Cellular Networks Cellular Network Organization
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
NEXT GENERATION MOBILE WIRELESS NETWORKS: 5G CELLULAR INFRASTRUCTURE JULY-SEPT 2020 the Journal of Technology, Management, and Applied Engineering
VOLUME 36, NUMBER 3 July-September 2020 Article Page 2 References Page 17 Next Generation Mobile Wireless Networks: Authors Dr. Rendong Bai 5G Cellular Infrastructure Associate Professor Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Vigs Chandra Professor and Coordinator Cyber Systems Technology Programs Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Ray Richardson Professor Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Peter Ping Liu Professor and Interim Chair School of Technology Eastern Illinois University Keywords: The Journal of Technology, Management, and Applied Engineering© is an official Mobile Networks; 5G Wireless; Internet of Things; publication of the Association of Technology, Management, and Applied Millimeter Waves; Beamforming; Small Cells; Wi-Fi 6 Engineering, Copyright 2020 ATMAE 701 Exposition Place Suite 206 SUBMITTED FOR PEER – REFEREED Raleigh, NC 27615 www. atmae.org JULY-SEPT 2020 The Journal of Technology, Management, and Applied Engineering Next Generation Mobile Wireless Networks: Dr. Rendong Bai is an Associate 5G Cellular Infrastructure Professor in the Department of Applied Engineering and Technology at Eastern Kentucky University. From 2008 to 2018, ABSTRACT he served as an Assistant/ The requirement for wireless network speed and capacity is growing dramatically. A significant amount Associate Professor at Eastern of data will be mobile and transmitted among phones and Internet of things (IoT) devices. The current Illinois University. He received 4G wireless technology provides reasonably high data rates and video streaming capabilities. However, his B.S. degree in aircraft the incremental improvements on current 4G networks will not satisfy the ever-growing demands of manufacturing engineering users and applications. -
Running a Basic Osmocom GSM Network
Running a basic Osmocom GSM network Harald Welte <[email protected]> What this talk is about Implementing GSM/GPRS network elements as FOSS Applied Protocol Archaeology Doing all of that on top of Linux (in userspace) Running your own Internet-style network use off-the-shelf hardware (x86, Ethernet card) use any random Linux distribution configure Linux kernel TCP/IP network stack enjoy fancy features like netfilter/iproute2/tc use apache/lighttpd/nginx on the server use Firefox/chromium/konqueor/lynx on the client do whatever modification/optimization on any part of the stack Running your own GSM network Until 2009 the situation looked like this: go to Ericsson/Huawei/ZTE/Nokia/Alcatel/… spend lots of time convincing them that you’re an eligible customer spend a six-digit figure for even the most basic full network end up with black boxes you can neither study nor improve WTF? I’ve grown up with FOSS and the Internet. I know a better world. Why no cellular FOSS? both cellular (2G/3G/4G) and TCP/IP/HTTP protocol specs are publicly available for decades. Can you believe it? Internet protocol stacks have lots of FOSS implementations cellular protocol stacks have no FOSS implementations for the first almost 20 years of their existence? it’s the classic conflict classic circuit-switched telco vs. the BBS community ITU-T/OSI/ISO vs. Arpanet and TCP/IP Enter Osmocom In 2008, some people (most present in this room) started to write FOSS for GSM to boldly go where no FOSS hacker has gone before where protocol stacks are deep and acronyms are -
Cellular Wireless Networks
CHAPTER10 CELLULAR WIRELESS NETwORKS 10.1 Principles of Cellular Networks Cellular Network Organization Operation of Cellular Systems Mobile Radio Propagation Effects Fading in the Mobile Environment 10.2 Cellular Network Generations First Generation Second Generation Third Generation Fourth Generation 10.3 LTE-Advanced LTE-Advanced Architecture LTE-Advanced Transission Characteristics 10.4 Recommended Reading 10.5 Key Terms, Review Questions, and Problems 302 10.1 / PRINCIPLES OF CELLULAR NETWORKS 303 LEARNING OBJECTIVES After reading this chapter, you should be able to: ◆ Provide an overview of cellular network organization. ◆ Distinguish among four generations of mobile telephony. ◆ Understand the relative merits of time-division multiple access (TDMA) and code division multiple access (CDMA) approaches to mobile telephony. ◆ Present an overview of LTE-Advanced. Of all the tremendous advances in data communications and telecommunica- tions, perhaps the most revolutionary is the development of cellular networks. Cellular technology is the foundation of mobile wireless communications and supports users in locations that are not easily served by wired networks. Cellular technology is the underlying technology for mobile telephones, personal communications systems, wireless Internet and wireless Web appli- cations, and much more. We begin this chapter with a look at the basic principles used in all cellular networks. Then we look at specific cellular technologies and stan- dards, which are conveniently grouped into four generations. Finally, we examine LTE-Advanced, which is the standard for the fourth generation, in more detail. 10.1 PRINCIPLES OF CELLULAR NETWORKS Cellular radio is a technique that was developed to increase the capacity available for mobile radio telephone service. Prior to the introduction of cellular radio, mobile radio telephone service was only provided by a high-power transmitter/ receiver. -
