Security for the Core Network of Third Generation Mobile Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gs Mec 011 V1.1.1 (2017-07)
ETSI GS MEC 011 V1.1.1 (2017-07) GROUP SPECIFICATION Mobile Edge Computing (MEC); Mobile Edge Platform Application Enablement Disclaimer The present document has been produced and approved by the Mobile Edge Computing (MEC) ETSI Industry Specification Group (ISG) and represents the views of those members who participated in this ISG. It does not necessarily represent the views of the entire ETSI membership. 2 ETSI GS MEC 011 V1.1.1 (2017-07) Reference DGS/MEC-0011Plat.App.Enablemen Keywords API, MEC ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. -
Experimenting with Srv6: a Tunneling Protocol Supporting Network Slicing in 5G and Beyond
This is a postprint version of the following published document: Gramaglia, M., et al. Experimenting with SRv6: a tunneling protocol supporting network slicing in 5G and beyond. In, 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 14-16 September 2020 (Virtual Conference). IEEE, 2020, 6 Pp. DOI: https://doi.org/10.1109/CAMAD50429.2020.9209260 © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Experimenting with SRv6: a Tunneling Protocol supporting Network Slicing in 5G and beyond Marco Gramaglia∗, Vincenzo Sciancalepore†, Francisco J. Fernandez-Maestro‡, Ramon Perez∗§, Pablo Serrano∗, Albert Banchs∗¶ ∗Universidad Carlos III de Madrid, Spain †NEC Laboratories Europe, Germany ‡Ericsson Spain §Telcaria Ideas, Spain ¶IMDEA Networks Institute, Spain Abstract—With network slicing, operators can acquire and Additionally, specific core network functions and procedures manage virtual instances of a mobile network, tailored to a have been introduced to correctly manage network slice life- given service, in this way maximizing flexibility while increasing cycle management operations, such as Network Slice Selection the overall resource utilization. However, the currently used tunnelling protocol, i.e., GTP, might not be the most appropriate Function (NSSF), Network Slice Selection Assistance Infor- choice for the envisioned scenarios, given its unawareness of mation (NSSAI), and so on. -
Release Notes Release 10.3.0.2 E98788-01
Oracle® Communications Performance Intelligence Center Oracle Communications Performance Intelligence Center Release Notes Release 10.3.0.2 E98788-01 November 2019 Oracle® Communications Performance Intelligence Center Oracle Communications Performance Intelligence Center Release Notes, Release 10.3.0.2 Copyright © 2003, 2019 Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notices are applicable: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. -
Location Update Procedure
Location Update Procedure In order to make a mobile terminated call, The GSM network should know the location of the MS (Mobile Station), despite of its movement. For this purpose the MS periodically reports its location to the network using the Location Update procedure. Location Area (LA) A GSM network is divided into cells. A group of cells is considered a location area. A mobile phone in motion keeps the network informed about changes in the location area. If the mobile moves from a cell in one location area to a cell in another location area, the mobile phone should perform a location area update to inform the network about the exact location of the mobile phone. The Location Update procedure is performed: When the MS has been switched off and wants to become active, or When it is active but not involved in a call, and it moves from one location area to another, or After a regular time interval. Location registration takes place when a mobile station is turned on. This is also known as IMSI Attach because as soon as the mobile station is switched on it informs the Visitor Location Register (VLR) that it is now back in service and is able to receive calls. As a result of a successful registration, the network sends the mobile station two numbers that are stored in the SIM (Subscriber Identity Module) card of the mobile station. These two numbers are:- 1. Location Area Identity (LAI) 2. Temporary Mobile Subscriber Identity (TMSI). The network, via the control channels of the air interface, sends the LAI. -
Lecture #9 3G & 4G Mobile Systems E-716-A
Integrated Technical Education Cluster Banna - At AlAmeeria © Ahmad El E-716-A Mobile Communications Systems Lecture #9 3G & 4G Mobile Systems Instructor: Dr. Ahmad El-Banna December 2014 1 Ok, let’s change ! change Ok, let’s 2 E-716-A, Lec#9 , Dec 2014 © Ahmad El-Banna Banna Agenda - Evolution from 2G to 3G © Ahmad El 3G Systems Objectives Alternative Interfaces UMTS , Lec#9 , Dec 2014 Dec Lec#9 , , A - 716 3.5G (HSPA) - E 4G (LTE) 3 Evolution from 2G Banna - 2G IS-95 GSM- IS-136 & PDC © Ahmad El GPRS IS-95B 2.5G HSCSD EDGE , Lec#9 , Dec 2014 Dec Lec#9 , , A - 716 - E Cdma2000-1xRTT W-CDMA 3G EDGE Cdma2000-1xEV,DV,DO 4 TD-SCDMA Cdma2000-3xRTT 3GPP2 3GPP Banna GSM to 3G - High Speed Circuit Switched Data Dedicate up to 4 timeslots for data connection ~ 50 kbps Good for real-time applications c.w. GPRS Inefficient -> ties up resources, even when nothing sent © Ahmad El Not as popular as GPRS (many skipping HSCSD) Enhanced Data Rates for Global Evolution GSM HSCSD Uses 8PSK modulation 9.6kbps (one timeslot) 3x improvement in data rate on short distances GSM Data Can fall back to GMSK for greater distances Also called CSD Combine with GPRS (EGPRS) ~ 384 kbps , Lec#9 , Dec 2014 Dec Lec#9 , , A Can also be combined with HSCSD - GSM GPRS 716 WCDMA - E General Packet Radio Services Data rates up to ~ 115 kbps EDGE Max: 8 timeslots used as any one time Packet switched; resources not tied up all the time 5 Contention based. -
