patients with risk factors for cardiovascular disease (e.g. hypertension, hyperlipidaemia, diabetes mellitus, smoking). Effects on the skin: Serious skin reactions, some of them fatal, including exfoliative dermatitis, Stevens-Johnson syndrome and toxic epidermal necrolysis, have been reported very rarely in association with the use of NSAIDs (see section 4.8). Patients appear to be at highest risk of these reactions early in the course of therapy; the onset of the reaction occurring in the majority of cases within the first month of treatment. < invented name > should be discontinued at the first appearance of skin rash, mucosal lesions, or any other sign of hypersensitivity. Renal and Hepatic Impairment: The administration of an NSAID may cause a dose dependent reduction in prostaglandin formation and precipitate renal failure. Patients at greatest risk of this reaction are those with impaired renal function, cardiac impairment, liver dysfunction, those taking diuretics and the elderly. Renal function should be monitored in these patients (see also section 4.3) < invented name > should only be used after careful consideration of the risk-benefit ratio in patients with acute porphyria with systemic lupus erythematosus (SLE) or mixed connective tissue disease (see section 4.8) Particular supervision by a physician is necessary in patients with renal impairment with hepatic impairment immediately after major surgical intervention with allergic rhinitis, nasal polyps or chronic obstructive pulmonary disease because of a higher risk for allergic reactions, such as acute asthma attack (analgesic induced asthma), Quincke’s edema or urticaria with a history of allergic reaction to other substances because of a higher risk for an allergic reaction to < invented name > Severe allergic reactions, e.g. anaphylactic shock, are very rare. < invented name > must be discontinued at the first appearance of any sign of severe hypersensitivity. Depending on the symptoms, suitable treatment should be initiated by healthcare professionals. < invented name > can induce transitory inhibition of thrombocyte aggregation. Patients with blood clotting disturbance should, therefore, be observed carefully. Patients receiving long-term treatment should be regularly screened for renal and hepatic parameters and blood counts. Particular caution is advised before surgical interventions. Headache may occur due to long-term treatment with analgesics; this should not be treated with higher doses of the offending substance. In general, habitual use of analgesics, especially the combination of different analgesic substances, may lead to irreversible renal impairment with the risk of renal insufficiency (analgesic induced nephropathy). Concomitant intake of NSAIDs and alcohol my increase the risk of acemetacin-related adverse reactions, particularly adverse reactions involving the gastrointestinal tract or the central nervous system. During long-term treatment with indometacin, the main active metabolite of acemetacin, changes to the retina
Recommended publications
  • Acemetacin.Pdf
    Methods and Findings in Experimental and Clinical Pharmacology 2010, 32(2): ???-??? THOMSON REUTERS Copyright © 2010 Prous Science, S.A.U. or its licensors. All rights reserved. CCC: 0379-0355/2010 DOI: 10.1358/mf.2010.32.2.1423883 ORIGINAL ARTICLE ACEMETACIN ANTINOCICEPTIVE MECHANISM IS NOT RELATED TO NO OR K+ CHANNEL PATHWAYS. M. Gil-Flores1, M.I. Ortiz2, G. Castañeda-Hernández1 and A.E. Chávez-Piña1 1Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, D.F., México. 2Área Académica de Medicina del Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, México SUMMARY Indomethacin is a nonsteroidal anti-inflammatory drug (NSAID) used for the treatment of acute gout and inflammation. However, its use is limited due to side effects. Acemetacin is a prodrug of indomethacin that exhibits better gastric tolerability in preclinical and clinical tri- als. The aim of this study was to examine if the systemic administration of acemetacin involved the sequential participation of nitric oxide (NO) or K+ channel pathways to confer its antinociceptive effect, as compared to indomethacin. The antinociceptive effect of both drugs was studied with the formalin test. Equimolar doses of acemetacin or indomethacin were administered orally. The intraplantar administra- tion of either L-NAME, glibenclamide, apamin or charybdotoxin plus indomethacin or acemetacin was studied using the formalin test and the anti-inflammatory and antihyperalgesic effects were measured. The antinociceptive effect of acemetacin or indomethacin was not sig- nificantly different when pretreatment with L-NAME, glibenclamide, apamin or charybdotoxin was done. The antihyperalgesic and anti- inflammatory effects were also similar for both indomethacin and acemetacin.
