Comprehensive Genomic Characterization of Mantle Cell Lymphoma
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Significant Shortest Paths for the Detection of Putative Disease Modules
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.01.019844; this version posted April 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SIGNIFICANT SHORTEST PATHS FOR THE DETECTION OF PUTATIVE DISEASE MODULES Daniele Pepe1 1Department of Oncology, KU Leuven, LKI–Leuven Cancer Institute, Leuven, Belgium Email address: DP: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.04.01.019844; this version posted April 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Keywords Structural equation modeling, significant shortest paths, pathway analysis, disease modules. Abstract Background The characterization of diseases in terms of perturbated gene modules was recently introduced for the analysis of gene expression data. Some approaches were proposed in literature, but many times they are inductive approaches. This means that starting directly from data, they try to infer key gene networks potentially associated to the biological phenomenon studied. However they ignore the biological information already available to characterize the gene modules. Here we propose the detection of perturbed gene modules using the combination of data driven and hypothesis-driven approaches relying on biological metabolic pathways and significant shortest paths tested by structural equation modeling. -
Interactions Between the Parasite Philasterides Dicentrarchi and the Immune System of the Turbot Scophthalmus Maximus.A Transcriptomic Analysis
biology Article Interactions between the Parasite Philasterides dicentrarchi and the Immune System of the Turbot Scophthalmus maximus.A Transcriptomic Analysis Alejandra Valle 1 , José Manuel Leiro 2 , Patricia Pereiro 3 , Antonio Figueras 3 , Beatriz Novoa 3, Ron P. H. Dirks 4 and Jesús Lamas 1,* 1 Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] 2 Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] 3 Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; [email protected] (P.P.); antoniofi[email protected] (A.F.); [email protected] (B.N.) 4 Future Genomics Technologies, Leiden BioScience Park, 2333 BE Leiden, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +34-88-181-6951; Fax: +34-88-159-6904 Received: 4 September 2020; Accepted: 14 October 2020; Published: 15 October 2020 Simple Summary: Philasterides dicentrarchi is a free-living ciliate that causes high mortality in marine cultured fish, particularly flatfish, and in fish kept in aquaria. At present, there is still no clear picture of what makes this ciliate a fish pathogen and what makes fish resistant to this ciliate. In the present study, we used transcriptomic techniques to evaluate the interactions between P. dicentrarchi and turbot leucocytes during the early stages of infection. The findings enabled us to identify some parasite genes/proteins that may be involved in virulence and host resistance, some of which may be good candidates for inclusion in fish vaccines. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Intrinsic Disorder in PTEN and Its Interactome Confers Structural Plasticity and 63
OPEN Intrinsic Disorder in PTEN and its SUBJECT AREAS: Interactome Confers Structural Plasticity CELLULAR SIGNALLING NETWORKS and Functional Versatility CANCER GENOMICS Prerna Malaney1*, Ravi Ramesh Pathak1*, Bin Xue3, Vladimir N. Uversky3,4,5 & Vrushank Dave´1,2 SYSTEMS ANALYSIS GENE REGULATORY NETWORKS 1Morsani College of Medicine, Department of Pathology and Cell Biology, 2Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 3Department of Molecular Medicine, 4USF Health Byrd Alzheimer’s Research Institute, Received University of South Florida, Tampa, FL, 33612, USA, 5Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 11 March 2013 Pushchino, Moscow Region, Russia. Accepted 3 June 2013 IDPs, while structurally poor, are functionally rich by virtue of their flexibility and modularity. However, how mutations in IDPs elicit diseases, remain elusive. Herein, we have identified tumor suppressor PTEN as Published an intrinsically disordered