Satellite Communications Overview

Total Page:16

File Type:pdf, Size:1020Kb

Satellite Communications Overview ATP 6-02.54 TECHNIQUES FOR SATELLITE COMMUNICATIONS NOVEMBER 2020 Distribution Restriction: Approved for public release; distribution is unlimited. This publication supersedes ATP 6-02.54, dated 5 June 2017. Headquarters, Department of the Army This publication is available at the Army Publishing Directorate site (https://armypubs.army.mil/), and the Central Army Registry site (https://atiam.train.army.mil/catalog/dashboard). *ATP 6-02.54 Army Techniques Publication Headquarters No. 6-02.54 Department of the Army Washington, D.C., 05 November 2020 Techniques for Satellite Communications Contents Page PREFACE..................................................................................................................... v INTRODUCTION ........................................................................................................ vii Chapter 1 SATELLITE COMMUNICATIONS OVERVIEW........................................................ 1-1 The Information Environment .................................................................................... 1-1 Satellite Communications Fundamentals .................................................................. 1-2 Types of Satellite Communications ........................................................................... 1-4 Chapter 2 ROLES AND RESPONSIBILITIES ........................................................................... 2-1 Joint and Department of Defense .............................................................................. 2-1 Army .......................................................................................................................... 2-3 Chapter 3 SATELLITE COMMUNICATIONS ARCHITECTURE .............................................. 3-1 Overview .................................................................................................................... 3-1 Requirements ............................................................................................................ 3-1 Objectives .................................................................................................................. 3-1 Planning Considerations ............................................................................................ 3-3 Chapter 4 SATELLITE COMMUNICATIONS PLANNING ........................................................ 4-1 Joint ........................................................................................................................... 4-1 Army .......................................................................................................................... 4-2 Narrowband Satellite Communications ..................................................................... 4-9 Wideband Satellite Communications ......................................................................... 4-9 Protected Satellite Communications ....................................................................... 4-10 Commercial Satellite Communications .................................................................... 4-11 Warfighter Information Network-Tactical Planning .................................................. 4-14 Chapter 5 SATELLITE COMMUNICATIONS ENABLERS ....................................................... 5-1 United States Space Command ................................................................................ 5-1 United States Army Space and Missile Defense Command ..................................... 5-1 United States Army Network Enterprise Technology Command .............................. 5-2 Distribution of Signal Units ........................................................................................ 5-3 Appendix A SATELLITE COMMUNICATIONS GROUND SEGMENT ....................................... A-1 Appendix B DEMAND ASSIGNED MULTIPLE ACCESS, INTEGRATED WAVEFORM, AND WIDEBAND CODE DIVISION MULTIPLE ACCESS .............................................. B-1 Appendix C GLOBAL BROADCAST SYSTEM .......................................................................... C-1 Appendix D PROTECTED SATELLITE COMMUNICATIONS .................................................... D-1 DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. *This publication supersedes ATP 6-02.54, dated 5 June 2017. ATP 6-02.54 i Contents GLOSSARY ................................................................................................ Glossary-1 REFERENCES ........................................................................................ References-1 INDEX ............................................................................................................... Index-1 Figures Figure 1-1. Example orbital locations for Wideband Global Satellite Communications satellites . 1-5 Figure 1-2. Regional satellite communications support center coverage ...................................... 1-6 Figure 1-3. Narrowband satellite constellation............................................................................... 1-9 Figure A-1. Department of Defense gateway locations ................................................................. A-1 Figure A-2. Teleport program......................................................................................................... A-3 Figure A-3. AN/FSC-78 terminal .................................................................................................... A-4 Figure A-4. AN/GSC-39(V1) terminal ............................................................................................ A-5 Figure A-5. AN/GSC-52B(V) terminal ............................................................................................ A-6 Figure A-6. Family of modernization of enterprise terminals ......................................................... A-7 Figure A-7. AN/TSC-86A terminal ................................................................................................. A-8 Figure A-8. AN/TSC-93E Lynx terminal ......................................................................................... A-9 Figure A-9. AN/TSC-156 Phoenix terminal .................................................................................. A-10 Figure A-10. Secure Mobile Anti-Jam Reliable Tactical Terminal ............................................... A-11 Figure A-11. Global Broadcast System tactical receive suite ...................................................... A-12 Figure A-12. Global Broadcast Service portable receive suite .................................................... A-13 Figure A-13. SIPRNET/NIPRNET Access Point .......................................................................... A-14 Figure A-14. AN/MSC-82 Tactical Communications Node .......................................................... A-18 Figure A-15. Satellite Transportable Terminal ............................................................................. A-19 Figure B-1. Information throughput without demand assigned multiple access ............................ B-2 Figure B-2. Demand assigned multiple access capable terminals ................................................ B-3 Figure B-3. Comparison of a 25-kbps demand assigned multiple access versus integrated waveform frame .......................................................................................................... B-5 Figure B-4. Wideband code division multiple access network architecture ................................... B-6 Figure C-1. Global Broadcast System broadcast and space segments ........................................ C-2 Figure D-1. Milstar and advanced extremely high frequency data transfer capabilities ................ D-3 Figure D-2. Advanced extremely high frequency space segment ................................................. D-4 ii ATP 6-02.54 05 November 2020 Contents Tables Table 1-1. Radio frequency bands ................................................................................................. 1-3 Table 4-1. Satellite communications priorities ................................................................................ 4-6 Table A-1. Warfighter Information Network-Tactical satellite communications capabilities .........A-17 05 November 2020 ATP 6-02.54 iii This page intentionally left blank. Preface The purpose of ATP 6-02.54 is to educate communicators on the options available when using beyond line of sight satellite communications. This publication includes information for planning, establishing, and operating communications networks with satellites. The principal audience for ATP 6-02.54 is Army professionals and contractors whose duties involve planning, installing, operating, and maintaining satellite communications systems and networks. Satellite communications trainers and educators throughout the Army will also use this publication. To apply this doctrine correctly, readers should be familiar with the capstone Army Doctrine (ADP 1 and ADP 3-0), FM 3-0, and FM 6-02. Commanders, staff, and subordinates ensure their decisions and actions comply with applicable U.S., international, and, in some cases, host-nation laws and regulations. Commanders at all levels ensure their Soldiers operate according to the law of war and the rules of engagement (see FM 6-27). Commanders also adhere to the Army Ethic as described in ADP 6-22. ATP 6-02.54 uses joint terms where applicable. Selected joint and Army terms and definitions appear in both the glossary and the text. This publication is not the proponent for any Army terms. For other definitions shown
Recommended publications
  • Rules for the Heavens: the Coming Revolution in Space and the Laws of War
    RULES FOR THE HEAVENS: THE COMING REVOLUTION IN SPACE AND THE LAWS OF WAR John Yoo* Great powers are increasing their competition in space. Though Russia and the United States have long relied on satellites for surveillance of rival nations’ militaries and the detection of missile launches, the democratization of space through technological advancements has allowed other nations to assert greater control. This Article addresses whether the United States and other nations should develop the space-based weapons that these policies promise, or whether they should cooperate to develop new international agreements to ban them. In some areas of space, proposals for regulation have already come too late. The U.S.’s nuclear deterrent itself depends cru- cially on space: ballistic missiles leave and then re-enter the atmosphere, giving them a global reach without serious defense. As more nations develop nuclear weapons and intercontinental ballistic missile (ICBM) technology, outer space will become even more important as an arena for defense against weapons of mass destruction (WMD) proliferation. North Korea’s progress on ICBM and nuclear technology, for example, will prompt even greater in- vestment in space-based missile defense systems. This Article makes two contributions. First, it argues against a grow- ing academic consensus in favor of a prohibition on military activities in space. It argues that these scholars over-read existing legal instruments and practice. While nations crafted international agreements to bar WMDs in outer space, they carefully left unregulated reconnaissance and commu- nications satellites, space-based conventional weapons, antisatellite sys- tems, and even WMDs that transit through space, such as ballistic missiles.