    [Show full text]
  • Binding of Nonsteroidal Anti-Inflammatory Drugs to DPPC: Structure and Thermodynamic Aspects
    4132 Langmuir 2008, 24, 4132-4139 Binding of Nonsteroidal Anti-inflammatory Drugs to DPPC: Structure and Thermodynamic Aspects Marlene Lu´cio,*,†,⊥ Frank Bringezu,‡,|,⊥ Salette Reis,† Jose´ L. F. C. Lima,† and Gerald Brezesinski§,⊥ REQUIMTE, Faculdade de Farma´cia, UniVersidade do Porto, Rua Anı´bal Cunha, 4099-030 Porto, Portugal, Institute of Medical Physics and Biophysics, UniVersity of Leipzig, Ha¨rtelstrasse 16, D-04103 Leipzig, Germany, and Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mu¨hlenberg 1, D-14476 Potsdam, Germany ReceiVed NoVember 16, 2007. In Final Form: January 8, 2008 The effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on the phase transition and phase properties of 1,2-dipalmitoylphosphatidylcholine (DPPC) has been investigated in both 2D (monolayers at the air/water interface) and 3D (multilayers in lipid/water dispersions) model systems. The 2D membrane models have been characterized by means of pressure-area isotherms and grazing incidence X-ray diffraction (GIXD) measurements. Differential scanning calorimetry (DSC) and simultaneous small- and wide-angle X-ray diffraction have been applied to lipid aqueous dispersions. All NSAIDs studied altered the main transition temperature of the gel to liquid-crystalline phase transition, with the arylacetic acid derivatives (acemetacin and indomethacin) showing the largest effects. A comparison of the results reveals distinct structural features of the membrane models after interaction with the NSAID. All drugs induced perturbations in the lipid liquid-crystalline phase, suggesting a major change in the hydration behavior of DPPC. Again, the largest effects on the structural parameters are found for the arylacetic acid derivatives. The results obtained in the different model systems give indications of the role of the membrane/NSAID interactions that might also be important for NSAID gastric injury.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Acemetacin Item No. 29615 CAS Registry No.: 53164-05-9 Cl Formal Name: 1-(4-chlorobenzoyl)-5- methoxy-2-methyl-1H- indole-3-acetic acid, O carboxymethyl ester N MF: C21H18ClNO6 FW: 415.8 O OH Purity: ≥98% O Supplied as: A crystalline solid O Storage: -20°C O Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Acemetacin is supplied as a crystalline solid. A stock solution may be made by dissolving the acemetacin in the solvent of choice, which should be purged with an inert gas. Acemetacin is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF). The solubility of acemetacin in ethanol is approximately 3 mg/ml and approximately 25 mg/ml in DMSO and DMF. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of acemetacin can be prepared by directly dissolving the crystalline solid in aqueous buffers. The solubility of acemetacin in PBS, pH 7.2, is approximately 0.5 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description Acemetacin is a non-steroidal anti-inflammatory drug (NSAID) and a prodrug form of indomethacin 1 (Item No. 70270). It reduces zymosan-induced thromboxane B2 (TXB2; Item No. 19030) and prostaglandin E2 (PGE2; Item No. 14010) production in isolated rat whole blood and stomach, respectively, when administered at doses ranging from 2.7 to 83.8 µmol/kg.
    [Show full text]
  • Inflammatory Drugs (Nsaids) for People with Or at Risk of COVID-19
    Evidence review Acute use of non-steroidal anti- inflammatory drugs (NSAIDs) for people with or at risk of COVID-19 Publication date: April 2020 This evidence review sets out the best available evidence on acute use of non- steroidal anti-inflammatory drugs (NSAIDs) for people with or at risk of COVID-19. It should be read in conjunction with the evidence summary, which gives the key messages. Evidence review commissioned by NHS England Disclaimer The content of this evidence review was up-to-date on 24 March 2020. See summaries of product characteristics (SPCs), British national formulary (BNF) or the MHRA or NICE websites for up-to-date information. For details on the date the searches for evidence were conducted see the search strategy. Copyright © NICE 2020. All rights reserved. Subject to Notice of rights. ISBN: 978-1-4731-3763-9 Contents Contents ...................................................................................................... 1 Background ................................................................................................. 2 Intervention .................................................................................................. 2 Clinical problem ........................................................................................... 3 Objective ...................................................................................................... 3 Methodology ................................................................................................ 4 Summary of included studies
    [Show full text]
  • Systematic Review Risk of Acute MI with Nsaids in Real
