Proteomic Discovery of Protein Phosphatase 1 Catalytic Subunit Protein Interaction Partners in Human Skeletal Muscle Zhao Yang Wayne State University

Total Page:16

File Type:pdf, Size:1020Kb

Proteomic Discovery of Protein Phosphatase 1 Catalytic Subunit Protein Interaction Partners in Human Skeletal Muscle Zhao Yang Wayne State University Wayne State University Wayne State University Theses 1-1-2014 Proteomic Discovery Of Protein Phosphatase 1 Catalytic Subunit Protein Interaction Partners In Human Skeletal Muscle Zhao Yang Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses Part of the Medicinal Chemistry and Pharmaceutics Commons Recommended Citation Yang, Zhao, "Proteomic Discovery Of Protein Phosphatase 1 Catalytic Subunit Protein Interaction Partners In Human Skeletal Muscle" (2014). Wayne State University Theses. Paper 360. This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Theses by an authorized administrator of DigitalCommons@WayneState. PROTEOMIC DISCOVERY OF PROTEIN PHOSPHATASE 1 CATALYTIC SUBUNIT PROTEIN INTERACTION PARTNERS IN HUMAN SKELETAL MUSCLE by Zhao Yang THESIS Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE YEAR 2014 MAJOR Pharmaceutical Sciences Approved By: Advisor Date © COPYRIGHT BY ZHAO YANG 2014 All Rights Reserved DEDICATION To the world beloved ii ACKNOWLEDGMENTS I would like to express my deep appreciation to Dr. Zhengping Yi, my research supervisor, for his patient guidance, enthusiastic encouragement and useful critiques of this research work. I would also like to thank my committee members, Dr. Fei Chen and Dr. Moh H. Malek, for their valuable and constructive advice in keeping my progress on schedule. My completion of this project could not have been accomplished without the generous help of Dr. Michael Caruso. I would also like to extend my thanks to Dr. Xiangmin Zhang and Dr. Danjun Ma, for their help in offering me the resources in running the program, and to other group members of the laboratory, Mr. Yue Qi, Ms. Divyasri Damacharla, Mr. Nishit Shah, and Mr. Majed Alharbi for their continuous support during the project. Finally, I wish to thank my parents for their support and encouragement throughout my study. iii TABLE OF CONTENTS LIST OF FIGURES ...................................................................................................................... VI LIST OF TABLES ..................................................................................................................... VIII CHAPTER 1 INTRODUCTION .................................................................................................... 1 1.1 DIABETES MELLITUS AND INSULIN RESISTANCE .......................................................... 1 1.1.1 History of Diabetes .......................................................................................... 1 1.1.2 Insulin resistance ............................................................................................. 3 1.1.3 Signaling associated with Insulin Sensitivity .................................................... 4 1.2 PP1 C AND PHOSPHORYLATION , AND INSULIN RESISTANCE ......................................... 5 1.2.1 PI3k-AKT-mTOR Pathway ............................................................................... 5 1.2.2 Phosphatases: Function, Category and Families ............................................. 7 1.2.3 Introduction of Protein Phosphatase 1 Catalytic Subunit ................................. 8 1.3 HYPERINSULINEMIC -EUGLYCEMIC CLAMPS AND SKELETAL MUSCLE .......................... 11 1.3.1 Hyperinsulinemic-euglycemic Clamps ........................................................... 11 1.3.2 Tissues response to Insulin ........................................................................... 11 1.3.3 Studying skeletal muscle as a promising approach in T2D research ............. 12 1.4 MASS SPECTROMETRY IN DISCOVERY OF PROTEIN -PROTEIN INTERACTIONS .............. 13 CHAPTER 2 RESEARCH DESIGN AND METHODS ................................................... 15 2.1. MATERIALS ........................................................................................................... 15 2.1.1 Antibody ........................................................................................................ 15 2.1.2 Reagents ....................................................................................................... 