Guidelines on Mobile Device Forensics
NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Sam Brothers Wayne Jansen http://dx.doi.org/10.6028/NIST.SP.800-101r1 NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Software and Systems Division Information Technology Laboratory Sam Brothers U.S. Customs and Border Protection Department of Homeland Security Springfield, VA Wayne Jansen Booz-Allen-Hamilton McLean, VA http://dx.doi.org/10.6028/NIST.SP. 800-101r1 May 2014 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director Authority This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Management Act of 2002 (FISMA), 44 U.S.C. § 3541 et seq., Public Law (P.L.) 107-347. NIST is responsible for developing information security standards and guidelines, including minimum requirements for Federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate Federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in Circular A- 130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in Circular A- 130, Appendix III, Security of Federal Automated Information Resources. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on Federal agencies by the Secretary of Commerce under statutory authority. -
GSM Network Element Modification Or Upgrade Required for GPRS. Mobile Station (MS) New Mobile Station Is Required to Access GPRS
GPRS GPRS architecture works on the same procedure like GSM network, but, has additional entities that allow packet data transmission. This data network overlaps a second- generation GSM network providing packet data transport at the rates from 9.6 to 171 kbps. Along with the packet data transport the GSM network accommodates multiple users to share the same air interface resources concurrently. Following is the GPRS Architecture diagram: GPRS attempts to reuse the existing GSM network elements as much as possible, but to effectively build a packet-based mobile cellular network, some new network elements, interfaces, and protocols for handling packet traffic are required. Therefore, GPRS requires modifications to numerous GSM network elements as summarized below: GSM Network Element Modification or Upgrade Required for GPRS. Mobile Station (MS) New Mobile Station is required to access GPRS services. These new terminals will be backward compatible with GSM for voice calls. BTS A software upgrade is required in the existing Base Transceiver Station(BTS). BSC The Base Station Controller (BSC) requires a software upgrade and the installation of new hardware called the packet control unit (PCU). The PCU directs the data traffic to the GPRS network and can be a separate hardware element associated with the BSC. GPRS Support Nodes (GSNs) The deployment of GPRS requires the installation of new core network elements called the serving GPRS support node (SGSN) and gateway GPRS support node (GGSN). Databases (HLR, VLR, etc.) All the databases involved in the network will require software upgrades to handle the new call models and functions introduced by GPRS. -
HD Voice Annex C Minimum Requirements with GSM/UMTS/LTE
GSM Association Non-Confidential Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA Version 1.1 22nd March 2013 Security Classification – NON CONFIDENTIAL GSMA MATERIAL Copyright Notice Copyright © 2013 GSM Association. Antitrust Notice The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy. Version 1.1 Page 1 of 18 GSM Association Non-Confidential Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA Table of Contents INTRODUCTION ..................................................................................................................... 3 ANNEX C: MINIMUM REQUIREMENTS FOR MOBILE NETWORKS AND TERMINALS FOR THE USAGE OF THE ‘HD VOICE’ LOGO WITH GSM/UMTS/LTE............................................................................................................... 3 DOCUMENT MANAGEMENT ............................................................................................... 18 Document History .................................................................................................................. 18 Other Information ................................................................................................................... 18 Version 1.1 Page 2 of 18 GSM Association Non-Confidential Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA INTRODUCTION -
Cellular Network Sunsetting