    [Show full text]
  • Handbookhandbook Mobile-Satellite Service (MSS) Handbook
    n International Telecommunication Union Mobile-satellite service (MSS) HandbookHandbook Mobile-satellite service (MSS) Handbook *00000* Edition 2002 Printed in Switzerland Geneva, 2002 ISBN 92-61-09951-3 Radiocommunication Bureau Edition 2002 THE RADIOCOMMUNICATION SECTOR OF ITU The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Inquiries about radiocommunication matters Please contact: ITU Radiocommunication Bureau Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 5800 Fax: +41 22 730 5785 E-mail: [email protected] Web: www.itu.int/itu-r Placing orders for ITU publications Please note that orders cannot be taken over the telephone. They should be sent by fax or e-mail. ITU Sales and Marketing Division Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 6141 English Telephone: +41 22 730 6142 French Telephone: +41 22 730 6143 Spanish Fax: +41 22 730 5194 Telex: 421 000 uit ch Telegram: ITU GENEVE E-mail: [email protected] The Electronic Bookshop of ITU: www.itu.int/publications ITU 2002 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. International Telecommunication Union HandbookHandbook Mobile-satellite service (MSS) Radiocommunication Bureau Edition 2002 - iii - FOREWORD In today’s world, people have become increasingly mobile in both their work and play.
    [Show full text]
  • The Modern Broadcaster's Journey from Satellite to Ip
    A CONCISE GUIDE TO… THE MODERN BROADCASTER’S JOURNEY FROM SATELLITE TO IP DELIVERY The commercial communication satellite will celebrate its 60th birthday next year but the concept is far from entering retirement. Nonetheless, as it moves into its seventh decade, the use of the satellite is rapidly evolving. As of 2020, approximately 1,400 communications satellites are orbiting the earth, delivering tens of thousands of TV channels and, increasingly, internet connectivity. Satellite communication is also a vital asset for the TV production industry, allowing live reportage to and from anywhere in the world – almost instantly. 1 Its place in the TV ecosystem is changing, much higher value. It was also well before the however, as it plays a reduced role in the on-demand content revolution. This trend delivery of video – a shift that several has led to the last major shift: the emergence underlying trends have accelerated. The first of multiplatform, over-the-top streaming is a massive proliferation of video content. over the last 15 years, which has eroded the dominance of the linear broadcaster. The Although satellite use in TV production rise of the streaming giants and specialist has been integral to high-profile live news platforms has forced broadcasters to increase and sports coverage, its role is waning. The their overall distribution capacity using last couple of decades has seen a massive Internet Protocol (IP)-centric methods. increase in live content from a broader range of leagues, niche sports, performance The trends impacting satellite’s role in events and 24-hour news networks. This the television landscape are forcing many expansion of content leads to the second broadcasters to look to their future and factor.
    [Show full text]
  • The "Bug" Heard 'Round the World
    ACM SIGSOFT SOFTWAREENGINEERING NOTES, Vol 6 No 5, October 1981 Page 3 THE "BUG" HEARD 'ROUND THE WORLD Discussion of the software problem which delayed the first Shuttle orbital flight JohnR. Garman Cn April 10, 1981, about 20 minutes prior to the scheduled launching of the first flight of America's Space Transportation System, astronauts and technicians attempted to initialize the software system which "backs-up" the quad-redundant primary software system ...... and could not. In fact, there was no possible way, it turns out, that the BFS (Backup Flight Control System) in the fifth onboard computer could have been initialized , Froperly with the PASS (Primary Avionics Software System) already executing in the other four computers. There was a "bug" - a very small, very improbable, very intricate, and very old mistake in the initialization logic of the PASS. It was the type of mistake that gives programmers and managers alike nightmares - and %heoreticians and analysts endless challenge. I% was the kind of mistake that "cannot happen" if one "follows all the rules" of good software design and implementation. It was the kind of mistake that can never be ruled out in the world of real systems development: a world involving hundreds of programmers and analysts, thousands of hours of testing and simulation, and millions of pages of design specifications, implementation schedules, and test plans and reports. Because in that world, software is in fact "soft" - in a large complex real time control system like the Shuttle's avionics system, software is pervasive and, in virtually every case, the last subsystem to stabilize.