16 2.2. SUBJECTS ............................................................................................................ 16 2.3 HYPERINSULINEMIC -EUGLYCEMIC CLAMP WITH MUSCLE BIOPSIES . ............................ 16 iv 2.4 PLASMA INSULIN CONCENTRATION DETERMINATIONS . ............................................... 17 2.5 PROTEOMICS SAMPLE PREPARATION AND ANALYSIS . ................................................ 17 2.5.1 Muscle biopsy processing ............................................................................. 17 2.5.2 Immunoprecipitation, 1D SDS-PAGE, in-gel digestion and mass spectrometry ............................................................................................................................... 18 2.5.3 Sample data analysis .................................................................................... 19 2.5.4 Statistical analysis ......................................................................................... 21 2.5.5 Bioinformatics analysis .................................................................................. 21 CHAPTER 3 RESULTS ................................................................................................ 22 CHAPTER 4 DISCUSSION ........................................................................................... 24 4.1 PP1 C INTERACTION PARTNERS AS PP1 REGULATORY PROTEINS .............................. 25 4.2 PP1 C INTERACTION PARTNERS INVOLVED IN CYTOSKELETON DYNAMICS ................... 28 4.3 PP1 C INTERACTION PARTNERS IN MITOCHONDRIAL FUNCTION .................................. 30 4.4 INTERACTION PARTNERS ACT IN METABOLISM PATHWAYS ......................................... 31 4.5 INTERACTION PARTNERS RELATE TO PROTEIN SYNTHESIS AND DEGRADATION , ......... 33 4.6 OTHER PP1 C INTERACTION PARTNERS ................................................................... 37 4.7 INFLUENCE OF MUSCLE FIBER -TYPE COMPOSITION .................................................. 38 4.8 SUMMARY ............................................................................................................. 39 REFERENCES ............................................................................................................. 60 ABSTRACT .................................................................................................................. 80 AUTOBIOGRAPHICAL STATEMENT .......................................................................... 82 v LIST OF FIGURES Figure 1. The causal relationship and tissue involvement of Type 2 Diabetes development…………………………………………………………………..............40 Figure 2. Overview of signal molecules involved in insulin signaling pathway….41 Figure 3. The sequence of three major isoforms of PP1c: PPP1CA isoform 1, PPP1CB, PPP1CC isoform 1………………………………………………………...42 Figure 4. Structure information of PP1c ...………...……………………………….43 Figure 5. Interactions between PP1c and its interaction partner, MYPT1 to form a PP1 holoenzyme ………………………………………………………………………45 Figure 6. Regulation patterns of interaction partners on PP1c …………………..46 Figure 7. Summary of glucose metabolism change after Type 2 diabetes among different tissues during euglycemic insulin clamp studies…………………………47 Figure 8. Outline of clinical and proteomics data acquisition and analysis. A). General flow chart of clinical and proteomics data acquisition and analysis; B). Detailed illustration of clinical visit 2 ...………………………………………………48 Figure 9. Detailed Proteomic Analysis workflow……………………………………50 Figure 10. Network analysis of enriched PP1c interaction partners in human skeletal muscle revealed by proteomics and Ingenuity Pathway Analysis ……..51 vi Figure 11. Significantly enriched pathways for the PP1c interaction partners identified in this study revealed by Ingenuity Pathways Analysis. A). Significantly enriched pathways. The total number of identified PP1c interaction partners for a given pathway in this study is denoted beside each bar. B) PP1c interaction partners in EIF2 Signaling……………………………………………………………52 vii LIST OF TABLES Table 1. Clinical characteristics participants in the PP1c interaction partner study …………………………………………..……………………………………………… 54 Table 2. The 46 proteins/ protein groups met the 2 rigorous criteria (See Methods for details) for classification as PP1c interaction partners in human skeletal muscle ..