    Web Appendix 1 – Systematic review Risk of acute MI with NSAIDs in real-world use: a Bayesian IPD MA Web Table 1: Search strategies for the systematic review of observational studies of NSAIDs and risk of acute MI Individual observational studies PubMed # Keywords 1 (((case-control studies [mh] OR cohort studies [mh] OR cross-over studies [mh] OR epidemiologic studies [mh:noexp] OR cross-sectional studies [mh] OR evaluation studies as topic [mh] OR meta-analysis as topic [mh] OR practice guidelines as topic [mh] OR case control [tw] OR case controlled [tw] OR case controls [tw] OR cohort [tw]OR cohorts [tw] OR follow-up [tw] OR followup [tw] OR longitudinal [tw] OR matched-pair analysis [mh] OR observational studies [tw] OR observational study [tw] OR multicenter study [pt]) AND ((comparative study [pt] OR compare [tw] OR compares [tw] OR compared [tw] OR compared [tw] OR comparing [tw] OR comparison [tw] OR comparative [tw] OR effective [tw] OR effectiveness [tw] OR versus [ti] OR vs [ti]) AND (activities of daily living [mh] OR benefit [tw] OR benefits [tw] OR budgets [mh] OR chronic disease [mh] OR clinical trials data monitoring committees [mh] OR cognitive function [tw] OR ec [sh] OR death [mh] OR diffusion of innovation [mh] OR discharge [tw] OR economics, pharmaceutical [mh] OR evidence based practice [mh] OR functional status [tw] OR guideline adherence [mh] OR harm [tw] OR harms [tw] OR health services research [mh] OR health status [mh] OR hospitalization [mh] OR interventions [tw] OR life expectancy [mh] OR longevity [mh] OR
    [Show full text]
  • Prescription Medications, Drugs, Herbs & Chemicals Associated With
    Prescription Medications, Drugs, Herbs & Chemicals Associated with Tinnitus American Tinnitus Association Prescription Medications, Drugs, Herbs & Chemicals Associated with Tinnitus All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form, or by any means, without the prior written permission of the American Tinnitus Association. ©2013 American Tinnitus Association Prescription Medications, Drugs, Herbs & Chemicals Associated with Tinnitus American Tinnitus Association This document is to be utilized as a conversation tool with your health care provider and is by no means a “complete” listing. Anyone reading this list of ototoxic drugs is strongly advised NOT to discontinue taking any prescribed medication without first contacting the prescribing physician. Just because a drug is listed does not mean that you will automatically get tinnitus, or exacerbate exisiting tinnitus, if you take it. A few will, but many will not. Whether or not you eperience tinnitus after taking one of the listed drugs or herbals, or after being exposed to one of the listed chemicals, depends on many factors ‐ such as your own body chemistry, your sensitivity to drugs, the dose you take, or the length of time you take the drug. It is important to note that there may be drugs NOT listed here that could still cause tinnitus. Although this list is one of the most complete listings of drugs associated with tinnitus, no list of this kind can ever be totally complete – therefore use it as a guide and resource, but do not take it as the final word. The drug brand name is italicized and is followed by the generic drug name in bold.
    [Show full text]
  • Pharmacokinetics of Acemetacin and Its Active Metabolite Indomethacin in Rats During Acute Hepatic Damage and Liver Regeneration
    medigraphic Artemisaen línea AE Chávez-PiñaAnnals of et Hepatology al. Acemetacin 2009; pharmacokinetics 8(2): April-June: and 141-147 liver damage 141 Original Article Annals of Hepatology Pharmacokinetics of acemetacin and its active metabolite indomethacin in rats during acute hepatic damage and liver regeneration Aracely E. Chávez-Piña;1 Liliana Favari;1 Gilberto Castañeda-Hernández1 Abstract and indomethacin was comparable to control values. In conclusion: Indomethacin bioavailability after oral Background and aim: The pharmacokinetics of acem- administration of its precursor, acemetacin, is signifi- etacin, a non-steroidal anti-inflammatory drug which cantly reduced by acute hepatitis produced by CCl4. is biotransformed to indomethacin by hepatic first-pass Pharmacokinetic alterations, as liver damage, are re- effect, was examined during the necrotic and regenera- versible, but do not require complete liver regenera- tion phases resulting from acute hepatitis induced by tion to return to basal conditions. carbon tetrachloride (CCl4). Material and methods: Acute hepatitis was induced by oral CCl4 administra- Key words: Hepatitis, carbon tetrachloride, bioavail- tion to male Wistar rats. On days 0, 1 and 3 after the in- ability, first-pass effect, hepatic metabolism. sult, liver histological analysis was performed, bio- chemical markers of liver damage and regeneration Introduction were measured, and the pharmacokinetics of oral acemetacin and of its active metabolite, indomethacin, Acemetacin, a carboxymethyl ester derivative of in- were determined. Results: One day after CCl4 adminis- domethacin, is currently used in the treatment of inflam- tration, liver necrosis was apparent and there was an mation and pain.1-3 It has been shown that equimolar dos- increase in the circulating levels of indicators of liver es of both agents result in comparable analgesic and anti- damage and regeneration with regard to control condi- inflammatory effects.1,2 Notwithstanding, clinical studies tions.