    [Show full text]
  • Radio Communications in the Digital Age
    Radio Communications In the Digital Age Volume 1 HF TECHNOLOGY Edition 2 First Edition: September 1996 Second Edition: October 2005 © Harris Corporation 2005 All rights reserved Library of Congress Catalog Card Number: 96-94476 Harris Corporation, RF Communications Division Radio Communications in the Digital Age Volume One: HF Technology, Edition 2 Printed in USA © 10/05 R.O. 10K B1006A All Harris RF Communications products and systems included herein are registered trademarks of the Harris Corporation. TABLE OF CONTENTS INTRODUCTION...............................................................................1 CHAPTER 1 PRINCIPLES OF RADIO COMMUNICATIONS .....................................6 CHAPTER 2 THE IONOSPHERE AND HF RADIO PROPAGATION..........................16 CHAPTER 3 ELEMENTS IN AN HF RADIO ..........................................................24 CHAPTER 4 NOISE AND INTERFERENCE............................................................36 CHAPTER 5 HF MODEMS .................................................................................40 CHAPTER 6 AUTOMATIC LINK ESTABLISHMENT (ALE) TECHNOLOGY...............48 CHAPTER 7 DIGITAL VOICE ..............................................................................55 CHAPTER 8 DATA SYSTEMS .............................................................................59 CHAPTER 9 SECURING COMMUNICATIONS.....................................................71 CHAPTER 10 FUTURE DIRECTIONS .....................................................................77 APPENDIX A STANDARDS
    [Show full text]
  • A Guide to Radio Communications Standards for Emergency Responders
    A GUIDE TO RADIO COMMUNICATIONS STANDARDS FOR EMERGENCY RESPONDERS Prepared Under United Nations Development Programme (UNDP) and the European Commission Humanitarian Office (ECHO) Through the Disaster Preparedness Programme (DIPECHO) Regional Initiative in Disaster Risk Reduction March, 2010 Maputo - Mozambique GUIDE TO RADIO COMMUNICATIONS STANDARDS FOR EMERGENCY RESPONDERS GUIDE TO RADIO COMMUNICATIONS STANDARDS FOR EMERGENCY RESPONDERS Table of Contents Introductory Remarks and Acknowledgments 5 Communication Operations and Procedures 6 1. Communications in Emergencies ...................................6 The Role of the Radio Telephone Operator (RTO)...........................7 Description of Duties ..............................................................................7 Radio Operator Logs................................................................................9 Radio Logs..................................................................................................9 Programming Radios............................................................................10 Care of Equipment and Operator Maintenance...........................10 Solar Panels..............................................................................................10 Types of Radios.......................................................................................11 The HF Digital E-mail.............................................................................12 Improved Communication Technologies......................................12
    [Show full text]
  • Low-Cost Wireless Internet System for Rural India Using Geosynchronous Satellite in an Inclined Orbit
    Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit Karan Desai Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Electrical Engineering Timothy Pratt, Chair Jeffrey H. Reed J. Michael Ruohoniemi April 28, 2011 Blacksburg, Virginia Keywords: Internet, Low-cost, Rural Communication, Wireless, Geostationary Satellite, Inclined Orbit Copyright 2011, Karan Desai Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit Karan Desai ABSTRACT Providing affordable Internet access to rural populations in large developing countries to aid economic and social progress, using various non-conventional techniques has been a topic of active research recently. The main obstacle in providing fiber-optic based terrestrial Internet links to remote villages is the cost involved in laying the cable network and disproportionately low rate of return on investment due to low density of paid users. The conventional alternative to this is providing Internet access using geostationary satellite links, which can prove commercially infeasible in predominantly cost-driven rural markets in developing economies like India or China due to high access cost per user. A low-cost derivative of the conventional satellite-based Internet access system can be developed by utilizing an aging geostationary satellite nearing the end of its active life, allowing it to enter an inclined geosynchronous orbit by limiting station keeping to only east-west maneuvers to save fuel. Eliminating the need for individual satellite receiver modules by using one centrally located earth station per village and providing last mile connectivity using Wi-Fi can further reduce the access cost per user.