F5 and the Growing Role of GTP for Traffic Shaping, Network Slicing, Iot, and Security
OVERVIEW F5 and the Growing Role of GTP for Traffic Shaping, Network Slicing, IoT, and Security For years, F5 BIG-IP solutions have managed GPRS Tunneling Protocol (GTP) traffic. Now, in part due to EU regulations, GTP traffic growth is much higher than ever before. International trends show that mobile data is increasing, as is the demand for smart and secure GTP traffic handling. In this document, we will explain GTP, where it is typically used, and where BIG-IP solutions provide significant value. What is GTP? GTP is a group of IP-based communication protocols used to carry General Packet Radio Service (GPRS) within GSM, UMTS, and LTE networks. In 3GPP architectures, GTP and Proxy Mobile IPv6-based interfaces are specified on various interface points. GTP in GPRS (2.5G and 3G) Networks GTP is a set of three separate protocols: GTP Control (GTP-C), GTP User (GTP-U), and GTP Prime (GTP’). GTP-C is used within the GPRS core network for signaling between gateway GPRS support nodes (GGSN) and serving GPRS support nodes (SGSN), as demonstrated by the Gn interface on the diagram below. GTP-C allows the SGSN to activate and deactivate a user’s session, adjust quality- of-service parameters, or update sessions when subscribers arrive from another SGSN. HLR MSC Gr Gs luPS Internet Gi Gn SGSN RNC UMTS Radio Network (RAN) GGSN Gb Corporate SGSN PCU GSM Radio Network Network (BSS) Figure 1: GTP in GPRS (2.5G and 3G networks). OVERVIEW | F5 and the Growing Role of GTP 2 GTP-U carries user data within the GPRS core network, and between the radio access network and core network. -
UMTS Core Network
UMTS Core Network V. Mancuso, I. Tinnirello GSM/GPRS Network Architecture Radio access network GSM/GPRS core network BSS PSTN, ISDN PSTN, MSC GMSC BTS VLR MS BSC HLR PCU AuC SGSN EIR BTS IP Backbone GGSN database Internet V. Mancuso, I. Tinnirello 3GPP Rel.’99 Network Architecture Radio access network Core network (GSM/GPRS-based) UTRAN PSTN Iub RNC MSC GMSC Iu CS BS VLR UE HLR Uu Iur AuC Iub RNC SGSN Iu PS EIR BS Gn IP Backbone GGSN database Internet V. Mancuso, I. Tinnirello 3GPP RelRel.’99.’99 Network Architecture Radio access network 2G => 3G MS => UE UTRAN (User Equipment), often also called (user) terminal Iub RNC New air (radio) interface BS based on WCDMA access UE technology Uu Iur New RAN architecture Iub RNC (Iur interface is available for BS soft handover, BSC => RNC) V. Mancuso, I. Tinnirello 3GPP Rel.’99 Network Architecture Changes in the core Core network (GSM/GPRS-based) network: PSTN MSC is upgraded to 3G MSC GMSC Iu CS MSC VLR SGSN is upgraded to 3G HLR SGSN AuC SGSN GMSC and GGSN remain Iu PS EIR the same Gn GGSN AuC is upgraded (more IP Backbone security features in 3G) Internet V. Mancuso, I. Tinnirello 3GPP Rel.4 Network Architecture UTRAN Circuit Switched (CS) core network (UMTS Terrestrial Radio Access Network) MSC GMSC Server Server SGW SGW PSTN MGW MGW New option in Rel.4: GERAN (GSM and EDGE Radio Access Network) PS core as in Rel.’99 V. Mancuso, I. Tinnirello 3GPP Rel.4 Network Architecture MSC Server takes care Circuit Switched (CS) core of call control signalling network The user connections MSC GMSC are set up via MGW Server Server (Media GateWay) SGW SGW PSTN “Lower layer” protocol conversion in SGW MGW MGW (Signalling GateWay) RANAP / ISUP PS core as in Rel.’99 SS7 MTP IP Sigtran V. -
Miot Location in Roaming Version 1.0 20 May 2020
GSM Association Confidential - Full, Rapporteur, Associate and Affiliate Members Official Document NG.120 - MIoT Location in Roaming MIoT Location in Roaming Version 1.0 20 May 2020 This is a Non-binding Permanent Reference Document of the GSMA Security Classification: Confidential - Full, Rapporteur, Associate and Affiliate Members Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without the prior written approval of the Association. Copyright Notice Copyright © 2020 GSM Association Disclaimer The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice. Antitrust Notice The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy. V1.0 Page 1 of 37 GSM Association Confidential - Full, Rapporteur, Associate and Affiliate Members Official Document NG.120 - MIoT Location -
USSD Gateway Technical Guide
Oracle® Communications Network Charging and Control USSD Gateway Technical Guide Release 12.0.0 December 2017 Copyright Copyright © 2017, Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error- free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. -