Cellular Network Sunsetting By Dave Anderson, Senior IoCP Program Manager The use of acronyms by the cellular industry is extensive. 3GPP, 2G, 3G, 4G, 5G, LTE, CDMA, 1xRTT, HSPA, GPRS, EV-DO, GSM, NB-IoT, and many others are examples of the plethora of technologies and descriptions used to ultimately describe the actual hardware and service used by a device to connect to various networks to communicate information. This complexity pales in comparison to the FCC spectrum allocation chart shown in Fig 1. The chart depicts the frequency spectrums where toys, TV, radio, military, medical, marine radios, satellites, space telescopes and all the other frequency uses in the United States. Other countries have their own versions of this chart. Cellular technology utilizes a very small portion of this chart, yet occupies a large portion of everyday life in today’s connected society. Figure 1 Close examination of this chart will show that there are no open or available blocks of spectrum, so as new technologies are developed they must either layer on top of existing technologies, or aging technologies must be turned off or ‘sunset’ to free up spectrum for newer technologies. The cell phone industry has diligently worked to define a consumer market where the expectation is to replace this communication device with contract renewal type regularity. From a consumer point of view, the older technologies are usually long passed before a sunset event would force a phone upgrade. In parallel to the explosive cell phone market growth is the industrial usage of the cellular communication networks. The presence of a cellular network removes the necessity for wired connections and makes mobile monitoring possible for a number of industries. -
Location Update Procedure
Location Update Procedure In order to make a mobile terminated call, The GSM network should know the location of the MS (Mobile Station), despite of its movement. For this purpose the MS periodically reports its location to the network using the Location Update procedure. Location Area (LA) A GSM network is divided into cells. A group of cells is considered a location area. A mobile phone in motion keeps the network informed about changes in the location area. If the mobile moves from a cell in one location area to a cell in another location area, the mobile phone should perform a location area update to inform the network about the exact location of the mobile phone. The Location Update procedure is performed: When the MS has been switched off and wants to become active, or When it is active but not involved in a call, and it moves from one location area to another, or After a regular time interval. Location registration takes place when a mobile station is turned on. This is also known as IMSI Attach because as soon as the mobile station is switched on it informs the Visitor Location Register (VLR) that it is now back in service and is able to receive calls. As a result of a successful registration, the network sends the mobile station two numbers that are stored in the SIM (Subscriber Identity Module) card of the mobile station. These two numbers are:- 1. Location Area Identity (LAI) 2. Temporary Mobile Subscriber Identity (TMSI). The network, via the control channels of the air interface, sends the LAI. -
Cdma2000 1X Capacity Decrease by Power Control Error in High Speed Train Environment
CDMA2000 1X CAPACITY DECREASE BY POWER CONTROL ERROR IN HIGH SPEED TRAIN ENVIRONMENT Simon Shin, Tae-Kyun Park, Byeung-Cheol Kim, and Yong-Ha Jeon Network R&D Center, SK Telecom, 9-1, Sunae-dong, Bundang-gu, Sungnam City, Gyunggi-do, South Korea Dongwoo Kim School of Electrical Engineering & Computer Science, Hanyang Univ. 1271 Sa-dong, Ansan, Kyungki-do 425-791, South Korea Keywords: CDMA2000 1X, Doppler shift, capacity, power control, Korea Train Express Abstract: CDMA2000 1X capacity was analysed in the high speed train environment. We calculated the power control error by Doppler shift and simulated bit error rate (BER) at the base station. We made the interference model and calculated the BER from lower bound of power control error variance. The reverse link BER was increased by high velocity although there was no coverage reduction. Capacity decrease was negligible in the pedestrian (5 km/h), urban vehicular(40 km/h), highway and railroad(100 km/h) environment. However, capacity was severely reduced in high speed train condition(300 km/h and 350 km/h). Cell-planning considering capacity as well as coverage is essential for successful cellular service in high speed train. 1 INTRODUCTION train with 300 km/h velocity. Received power, transmitted power, and pilot chip energy to Cellular mobile telephone and data communication interference ratio (Ec/Io) of mobile station were not correlated with the mobile velocity. We could serve services are very popular. Cellular service is usable in anywhere, even though tunnel, sea, and successfully the CDMA2000 1X in the KTX by underground places. Railroads and highways are existing cellular network. -