    [Show full text]
  • Instruction 10-1204 1 June 2006
    BY ORDER OF THE COMMANDER AIR FORCE SPACE COMMAND AIR FORCE SPACE COMMAND INSTRUCTION 10-1204 1 JUNE 2006 Operations SATELLITE OPERATIONS COMPLIANCE WITH THIS PUBLICATION IS MANDATORY NOTICE: This publication is available digitally on the AFDPO WWW site at: http://www.e-publishing.af.mil. OPR: A3FS (Lt Col Kirk Jester) Certified by: A3F (Col David Jones) Pages: 22 Distribution: F This instruction implements Air Force Policy Directive (AFPD) 10-12, Space, Air Force Instruction (AFI) 10-1201, Space Operations and United States Space Command Policy Directive (UPD) 10-39, Sat- ellite Disposal Procedures (UPD 10-39 is being updated to a Strategic Command Directive (SD)), by establishing guidance and procedures for satellite operations and disposal. It applies to Headquarters Air Force Space Command (HQ AFSPC) and all subordinate units utilizing dedicated satellite control assets or common use and/or unique resources of the Air Force Satellite Control Network (AFSCN), except for Royal Air Force (RAF) Telemetry and Command Squadron (TCS), Oakhanger. This instruction applies to Air National Guard (ANG) and Air Force Reserve Command (AFRC) units with satellite control respon- sibilities. Submit changes to HQ AFSPC/A3F, Global Space Operations Division, 150 Vandenberg St., Ste 1105, Peterson AFB CO 80914-4250. If there is a conflict between this instruction and unit, contractor or other major command publications, this instruction applies. Maintain and dispose of records created as a result of prescribed processes in accordance with Air Force Records Disposition Schedule (RDS) which may be found on-line at https://afrims.amc.af.mil. The previous Air Force Space Command Instruction (AFSPCI) 10-1204, dated 1 September 1998, was rescinded in 2001.
    [Show full text]
  • An Assessment of Aerocapture and Applications to Future Missions
    Post-Exit Atmospheric Flight Cruise Approach An Assessment of Aerocapture and Applications to Future Missions February 13, 2016 National Aeronautics and Space Administration An Assessment of Aerocapture Jet Propulsion Laboratory California Institute of Technology Pasadena, California and Applications to Future Missions Jet Propulsion Laboratory, California Institute of Technology for Planetary Science Division Science Mission Directorate NASA Work Performed under the Planetary Science Program Support Task ©2016. All rights reserved. D-97058 February 13, 2016 Authors Thomas R. Spilker, Independent Consultant Mark Hofstadter Chester S. Borden, JPL/Caltech Jessie M. Kawata Mark Adler, JPL/Caltech Damon Landau Michelle M. Munk, LaRC Daniel T. Lyons Richard W. Powell, LaRC Kim R. Reh Robert D. Braun, GIT Randii R. Wessen Patricia M. Beauchamp, JPL/Caltech NASA Ames Research Center James A. Cutts, JPL/Caltech Parul Agrawal Paul F. Wercinski, ARC Helen H. Hwang and the A-Team Paul F. Wercinski NASA Langley Research Center F. McNeil Cheatwood A-Team Study Participants Jeffrey A. Herath Jet Propulsion Laboratory, Caltech Michelle M. Munk Mark Adler Richard W. Powell Nitin Arora Johnson Space Center Patricia M. Beauchamp Ronald R. Sostaric Chester S. Borden Independent Consultant James A. Cutts Thomas R. Spilker Gregory L. Davis Georgia Institute of Technology John O. Elliott Prof. Robert D. Braun – External Reviewer Jefferey L. Hall Engineering and Science Directorate JPL D-97058 Foreword Aerocapture has been proposed for several missions over the last couple of decades, and the technologies have matured over time. This study was initiated because the NASA Planetary Science Division (PSD) had not revisited Aerocapture technologies for about a decade and with the upcoming study to send a mission to Uranus/Neptune initiated by the PSD we needed to determine the status of the technologies and assess their readiness for such a mission.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory figures As of Sept
    Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2014. By Aaron M. U. Church, Associate Editor I 2015 USAF Almanac BOMBER AIRCRAFT flight controls actuate trailing edge surfaces that combine aileron, elevator, and rudder functions. New EHF satcom and high-speed computer upgrade B-1 Lancer recently entered full production. Both are part of the Defensive Management Brief: A long-range bomber capable of penetrating enemy defenses and System-Modernization (DMS-M). Efforts are underway to develop a new VLF delivering the largest weapon load of any aircraft in the inventory. receiver for alternative comms. Weapons integration includes the improved COMMENTARY GBU-57 Massive Ordnance Penetrator and JASSM-ER and future weapons The B-1A was initially proposed as replacement for the B-52, and four pro- such as GBU-53 SDB II, GBU-56 Laser JDAM, JDAM-5000, and LRSO. Flex- totypes were developed and tested in 1970s before program cancellation in ible Strike Package mods will feed GPS data to the weapons bays to allow 1977. The program was revived in 1981 as B-1B. The vastly upgraded aircraft weapons to be guided before release, to thwart jamming. It also will move added 74,000 lb of usable payload, improved radar, and reduced radar cross stores management to a new integrated processor. Phase 2 will allow nuclear section, but cut maximum speed to Mach 1.2. The B-1B first saw combat in and conventional weapons to be carried simultaneously to increase flexibility. Iraq during Desert Fox in December 1998.
    [Show full text]
  • Battle Management Language: History, Employment and NATO Technical Activities
    Battle Management Language: History, Employment and NATO Technical Activities Mr. Kevin Galvin Quintec Mountbatten House, Basing View, Basingstoke Hampshire, RG21 4HJ UNITED KINGDOM [email protected] ABSTRACT This paper is one of a coordinated set prepared for a NATO Modelling and Simulation Group Lecture Series in Command and Control – Simulation Interoperability (C2SIM). This paper provides an introduction to the concept and historical use and employment of Battle Management Language as they have developed, and the technical activities that were started to achieve interoperability between digitised command and control and simulation systems. 1.0 INTRODUCTION This paper provides a background to the historical employment and implementation of Battle Management Languages (BML) and the challenges that face the military forces today as they deploy digitised C2 systems and have increasingly used simulation tools to both stimulate the training of commanders and their staffs at all echelons of command. The specific areas covered within this section include the following: • The current problem space. • Historical background to the development and employment of Battle Management Languages (BML) as technology evolved to communicate within military organisations. • The challenges that NATO and nations face in C2SIM interoperation. • Strategy and Policy Statements on interoperability between C2 and simulation systems. • NATO technical activities that have been instigated to examine C2Sim interoperation. 2.0 CURRENT PROBLEM SPACE “Linking sensors, decision makers and weapon systems so that information can be translated into synchronised and overwhelming military effect at optimum tempo” (Lt Gen Sir Robert Fulton, Deputy Chief of Defence Staff, 29th May 2002) Although General Fulton made that statement in 2002 at a time when the concept of network enabled operations was being formulated by the UK and within other nations, the requirement remains extant.
    [Show full text]