Development Guide
DEVELOPMENT GUIDE FOR INDUSTRIAL USING NB-IoT ABOUT THE GSMA ABOUT THE GSMA INTERNET OF THINGS The GSMA represents the interests of mobile PROGRAMME operators worldwide, uniting more than 750 operators with over 350 companies in the broader The GSMA’s Internet of Things Programme is an mobile ecosystem, including handset and device industry initiative focused on: makers, software companies, equipment providers and internet companies, as well as organisations in COVERAGE of machine friendly, cost effective adjacent industry sectors. The GSMA also produces networks to deliver global and universal benefits industry-leading events such as Mobile World Congress, Mobile World Congress Shanghai, Mobile CAPABILITY to capture higher value services World Congress Americas and the Mobile 360 beyond connectivity, at scale Series of conferences. CYBERSECURITY to enable a trusted IoT where For more information, please visit the GSMA security is embedded from the beginning, at every corporate website at www.gsma.com. stage of the IoT value chainBy developing key enablers, facilitating industry collaboration and Follow the GSMA on Twitter: @GSMA. supporting network optimisation, the Internet of Things Programme is enabling consumers and businesses to harness a host of rich new services, connected by intelligent and secure mobile networks. Visit gsma.com/iot or follow gsma.at/iot to find out more about the GSMA IoT Programme. 02 DEVELOPMENT GUIDE FOR INDUSTRIAL USING NB-IOT Contents 1. Introduction 04 2. Examples of Industrial Applications 04 2.1. Smart Industrial Factory Monitoring 04 2.2. Industrial Goods Tracker 04 3. NB-IoT in the Industrial Application Lifecycle 05 3.1. Smart Industrial Factory Monitoring 08 3.2. -
Teleware BT Proposition
Private Mobile eXchange ™ PMX ™ GSM Mobile Switching Centre Product Highlights – IP softMSC 3GPP switching compliant Distributed Network Architecture Multiple processing units & redundancy, GSM Compliant ‘A’ Interface - IP High Availability, Scalability & Flexibility Multiple Vendor Radio Access Networks MSC, GMSC, HLR, VLR Central HLR (Network) supported MAP-C, MAP-D, MAP-E, MAP-F Call forwarding (conditional, unconditional), call waiting, call hold, call transfer IP: SS7 over SIGTRAN and SIP support TDM: SS7 over TDM via Gateway Calling party based routing, Intelligent call routing GTT translations, STP supported Caller Id; CLIP/CLIR Support for SMS (MT/MO) Connected Line Id; COLP/COLR Explicit/Implicit IMSI detach & VLR purge Operator determined barring GPRS & EDGE support (Gr over SS7) E.164 support CSD Support - secure phones + PSTN Gateway Support for Lawful Call intercept Optional built-in SMSC, AuC and EIR function SIP RFC 3261 Support Optional voicemail, conferencing and external WAP, multi-media message entity platforms Call Detail Recoding Optional Media Termination Point [Transcoding SOS: Default or LA originated intelligent routing outbound & Inbound] of emergency calls Enterprise Support Highlights Full PBX network node support Optional: Push-To-Talk – PMR replacement Translation table, Inbound & Outbound Private Mobile Office – Personal Number, Personal Assistant, Unified Messaging, Call recording, Extensive Routing Tables conferencing, IVR incl. Call Queuing etc Business Confidential Product -
Mobile Application Part Interface (MAPI) Specification
Mobile Application Part Interface (MAPI) Specification Mobile Application Part Interface (MAPI) Specification Version 1.1 Edition 7.20141001 Updated October 25, 2014 Distributed with Package openss7-1.1.7.20141001 Copyright c 2008-2014 Monavacon Limited All Rights Reserved. Abstract: This document is a Specification containing technical details concerning the imple- mentation of the Mobile Application Part Interface (MAPI) for OpenSS7. It contains recommendations on software architecture as well as platform and system applicability of the Mobile Application Part Interface (MAPI). It provides abstraction of the Mobile Application Part (MAP) interface to these components as well as providing a basis for Mobile Application Part control for other Mobile Application Part protocols. Brian Bidulock <[email protected]> for The OpenSS7 Project <http://www.openss7.org/> Published by: OpenSS7 Corporation 1469 Jefferys Crescent Edmonton, Alberta T6L 6T1 Canada Copyright c 2008-2014 Monavacon Limited Copyright c 2001-2008 OpenSS7 Corporation Copyright c 1997-2000 Brian F. G. Bidulock All Rights Reserved. Unauthorized distribution or duplication is prohibited. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled [GNU Free Documentation License], page 405. Permission to use, copy and distribute this documentation without modification, for any purpose and without fee or royalty is hereby granted, provided that both the above copyright notice and this permission notice appears in all copies and that the name of OpenSS7 Corporation not be used in advertising or publicity pertaining to distribution of this documentation or its contents without specific, written prior permission.