Modeling the Use of an Airborne Platform for Cellular Communications Following Disruptions
Dissertations and Theses 9-2017 Modeling the Use of an Airborne Platform for Cellular Communications Following Disruptions Stephen John Curran Follow this and additional works at: https://commons.erau.edu/edt Part of the Aviation Commons, and the Communication Commons Scholarly Commons Citation Curran, Stephen John, "Modeling the Use of an Airborne Platform for Cellular Communications Following Disruptions" (2017). Dissertations and Theses. 353. https://commons.erau.edu/edt/353 This Dissertation - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. MODELING THE USE OF AN AIRBORNE PLATFORM FOR CELLULAR COMMUNICATIONS FOLLOWING DISRUPTIONS By Stephen John Curran A Dissertation Submitted to the College of Aviation in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Aviation Embry-Riddle Aeronautical University Daytona Beach, Florida September 2017 © 2017 Stephen John Curran All Rights Reserved. ii ABSTRACT Researcher: Stephen John Curran Title: MODELING THE USE OF AN AIRBORNE PLATFORM FOR CELLULAR COMMUNICATIONS FOLLOWING DISRUPTIONS Institution: Embry-Riddle Aeronautical University Degree: Doctor of Philosophy in Aviation Year: 2017 In the wake of a disaster, infrastructure can be severely damaged, hampering telecommunications. An Airborne Communications Network (ACN) allows for rapid and accurate information exchange that is essential for the disaster response period. Access to information for survivors is the start of returning to self-sufficiency, regaining dignity, and maintaining hope. Real-world testing has proven that such a system can be built, leading to possible future expansion of features and functionality of an emergency communications system. -
Patent No.: US 8358640 B1
US008358640B1 (12) United States Patent (10) Patent No.: US 8,358,640 B1 Breau et a]. (45) Date of Patent: Jan. 22, 2013 (54) FEMTOCELL BRIDGING IN MEDIA LOCAL OTHER PUBLICATIONS AREA NETWORKS Notice ofAllowance datedApr. 11, 2011,U.S.Appl.No. 12/689,081, ?led Jan. 18,2012. (75) Inventors: Jeremey R. Breau, Leawood, KS (US); Breau, Jeremy R., et al., Patent Application entitled “System and Jason R. Delker, Olathe, KS (U S) Method for Bridging Media Local Area Networks,” ?led Jan. 18, 2010, US. Appl. No. 12/689,081. Assignee: Sprint Communications Company “Address Resolution Protocol,” Wikipedia, http://en.wikipedia.org/ (73) w/indeX.php?titleIAddressiResolutioniProtocol&printable:yes, L.P., Overland Park, KS (U S) (last visited Aug. 25, 2009). Bahlmann, Bruce, “DLNA Basics, Bridging Services within a Con ( * ) Notice: Subject to any disclaimer, the term of this nected Home,” Communications Technology, http://www.cable360. patent is extended or adjusted under 35 net/print/ct/deployment/techtrends/23787.html, Jun. 1, 2007. U.S.C. 154(b) by 248 days. Bahlmann, Bruce, “Digital Living Network Alliance (DLNA) Essen tials,” Birds-Eye.Net, http://www.birds-eye.net/articleiarchive/ digitalilivinginetworkiallianceidlnaiessentials.htm, Apr. 1, (21) Appl. No.: 12/791,859 2007. “Network address translation,” Wikipedia, http://en.wikipedia.org/ (22) Filed: Jun. 1, 2010 w/indeX.php?title:Networkiaddressitranslation&printable:yes, Aug. 20, 2009. (51) Int. Cl. Pre-Interview Communication dated Jul. 31, 2012, US. Appl. No. H04L 12/56 (2006.01) 12/698,495, ?led Feb. 2, 2010. H04] [/16 (2006.01) Delker, Jason R., et al., Patent Application entitled “Centralized Program Guide,” ?led Feb. -
700 Mhz Base Station Test Results for the FCC
MOBILE --------.. BEFREE 0---.- 700 MHz Base Station Test Results for the FCC Flow Mobile 700 MHz Base Station Test Results 1.0 Document Goal This document provides the test results of a Base Station which provides mobile broadband connectivity using 700 MHz spectrum using the WiFi protocol. Flow Mobile had obtained a STA from the FCC to be able to test a Base Station in the 760-776 MHZ. The purpose of this test was to prove that WiFi protocol can be used at this spectrum and a mobile Base Station can be used to help deploy a large wide-area network. 2.0 Introduction A Base Transceiver Station (BTS) is a major component of any wireless access network to provide wireless service to users. A client terminal connects to a BTS to provide service to the user. Our demonstration is of a BTS operating in 760-776 MHz using WiFi protocol and the client used to test this BTS is based on an off-the-shelf module developed by Ubiquiti Networks. The client can be a handheld device, a computer card that is either connected using the PCMCIA slot or USB connector. The connection between the client and the BTS uses a particular protocol. The protocol could be any of CDMA, GSM, 3G standards or Wi-Fi standards or the future LTE standards. Hence a BTS has two components for the radio connection to be established between the BTS and the Client Terminal. The two components are frequency component which is purely a radio function and a protocol component which is a required for communication.