protein (IDP) and elucidated the molecular principles by which its intrinsically 20 June 2013 disordered region (IDR) at the carboxyl-terminus (C-tail) executes its functions. Post-translational modifications, conserved eukaryotic linear motifs and molecular recognition features present in the C-tail IDR enhance PTEN’s protein-protein interactions that are required for its myriad cellular functions. PTEN primary and secondary interactomes are also enriched in IDPs, most being cancer related, revealing that Correspondence and PTEN functions emanate from and are nucleated by the C-tail IDR, which form pliable network-hubs. requests for materials Together, PTEN higher order functional networks operate via multiple IDP-IDP interactions facilitated by should be addressed to its C-tail IDR. Targeting PTEN IDR and its interaction hubs emerges as a new paradigm for treatment of V.D. -
Modulation of NF-Κb Signalling by Microbial Pathogens
REVIEWS Modulation of NF‑κB signalling by microbial pathogens Masmudur M. Rahman and Grant McFadden Abstract | The nuclear factor-κB (NF‑κB) family of transcription factors plays a central part in the host response to infection by microbial pathogens, by orchestrating the innate and acquired host immune responses. The NF‑κB proteins are activated by diverse signalling pathways that originate from many different cellular receptors and sensors. Many successful pathogens have acquired sophisticated mechanisms to regulate the NF‑κB signalling pathways by deploying subversive proteins or hijacking the host signalling molecules. Here, we describe the mechanisms by which viruses and bacteria micromanage the host NF‑κB signalling circuitry to favour the continued survival of the pathogen. The nuclear factor-κB (NF-κB) family of transcription Signalling targets upstream of NF‑κB factors regulates the expression of hundreds of genes that NF-κB proteins are tightly regulated in both the cyto- are associated with diverse cellular processes, such as pro- plasm and the nucleus6. Under normal physiological liferation, differentiation and death, as well as innate and conditions, NF‑κB complexes remain inactive in the adaptive immune responses. The mammalian NF‑κB cytoplasm through a direct interaction with proteins proteins are members of the Rel domain-containing pro- of the inhibitor of NF-κB (IκB) family, including IκBα, tein family: RELA (also known as p65), RELB, c‑REL, IκBβ and IκBε (also known as NF-κBIα, NF-κBIβ and the NF-κB p105 subunit (also known as NF‑κB1; which NF-κBIε, respectively); IκB proteins mask the nuclear is cleaved into the p50 subunit) and the NF-κB p100 localization domains in the NF‑κB complex, thus subunit (also known as NF‑κB2; which is cleaved into retaining the transcription complex in the cytoplasm. -
Recombinant Human FLRT2 Protein Catalog Number: ATGP3291
Recombinant human FLRT2 protein Catalog Number: ATGP3291 PRODUCT INPORMATION Expression system Baculovirus Domain 36-541aa UniProt No. O43155 NCBI Accession No. NP_037363 Alternative Names FLRT2 PRODUCT SPECIFICATION Molecular Weight 57.5 kDa (514aa) Concentration 0.25mg/ml (determined by absorbance at 280nm) Formulation Liquid in. Phosphate-Buffered Saline (pH 7.4) containing 10% glycerol Purity > 90% by SDS-PAGE Endotoxin level < 1 EU per 1ug of protein (determined by LAL method) Tag His-Tag Application SDS-PAGE Storage Condition Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND Description FLRT2, also known as leucine-rich repeat transmembrane protein FLRT2, is one of three FLRT (fibronectin, leucine rich repeat, transmembrane) glycoproteins expressed in distinct areas of the developing brain and other tissues. Human FLRT1 and FLRT3 ECDs (extracellular domain) share approximately 47% aa identity with FLRT2. The fibronectin domain of all three FLRTs can bind to FGF receptors. Recombinant human FLRT2, fused to His-tag 1 Recombinant human FLRT2 protein Catalog Number: ATGP3291 at C-terminus, was expressed in insect cell and purified by using conventional chromatography techniques. Amino acid Sequence CPSVCRCDRN FVYCNERSLT SVPLGIPEGV TVLYLHNNQI NNAGFPAELH NVQSVHTVYL YGNQLDEFPM NLPKNVRVLH LQENNIQTIS RAALAQLLKL EELHLDDNSI STVGVEDGAF REAISLKLLF LSKNHLSSVP VGLPVDLQEL RVDENRIAVI SDMAFQNLTS LERLIVDGNL LTNKGIAEGT FSHLTKLKEF SIVRNSLSHP PPDLPGTHLI RLYLQDNQIN HIPLTAFSNL RKLERLDISN NQLRMLTQGV FDNLSNLKQL TARNNPWFCD CSIKWVTEWL KYIPSSLNVR GFMCQGPEQV RGMAVRELNM NLLSCPTTTP GLPLFTPAPS TASPTTQPPT LSIPNPSRSY TPPTPTTSKL PTIPDWDGRE RVTPPISERI QLSIHFVNDT SIQVSWLSLF TVMAYKLTWV KMGHSLVGGI VQERIVSGEK QHLSLVNLEP RSTYRICLVP LDAFNYRAVE DTICSEATTH ASYLNNGSNT ASSHEQTTSH SMGSPFLEHH HHHH General References Haines B.P., et al. (2006) Dev. -