    [Show full text]
  • Inflammatory Drug
    Abbreviations used: AR(s), adverse hepatotoxicity, 17 reaction(s); ADR(s), adverse drug manufacturers, 9 reaction(s); NSAID(s), non-steroid anti­ amorfazone, trade mark names and inflammatory drug(s) manufacturers, 9 Amuno, generic name and manufacturer, 12 anaemia absorption interactions, drug, 180-1 aplastic, 83 acemetacin, trade mark names and report rate, 33 manufacturers, 8 haemolytic, 84-5 acetyl salicylic acid, see Aspirin in rheumatoid patients, inappropriate action, drug, ~ pharmacoactivity therapy, 250 activation (of drugs), 243-5, 246, 247 anaphylaxis/anaphylactoid reactions, 17, pathway, 244 81 Actol, generic name and manufacturer, 13 Anaprox, generic name and manufacturer, Actosal, generic name and manufacturer, 13 9 angioedema, 6 acyl-coenzyme A formation, 221-2 angiotensin-converting enzyme, 195, 196 adjuvant induced arthritis, ~ inhibitors arthritis function, 195 Af1oxan, generic name and manufacturer, NSAID interactions with, 195-200 14 animal(s) age see also elderly experimentation, ethics of, 267 gastrointestinal susceptibility re­ inter species differences in lated to, 164, 286-8 propionate chiral inversion, use of anti-arthritics correlated 222-3, 223 with, 152 Ansaid, generic name and manufacturer, aged, the, ~ elderly 11 agranulocytosis antacids, 292 incidence, 7, 100-2 passim effect on drug absorption, 180, 181 in Sweden, 66, 67 NSAID interactions with, 185, 193 pyrazolone-induced, 7, 99-104 anthranilic acid, relative safety, 18 analytical epidemiological anti-arthritic drugs, ~ antirheumatic studies, 101-3 drugs
    [Show full text]
  • COX-2 Selective Non-Steroidal Anti-Inflammatory Drugs For
    Health Technology Assessment Health Technology Health Technology Assessment 2008; Vol. 12: No. 11 2008; 12: No. 11 Vol. selective non-steroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis COX-2 Cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs (etodolac, meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib and lumiracoxib) for osteoarthritis and rheumatoid arthritis: a systematic review and economic evaluation Feedback The HTA Programme and the authors would like to know Y-F Chen, P Jobanputra, P Barton, S Bryan, your views about this report. The Correspondence Page on the HTA website A Fry-Smith, G Harris and RS Taylor (http://www.hta.ac.uk) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website. We look forward to hearing from you. April 2008 The National Coordinating Centre for Health Technology Assessment, Mailpoint 728, Boldrewood, Health Technology Assessment University of Southampton, NHS R&D HTA Programme Southampton, SO16 7PX, UK. HTA Fax: +44 (0) 23 8059 5639 Email: [email protected] www.hta.ac.uk http://www.hta.ac.uk ISSN 1366-5278 HTA How to obtain copies of this and other HTA Programme reports. An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (http://www.hta.ac.uk). A fully searchable CD-ROM is also available (see below). Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents.
    [Show full text]
  • Non-Steroidal Anti-Inflammatory Drugs and Risk of Heart Failure In
    RESEARCH BMJ: first published as 10.1136/bmj.i4857 on 28 September 2016. Downloaded from OPEN ACCESS Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: nested case-control study Andrea Arfè,1 Lorenza Scotti,1 Cristina Varas-Lorenzo,2 Federica Nicotra,1 Antonella Zambon,1 Bianca Kollhorst,3 Tania Schink,3 Edeltraut Garbe,3 Ron Herings,4 Huub Straatman,4 René Schade,5 Marco Villa,6 Silvia Lucchi,6 Vera Valkhoff,5 Silvana Romio,5 Frantz Thiessard,7 Martijn Schuemie,5 Antoine Pariente,7 Miriam Sturkenboom,5 Giovanni Corrao1 On behalf of the Safety of Non-steroidal Anti-inflammatory Drugs (SOS) Project Consortium 1Unit of Biostatistics, ABSTRACT of hospital admission for heart failure (adjusted odds Epidemiology, and Public OBJECTIVES ratio 1.19; 95% confidence interval 1.17 to 1.22), Health, Department of Statistics compared with past use of any NSAIDs (use >183 days and Quantitative Methods, To investigate the cardiovascular safety of non- University of Milano-Bicocca, steroidal anti-inflammatory drugs (NSAIDs) and in the past). Risk of admission for heart failure 20126 Milan, Italy estimate the risk of hospital admission for heart failure increased for seven traditional NSAIDs (diclofenac, 2RTI Health Solutions, with use of individual NSAIDs. ibuprofen, indomethacin, ketorolac, naproxen, Barcelona, Spain nimesulide, and piroxicam) and two COX 2 inhibitors 3 DESIGN Leibniz Institute of Prevention (etoricoxib and rofecoxib). Odds ratios ranged from Research and Epidemiology, Nested case-control study. Bremen, Germany 1.16 (95% confidence interval 1.07 to 1.27) for naproxen SETTING 4PHARMO Institute, Utrecht, to 1.83 (1.66 to 2.02) for ketorolac.
    [Show full text]
  • Anti-Inflammatory/Analgesic Combination of Alpha
    Patentamt JEuropàischesEuropean Patent Office ® Publication number: 0 1 09 036 Office européen des brevets g "j © EUROPEAN PATENT SPECIFICATION (45) Dateof publication of patent spécification: 02.09.87 (jjj) jnt ci 4- A 61 K 31/415, A 61 K 31/62, (22) Dateoffiling: 08.11.83 (54) Anti-inf lammatory/analgesic combination of alpha-fluoromethylhistidine and a selected non-steroidal anti-inflammatory drug (NSAID). (§) Priority: 15.11.82 US 441581 (73) Proprietor: MERCK & CO. INC. 126, East Lincoln Avenue P.O. Box 2000 Rahway New Jersey 07065 (US) (43) Date of publication of application: 23.05.84 Bulletin 84/21 @ Inventor: Goldenberg, Marvin M. 721 Shackamaxon Drive (45) Publication of the grant of the patent: Westfield New Jersey 07090 (US) 02.09.87 Bulletin 87/36 (74) Representative: Abitz, Walter, Dr.-lng. et al (84) Designated Contracting States: Abitz, Morf, Gritschneder, Freiherr von CH DE FR GB IT LI NL Wittgenstein Postfach 86 01 09 D-8000 Munchen 86 (DE) (§) References cited: EP-A-0 046290 US-A-4325 961 CÛ (£> o o> o Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall CL be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been LU paid. (Art. 99( 1 ) European patent convention). Courier Press, Leamington Spa, England. BACKGROUND OF THE INVENTION This invention relates to novel pharmaceutical combinations comprising a-fluoromethylhistidine (FMH) and a non-steroidal anti-inflammatory/analgesic drug (NSAID) particularly indomethacin, diflunisal and naproxen.
    [Show full text]
  • Celecoxib Loaded In-Situ Provesicular Powder and Its In-Vitro
    pharmaceutics Article Celecoxib Loaded In-Situ Provesicular Powder and Its In-Vitro Cytotoxic Effect for Cancer Therapy: Fabrication, Characterization, Optimization and Pharmacokinetic Evaluation Ali M. Nasr 1,2,* , Sameh S. Elhady 3 , Shady A. Swidan 4,5,* and Noha M. Badawi 4,5,* 1 Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt 2 Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt 3 Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; [email protected] 4 Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo 11837, Egypt 5 The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt * Correspondence: [email protected] (A.M.N.); [email protected] (S.A.S.); [email protected] (N.M.B.) Received: 4 November 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: Introduction: Several recent studies have shown that the role of cyclooxygenase 2 (COX-2) in carcinogenesis has become more evident. It affects angiogenesis, apoptosis, and invasion, and plays a key role in the production of carcinogens. It has also been reported that COX-2 inhibitors such as celecoxib (CLX) might play an effective role in preventing cancer formation and progression. Formulation of CLX into nanovesicles is a promising technique to improve its bioavailability and anticancer efficacy. Aim: The aim of this study is to optimize and evaluate the anticancer efficacy of CLX-loaded in-situ provesicular powder composed of surfactants and fatty alcohol-based novel nanovesicles in-vitro and determine its pharmacokinetic parameters in-vivo.
    [Show full text]