………………………………………………………………………………. 55 Table 3. Significantly enriched pathways for the PP1c interaction partners identified in the study revealed by Ingenuity Pathways Analysis……………….. 59 viii 1 CHAPTER 1 INTRODUCTION 1.1 Diabetes mellitus and Insulin resistance Diabetes mellitus, or simply diabetes, is a metabolic disorder that is marked by hyperglycemia, high blood glucose. In 2014, 29.1 million individuals in the United States, which is about 9.3% of the population, have diabetes [1]. Among all cases of diabetes, about 90% to 95% are Type 2 Diabetes (T2D), the diabetes form generally results from defects in insulin action [1]. Furthermore, other related complications of diabetes will afflict patients with their cardinal, ocular, renal, and nervous system dysfunction, mainly resulting from hyperglycemia [2]. 1.1.1 History of Diabetes Unfortunately, though recognition of diabetes
Recommended publications
  • Maria João Abordagem À Regulação Da Mobilidade Do Martinho De Freitas Espermatozoide Através Da Caracterização E Modulação Da Via De Sinalização GSK3/PPP1R2/PPP1
    Universidade de Aveiro Departamento de Biologia Ano 2018 Maria João Abordagem à regulação da mobilidade do Martinho de Freitas espermatozoide através da caracterização e modulação da via de sinalização GSK3/PPP1R2/PPP1 Addressing sperm motility regulation through characterization and modulation of the GSK3/PPP1R2/PPP1 signaling pathway Universidade de Aveiro Departamento de Biologia Ano 2018 Maria João Abordagem à regulação da mobilidade do Martinho de Freitas espermatozoide através da caracterização e modulação da via de sinalização GSK3/PPP1R2/PPP1 Addressing sperm motility regulation through characterization and modulation of the GSK3/PPP1R2/PPP1 signaling pathway Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Biologia, realizada sob a orientação científica da Doutora Margarida de Sâncio da Cruz Fardilha, Professora Professora Auxiliar do Departamento de Ciências Médicas da Universidade de Aveiro e do Doutor Srinivasan Vijayaraghavan, Professor Professor Auxiliar do Departamento de Ciências Biológicas da Kent State University. Este trabalho é financiado por Fundos FEDER através do Programa Operacional Fatores de Competitividade-COMPETE e por Fundos Nacionais através da FCT- Fundação para a Ciência e a Tecnologia no âmbito dos projetos «PTDC/DTP-PIC/0460/2012»; «PTDB/BBB-BQB/3804/2014»; «NIH R15 HD068971-01»; da bolsa individual «SFRH/BD/84876/2012»; e do instituto de Biomedicina- iBiMED «UID/BIM/04501/2013». o júri presidente Professor Doutor Amadeu Mortágua Velho
    [Show full text]
  • Molecular Genetic Delineation of 2Q37.3 Deletion in Autism and Osteodystrophy: Report of a Case and of New Markers for Deletion Screening by PCR
    UC Irvine UC Irvine Previously Published Works Title Molecular genetic delineation of 2q37.3 deletion in autism and osteodystrophy: report of a case and of new markers for deletion screening by PCR. Permalink https://escholarship.org/uc/item/83f0x61r Journal Cytogenetics and cell genetics, 94(1-2) ISSN 0301-0171 Authors Smith, M Escamilla, JR Filipek, P et al. Publication Date 2001 DOI 10.1159/000048775 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Original Article Cytogenet Cell Genet 94:15–22 (2001) Molecular genetic delineation of 2q37.3 deletion in autism and osteodystrophy: report of a case and of new markers for deletion screening by PCR M. Smith, J.R. Escamilla, P. Filipek, M.E. Bocian, C. Modahl, P. Flodman, and M.A. Spence Department of Pediatrics, University of California, Irvine CA (USA) Abstract. We recently studied a patient who meets criteria us to determine the parental origin of the deletion in our for autistic disorder and has a 2q37 deletion. Molecular cyto- patient. DNA from 8–13 unrelated individuals was used to genetic studies were carried out using DNA isolated from 22 determine heterozygosity estimates for these markers. We re- different 2q37 mapped BACs to more precisely define the view four genes deleted in our patient – genes whose known extent of the chromosome deletion. We also analyzed 2q37 functions and sites of expression in the brain and/or bone make mapped polymorphic markers. In addition DNA sequences of them candidates for involvement in autism and/or the osteo- BACs in the deletion region were scanned to identify microsa- dystrophy observed in patients with 2q37.3 deletions.
    [Show full text]
  • Identification of Phosphoproteins Involved in Sperm
    IDENTIFICATION OF PHOSPHOPROTEINS INVOLVED IN SPERM MATURATION AND FERTILITY. A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Suranjana Goswami August 2018 © Copyright All rights reserved Except for previously published materials Dissertation written by Suranjana Goswami B.Sc., University of Calcutta, India, 2009 M.Sc., University of Calcutta, India 2011 Ph.D., Kent State University, USA, 2018 Approved by Dr. Srinivasan Vijayaraghavan , Chair, Doctoral Dissertation Committee Dr. Douglas W. Kline , Members, Doctoral Dissertation Committee Dr. Gary Koshi , Dr. Sanjaya Abeysirigunawardena , Dr. Andrew Jasnow , Accepted by Dr. Laura G. Leff , Chair, Department of Biological Sciences Dr. James L. Blank , Dean, College of Arts and Sciences TABLE OF CONTENTS ............................................................................................................... iii LIST OF FIGURES ..........................................................................................................................v LIST OF TABLES ....................................................................................................................... viii ABBREVIATIONS ....................................................................................................................... ix DEDICATION ............................................................................................................................... xi ACKNOWLEDGEMENTS .........................................................................................................
    [Show full text]
  • A Comprehensive Mapping of the Structure and Gene Organisation in the Sheep MHC Class I Region N
    Siva Subramaniam et al. BMC Genomics (2015) 16:810 DOI 10.1186/s12864-015-1992-4 RESEARCH ARTICLE Open Access A comprehensive mapping of the structure and gene organisation in the sheep MHC class I region N. Siva Subramaniam1, EF Morgan1, JD Wetherall1, MJ Stear2,3* and DM Groth1 Abstract Background: The major histocompatibility complex (MHC) is a chromosomal region that regulates immune responsiveness in vertebrates. This region is one of the most important for disease resistance because it has been associated with resistance or susceptibility to a wide variety of diseases and because the MHC often accounts for more of the variance than other loci. Selective breeding for disease resistance is becoming increasingly common in livestock industries, and it is important to determine how this will influence MHC polymorphism and resistance to diseases that are not targeted for selection. However, in sheep the order and sequence of the protein coding genes is controversial. Yet this information is needed to determine precisely how the MHC influences resistance and susceptibility to disease. Methods: CHORI bacterial artificial chromosomes (BACs) known to contain sequences from the sheep MHC class I region were sub-cloned, and the clones partially sequenced. The resulting sequences were analysed and re-assembled to identify gene content and organisation within each BAC. The low resolution MHC class I physical map was then compared to the cattle reference genome, the Chinese Merino sheep MHC map published by Gao, et al. (2010) and the recently available sheep reference genome. Results: Immune related class I genes are clustered into 3 blocks; beta, kappa and a novel block not previously identified in other organisms.
    [Show full text]
  • Anti-Dicer (SAB4200087)
    Anti-Dicer produced in rabbit, affinity isolated antibody Product Number SAB4200087 Product Description Precautions and Disclaimer Anti-Dicer is produced in rabbit using as the For R&D use only. Not for drug, household, or other immunogen a synthetic peptide corresponding to a uses. Please consult the Safety Data Sheet for fragment of human Dicer (Gene ID: 23405) conjugated information regarding hazards and safe handling to KLH. The corresponding sequence is identical in practices. mouse. The antibody is affinity-purified using the immunizing peptide immobilized on agarose. Storage/Stability Store at –20 C. For continuous use, store at 2–8 C for Anti-Dicer recognizes human Dicer. The antibody may up to one month. For extended storage, freeze in be used in several immunochemical techniques working aliquots at –20 C. Repeated freezing and including immunoblotting (218 kDa), immuno- thawing, or storage in “frost-free” freezers, is not precipitation, and immunofluorescence. Detection of recommended. If slight turbidity occurs upon prolonged the Dicer band by immunoblotting is specifically storage, clarify the solution by centrifugation before inhibited with the immunizing peptide. use. Working dilutions should be discarded if not used within 12 hours. Dicer, also known as Dicer1, Endoribonuclease Dicer, Helicase with RNase motif, and HERNA, is a member Product Profile of the RNase III family that catalyzes the first step in the Immunoblotting: a working antibody concentration of RNA interference (RNAi) pathway and initiates 3-6 g/mL is recommended using HeLa cell lysates. formation of the RNA-induced silencing complex (RISC). Dicer processes the dsRNA into small Immunoprecipitation: a working antibody amount of fragments called short interfering RNA (siRNA) or 2.5-5 g is recommended using HeLa cell lysates.
    [Show full text]
  • Growth and Molecular Profile of Lung Cancer Cells Expressing Ectopic LKB1: Down-Regulation of the Phosphatidylinositol 3؅-Phosphate Kinase/PTEN Pathway1
    [CANCER RESEARCH 63, 1382–1388, March 15, 2003] Growth and Molecular Profile of Lung Cancer Cells Expressing Ectopic LKB1: Down-Regulation of the Phosphatidylinositol 3؅-Phosphate Kinase/PTEN Pathway1 Ana I. Jimenez, Paloma Fernandez, Orlando Dominguez, Ana Dopazo, and Montserrat Sanchez-Cespedes2 Molecular Pathology Program [A. I. J., P. F., M. S-C.], Genomics Unit [O. D.], and Microarray Analysis Unit [A. D.], Spanish National Cancer Center, 28029 Madrid, Spain ABSTRACT the cell cycle in G1 (8, 9). However, the intrinsic mechanism by which LKB1 activity is regulated in cells and how it leads to the suppression Germ-line mutations in LKB1 gene cause the Peutz-Jeghers syndrome of cell growth is still unknown. It has been proposed that growth (PJS), a genetic disease with increased risk of malignancies. Recently, suppression by LKB1 is mediated through p21 in a p53-dependent LKB1-inactivating mutations have been identified in one-third of sporadic lung adenocarcinomas, indicating that LKB1 gene inactivation is critical in mechanism (7). In addition, it has been observed that LKB1 binds to tumors other than those of the PJS syndrome. However, the in vivo brahma-related gene 1 protein (BRG1) and this interaction is required substrates of LKB1 and its role in cancer development have not been for BRG1-induced growth arrest (10). Similar to what happens in the completely elucidated. Here we show that overexpression of wild-type PJS, Lkb1 heterozygous knockout mice show gastrointestinal hamar- LKB1 protein in A549 lung adenocarcinomas cells leads to cell-growth tomatous polyposis and frequent hepatocellular carcinomas (11, 12). suppression. To examine changes in gene expression profiles subsequent to Interestingly, the hamartomas, but not the malignant tumors, arising in exogenous wild-type LKB1 in A549 cells, we used cDNA microarrays.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • A Transcriptional Signature of Postmitotic Maintenance in Neural Tissues
    Neurobiology of Aging 74 (2019) 147e160 Contents lists available at ScienceDirect Neurobiology of Aging journal homepage: www.elsevier.com/locate/neuaging Postmitotic cell longevityeassociated genes: a transcriptional signature of postmitotic maintenance in neural tissues Atahualpa Castillo-Morales a,b, Jimena Monzón-Sandoval a,b, Araxi O. Urrutia b,c,*, Humberto Gutiérrez a,** a School of Life Sciences, University of Lincoln, Lincoln, UK b Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK c Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico article info abstract Article history: Different cell types have different postmitotic maintenance requirements. Nerve cells, however, are Received 11 April 2018 unique in this respect as they need to survive and preserve their functional complexity for the entire Received in revised form 3 October 2018 lifetime of the organism, and failure at any level of their supporting mechanisms leads to a wide range of Accepted 11 October 2018 neurodegenerative conditions. Whether these differences across tissues arise from the activation of Available online 19 October 2018 distinct cell typeespecific maintenance mechanisms or the differential activation of a common molecular repertoire is not known. To identify the transcriptional signature of postmitotic cellular longevity (PMCL), Keywords: we compared whole-genome transcriptome data from human tissues ranging in longevity from 120 days Neural maintenance Cell longevity to over 70 years and found a set of 81 genes whose expression levels are closely associated with Transcriptional signature increased cell longevity. Using expression data from 10 independent sources, we found that these genes Functional genomics are more highly coexpressed in longer-living tissues and are enriched in specific biological processes and transcription factor targets compared with randomly selected gene samples.
    [Show full text]
  • A Comprehensive Transcriptome Analysis of Skeletal Muscles in Two Polish Pig Breeds Differing in Fat and Meat Quality Traits
    Genetics and Molecular Biology, 41, 1, 125-136 (2018) Copyright © 2018, Sociedade Brasileira de Genética. Printed in Brazil DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2016-0101 Research Article A comprehensive transcriptome analysis of skeletal muscles in two Polish pig breeds differing in fat and meat quality traits Katarzyna Piórkowska1 , Kacper òukowski3, Katarzyna Ropka-Molik1, Miros»aw Tyra2 and Artur Gurgul1 1Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland. 2Department of Pig Breeding, National Research Institute of Animal Production, Balice, Poland. 3Department of Cattle Breeding, National Research Institute of Animal Production, Balice, Poland. Abstract Pork is the most popular meat in the world. Unfortunately, the selection pressure focused on high meat content led to a reduction in pork quality. The present study used RNA-seq technology to identify metabolic process genes related to pork quality traits and fat deposition. Differentially expressed genes (DEGs) were identified between pigs of Pulawska and Polish Landrace breeds for two the most important muscles (semimembranosus and longissimus dorsi). A total of 71 significant DEGs were reported: 15 for longissimus dorsi and 56 for semimembranosus muscles. The genes overexpressed in Pulawska pigs were involved in lipid metabolism (APOD, LXRA, LIPE, AP2B1, ENSSSCG00000028753 and OAS2) and proteolysis (CST6, CTSD, ISG15 and UCHL1). In Polish Landrace pigs, genes playing a role in biological adhesion (KIT, VCAN, HES1, SFRP2, CDH11, SSX2IP and PCDH17), actin cytoskeletal organisation (FRMD6, LIMK1, KIF23 and CNN1) and calcium ion binding (PVALB, CIB2, PCDH17, VCAN and CDH11) were transcriptionally more active. The present study allows for better understanding of the physiological processes associated with lipid metabolism and muscle fiber organization.
    [Show full text]
  • DICER1 Gene Dicer 1, Ribonuclease III
    DICER1 gene dicer 1, ribonuclease III Normal Function The DICER1 gene provides instructions for making a protein that plays a role in regulating the activity (expression) of other genes. The Dicer protein aids in the production of a molecule called microRNA (miRNA). MicroRNAs are short lengths of RNA, a chemical cousin of DNA. Dicer cuts (cleaves) precursor RNA molecules to produce miRNA. MicroRNAs control gene expression by blocking the process of protein production. In the first step of making a protein from a gene, another type of RNA called messenger RNA (mRNA) is formed and acts as the blueprint for protein production. MicroRNAs attach to specific mRNA molecules and stop the process by which protein is made. Sometimes, miRNAs break down the mRNA, which also blocks protein production. Through this role in regulating the expression of genes, Dicer is involved in many processes, including cell growth and division (proliferation) and the maturation of cells to take on specialized functions (differentiation). Health Conditions Related to Genetic Changes DICER1 syndrome Mutations in the DICER1 gene cause DICER1 syndrome. People with this condition have an increased risk of developing many types of tumors, particularly certain tumors of the lungs (pleuropulmonary blastoma); kidneys (cystic nephroma); ovaries (Sertoli- Leydig tumors); and thyroid, a butterfly-shaped gland in the lower neck (multinodular goiter). Most of these mutations lead to an abnormally short Dicer protein that is likely unable to produce miRNA. Without regulation by
    [Show full text]