Acute Lymphoblastic Leukemia in Pediatric Epigenetic Approach
MOJ Anatomy & Physiology Research Article Open Access Acute lymphoblastic leukemia in pediatric epigenetic approach Abstract Volume 7 Issue 4 - 2020 Introduction and objectives: Acute lymphoblastic leukemia (ALL) in pediatric patients Jose Ignacio Pat Yeh,1 Pedro Emmanuel Poot is an issue that affects the quality of life of the patient and his family, so it is urgent to 1 2 know the physiology, presentation, and functionality of the cell population that allows Chable, Abner Ismael Guzman Félix, Luis 2 3 determining the more effective treatments. The objective is to review the evidence derived Sandoval Jurado, David Rojano-Mejía, from cohort studies and clinical trials on ALL in pediatric patients. Jiménez Báez María Valeria3 1Student of the Bachelor of Medicine, University of Quintana Method: A retrospective study carried out based on the search for cohort studies and Roo, Mexico clinical trials in the last 10 years in MEDLINE, EMBASE, and Cochrane Controlled Trials 2Mexican Institute Social Security Quintana Roo, Mexico Register whose keywords [Acute and Lymphoblastic Leukemia], [epigenetical], [Drug 3Professor at the University of Quintana Roo, Mexico Therapy], [Pediatric]. Correspondence: Maria Valeria Jiménez Baez, Av. Politécnico Results: 87 articles were found based on titles and abstracts, of which 16 focus on the Nacional s/n Entre Tepic and Kinic 77509 Cancun, University of age group and criteria of interest. Of the 10% of the known etiology, genetic alterations Quintana Roo, Mexico, Tel 9988742354, are more important. However, there are epigenetic modifications that are important for Email leukemia to occur, such as DNA methylation, histone modification, and regulation by non- coding RNAs. -
Recombinant Human Fibronectin Leucine Rich Transmembrane Protein 2/FLRT2 (C-6His)
9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 32-7320: Recombinant Human Fibronectin Leucine Rich Transmembrane Protein 2/FLRT2 (C-6His) Gene : FLRT2 Gene ID : 23768 Uniprot ID : O43155 Description Source: Human Cells. MW :57.3kD. Recombinant Human FLRT2 is produced by our Mammalian expression system and the target gene encoding Cys36-Ser539 is expressed with a 6His tag at the C-terminus. Fibronectin Leucine Rich Transmembrane protein 2 (FLRT2) is a member of the fibronectin leucine rich transmembrane protein (FLRT) family. The three fibronectin leucine-rich repeat transmembrane (FLRT) proteins: FLRT1, FLRT2 and FLRT3, all contain 10 leucine-rich repeats (LRR), a type III fibronectin (FN) domain, followed by the transmembrane region, and a short cytoplasmic tail. FLRT proteins have dual properties as regulators of cell adhesion and potentiators of fibroblast growth factor (FGF) mediated signalling. The fibronectin domain of all three FLRTs can bind FGF receptors. This binding is thought to regulate FGF signaling during development. The LRR domains are responsible for both the localization of FLRTs in areas of cell contact and homotypic cell cell association. FLRT2 is expressed in a subset of the sclerotome, adjacent to the region that forms the syndetome, suggesting its involvement in the FGF signalling pathway. Product Info Amount : 10 µg / 50 µg Content : Lyophilized from a 0.2 µm filtered solution of 20mM PB, 150mM NaCl, pH 7.2. Lyophilized protein should be stored at -20°C, though stable at room temperature for 3 weeks. Storage condition : Reconstituted protein solution can be stored at 4-7°C for 2-7 days. -
FSHD Region Gene 1 (FRG1) Is Crucial for Angiogenesis Linking FRG1 to Facioscapulohumeral Muscular Dystrophy-Associated Vasculopathy
