Triplet Repeat Length Bias and Variation in the Human Transcriptome
Triplet repeat length bias and variation in the human transcriptome Michael Mollaa,1,2, Arthur Delcherb,1, Shamil Sunyaevc, Charles Cantora,d,2, and Simon Kasifa,e aDepartment of Biomedical Engineering and dCenter for Advanced Biotechnology, Boston University, Boston, MA 02215; bCenter for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742; cDepartment of Medicine, Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; and eCenter for Advanced Genomic Technology, Boston University, Boston, MA 02215 Contributed by Charles Cantor, July 6, 2009 (sent for review May 4, 2009) Length variation in short tandem repeats (STRs) is an important family including Huntington’s disease (10) and hereditary ataxias (11, 12). of DNA polymorphisms with numerous applications in genetics, All Huntington’s patients exhibit an expanded number of copies in medicine, forensics, and evolutionary analysis. Several major diseases the CAG tandem repeat subsequence in the N terminus of the have been associated with length variation of trinucleotide (triplet) huntingtin gene. Moreover, an increase in the repeat length is repeats including Huntington’s disease, hereditary ataxias and spi- anti-correlated to the onset age of the disease (13). Multiple other nobulbar muscular atrophy. Using the reference human genome, we diseases have also been associated with copy number variation of have catalogued all triplet repeats in genic regions. This data revealed tandem repeats (8, 14). Researchers have hypothesized that inap- a bias in noncoding DNA repeat lengths. It also enabled a survey of propriate repeat variation in coding regions could result in toxicity, repeat-length polymorphisms (RLPs) in human genomes and a com- incorrect folding, or aggregation of a protein.
[Show full text]