University of Massachusetts Medical School eScholarship@UMMS Peter Jones Lab Publications Cell and Developmental Biology Laboratories 2009-05-01 FSHD region gene 1 (FRG1) is crucial for angiogenesis linking FRG1 to facioscapulohumeral muscular dystrophy-associated vasculopathy Ryan Wuebbles University of Illinois at Urbana-Champaign Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/peterjones Part of the Cell Biology Commons, Developmental Biology Commons, Molecular Biology Commons, Molecular Genetics Commons, Musculoskeletal Diseases Commons, and the Nervous System Diseases Commons Repository Citation Wuebbles R, Hanel ML, Jones PL. (2009). FSHD region gene 1 (FRG1) is crucial for angiogenesis linking FRG1 to facioscapulohumeral muscular dystrophy-associated vasculopathy. Peter Jones Lab Publications. https://doi.org/10.1242/dmm.002261. Retrieved from https://escholarship.umassmed.edu/ peterjones/11 Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Peter Jones Lab Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Disease Models & Mechanisms 2, 267-274 (2009) doi:10.1242/dmm.002261 RESEARCH ARTICLE FSHD region gene 1 (FRG1) is crucial for angiogenesis linking FRG1 to facioscapulohumeral muscular dystrophy-associated vasculopathy Ryan D. Wuebbles1,*, Meredith L. Hanel1,* and Peter L. Jones1,‡ SUMMARY The genetic lesion that is diagnostic for facioscapulohumeral muscular dystrophy (FSHD) results in an epigenetic misregulation of gene expression, which ultimately leads to the disease pathology. FRG1 (FSHD region gene 1) is a leading candidate for a gene whose misexpression might lead to FSHD. -
The Genome of Schmidtea Mediterranea and the Evolution Of
OPEN ArtICLE doi:10.1038/nature25473 The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms Markus Alexander Grohme1*, Siegfried Schloissnig2*, Andrei Rozanski1, Martin Pippel2, George Robert Young3, Sylke Winkler1, Holger Brandl1, Ian Henry1, Andreas Dahl4, Sean Powell2, Michael Hiller1,5, Eugene Myers1 & Jochen Christian Rink1 The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms. Rapid regeneration from tiny pieces of tissue makes planarians a prime De novo long read assembly of the planarian genome model system for regeneration. Abundant adult pluripotent stem cells, In preparation for genome sequencing, we inbred the sexual strain termed neoblasts, power regeneration and the continuous turnover of S. mediterranea (Fig. 1a) for more than 17 successive sib- mating of all cell types1–3, and transplantation of a single neoblast can rescue generations in the hope of decreasing heterozygosity. We also developed a lethally irradiated animal4. Planarians therefore also constitute a a new DNA isolation protocol that meets the purity and high molecular prime model system for stem cell pluripotency and its evolutionary weight requirements of PacBio long-read sequencing12 (Extended Data underpinnings5. -
Gene Expression During Normal and FSHD Myogenesis Tsumagari Et Al
Gene expression during normal and FSHD myogenesis Tsumagari et al. Tsumagari et al. BMC Medical Genomics 2011, 4:67 http://www.biomedcentral.com/1755-8794/4/67 (27 September 2011) Tsumagari et al. BMC Medical Genomics 2011, 4:67 http://www.biomedcentral.com/1755-8794/4/67 RESEARCHARTICLE Open Access Gene expression during normal and FSHD myogenesis Koji Tsumagari1, Shao-Chi Chang1, Michelle Lacey2,3, Carl Baribault2,3, Sridar V Chittur4, Janet Sowden5, Rabi Tawil5, Gregory E Crawford6 and Melanie Ehrlich1,3* Abstract Background: Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods: Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results: Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p < 0.01) in control myoblasts or myotubes vs. non-muscle cells (2185 and 3006, respectively) or in FSHD vs. control myoblasts or myotubes (295 and 797, respectively). Surprisingly, despite the morphologically normal differentiation of FSHD myoblasts to myotubes, most of the disease-related dysregulation was seen as dampening of normal myogenesis- specific expression changes, including in genes for muscle structure, mitochondrial function, stress responses, and signal transduction. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing