Rnase E Activity Is Conferred by a Single Polypeptide: Overexpression

Total Page:16

File Type:pdf, Size:1020Kb

Rnase E Activity Is Conferred by a Single Polypeptide: Overexpression Proc. Natl. Acad. Sci. USA Vol. 90, pp. 9006-9010, October 1993 Biochemustry RNase E activity is conferred by a single polypeptide: Overexpression, purification, and properties of the ams/rne/hmpl gene product (endoribonuclease/RNA processing) R. S. CORMACK, J. L. GENEREAUX, AND G. A. MACKIE* Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1 Communicated by Myron K. Brakke, June 29, 1993 (receivedfor review May 10, 1993) ABSTRACT Ribonuclease E, an enzyme that processes encoding a high molecular mass protein hypothesized to be pre-SS rRNA from Its precursor, is now believed to be the involved in nucleoid partitioning or cell wall invagination major endoribonuclease participating in mRNA turnover in during division (16). The revised DNA sequence, coterminal Escherichia coli. The product of the ams/rne/hmpl gene, with the 5' end of the two previous sequences, encodes a which is required for RNase E activity, was overexpressed, protein of 1025 amino acid residues whose predicted relative purified to near homogeneity by electroelution from an molecular mass would be 114,000. This polypeptide displays SDS/polyacrylamide gel, and renatured. The purified poly- anomalous electrophoretic mobility in SDS/polyacrylamide peptide possesses nucleolytic activity in vitro with a specificity gels, however, and migrates with an apparent size of 180 kDa identical to that observed for crude RNase E preparations. In (16). It has not been proven that the polypeptide encoded by addition, both UV crosslinking and RNA-protein blotting the ams/rne/hmpl gene is, in fact, a ribonuclease or is unambiguously showed that the Ams/Rne/Hmpl polypeptide intimately associated with the cleavage ofRNA either in vitro has a high affnity for RNA. Our results demonstrate that or in vivo. Indeed, it has been suggested that the gene product RNase E activity is directly attributable to, and is an inherent is not a ribonuclease but rather a regulatory protein or an property of, an RNA-binding protein, the ams/rne/hmpl gene auxiliary factor (8). It has also been proposed that RNase E product. activity requires the association of an unidentified catalytic subunit with other proteins, which could include the heat Regulating the balance between mRNA synthesis and decay shock protein GroEL (17). is a significant means of controlling gene expression. In the In an effort to understand the role ofRNase E with respect bacterium Escherichia coli, mRNA decay is usually initiated to substrate recognition and RNA processing, we have over- by endonucleolytic cleavage and followed by exonucleolytic expressed and purified the ams/rne/hmpl gene product to degradation at the new 3' ends by polynucleotide phospho- near homogeneity and have assayed its activity on various rylase and ribonuclease II (1). The endoribonuclease RNase substrate RNAs. In addition, we have utilized UV crosslink- E, which processes pre-5S rRNA from a larger precursor, 9S ing and RNA-protein blots to assess the binding affinity of RNA (2), has been demonstrated both genetically and bio- the full-length or truncated protein. Our results demonstrate chemically to be necessary for the decay of many specific that the ams/rne/hmpl gene product, to which we will refer mRNAs (for reviews, see refs. 3 and 4). The discovery that as Ams/Rne/Hmpl, has a high affinity for RNA and is an essential gene required for RNase E activity, rne, is allelic independently capable ofcorrectly processing several known to ams (altered mRNA stability) (5-8), manifested by ams-1, substrates of RNase E, including the 9S precursor to pre-5S a temperature-sensitive mutation responsible for a 6-fold rRNA. increase in the chemical half-life of pulse-labeled mRNA under nonpermissive conditions (9), constitutes strong evi- MATERIALS AND METHODS dence that RNase E is the rate-limiting factor in the turnover of many mRNAs. The site of cleavage by RNase E occurs Bacterial Strains and Plasmids. The E. coli strain 18-11BP A A (18) was obtained from M. P. Deutscher (University of within the consensus sequence GAUUU (3), which has been Connecticut Health Center, Farmington). The vector pET-11 found to be single stranded and flanked by stem-loop struc- and its host strain for expression, E. coli BL21(DE3) (19), tures (3, 10, 11). In vivo experiments have demonstrated that were obtained from Novagen. The recombinant bacterio- a substrate for RNase E, RNA I of the ColEl plasmid, phage A234 (20), originally AE3G11 (21) and the plasmid requires several unpaired nucleotides at its 5' terminus for pFMK33 (20), both containing all or part of the ams/rne/ efficient cleavage and suggest that RNase E may be sensitive hmpl gene, were obtained from D. Steege (Duke University, to 5'-terminal base pairing (12). Durham, NC) and S. R. Kushner (University of Georgia, Studies of the biochemical properties of the enzyme have Athens), respectively. pFMK33 was digested with Xmn I and generated conflicting data. RNase E was originally thought to BamHI. The 2.7-kbp fragment spanning residues 329-3068 of be a 70-kDa protein that could be rendered temperature the ams/rne/hmpl sequence (coordinates of ref. 16) was sensitive by the rne-3071 mutation (13). Genes capable of ligated into the unique BamHI site of pET-li. Plasmid complementing the ams-) or rne-3071 mutations have been pGM101 contained the 2.7-kbp fragment correctly oriented cloned, but small errors in sequence determination led to the relative to the vector, with the blunt end at the Xmn I site prediction of the ams/rne gene product being a polypeptide ligated directly to the BamHI site of the vector and the ofeither91 kDaor62 kDa, respectively (14, 15). The ams/rne four-residue gap on one strand repaired. To reconstruct the gene was recently recloned and sequenced as hmpl, a gene complete ams/rne/hmpl gene, a fragment of DNA spanning The publication costs ofthis article were defrayed in part by page charge Abbreviations: IPTG, isopropyl ,B-D-thiogalactopyranoside; DTT, payment. This article must therefore be hereby marked "advertisement" dithiothreitol. in accordance with 18 U.S.C. §1734 solely to indicate this fact. *To whom reprint requests should be addressed. 9006 Downloaded by guest on October 2, 2021 Biochemistry: Cormack et al. Proc. Natl. Acad. Sci. USA 90 (1993) 9007 residues 3008-3824 was prepared by PCR amplification ofthe followed by the addition of an equal volume of SDS sample corresponding region of A234 with oligonucleotide primers buffer. The samples were separated in an SDS/7% polyacryl- spanning residues 3008-3031 (5'-AGTCGCCAATGCCGT- amide gel, stained with Coomassie brilliant blue R-250, and TGACCGTAG) and complementary to residues 3801-3824, exposed to x-ray film. with a C -- G mismatch at position 3811 to form a new BamHI RNA-Protein Blots. SDS/7% PAGE gels were used to site (5'-GGTTAGCAAGGATCCCATTCGATG). The prod- separate proteins prepared by boiling the equivalent of 50 p1 uct of amplification was digested with BamHI, purified, and of midlogarithmic phase cultures in SDS sample buffer. The ligated into pGM101 cleaved with BamHI to form pGM102, proteins were electroblotted to a nitrocellulose membrane which contained the complete ams/rne/hmpl gene (see Fig. using a carbonate transfer buffer (24) for 1-3 hr at a constant 1). The orientation and complete nucleotide sequence of the current of 250 mA. After transfer, the blot was placed in 750-bp BamHI fragment in pGM102 were checked by restric- TEN50 buffer (10 mM Tris-HCl, pH 8.0/1 mM EDTA/50 mM tion mapping and by DNA sequencing. Strain BL21(DE3) NaCI) and stored at 4°C for a minimum of 16 hr. Marker lanes was transformed with pGM101, pGM102, and pET-li to form were stained with 0.2% Ponceau S in 3% trichloroacetic acid. strains GM400, GM402, and GM403, respectively. Individual strips of the blot were incubated in binding buffer Preparation of Ams/Rne/Hmpl. Appropriate cultures [TEN50/0.02% Ficoll 400/0.02% polyvinylpyrrolidone/ were grown in a rich medium (19) at 28°C to early logarithmic 0.02% bovine serum albumin (fraction V)/yeast RNA (250 phase and induced with 0.5 mM isopropyl f-D-thiogalacto- pg/ml)] for 90 min at 44°C. 32P-labeled probe RNA generated pyranoside (IPTG). Cultures were harvested 5 hr later, and from in vitro transcription (specific activity 1.5 x 108 the supernatant from a 30,000 x g centrifugation was (S-30) was added x 105 and were precipitated with 26% (wt/vol) ammonium sulfate to yield the cpm/pug) (5 cpm/ml), the blots incubated for 90 min at 44°C. The blots were washed at AS-26 fraction as described (22) and dialyzed for 5 hr. ambient temperature for 10 min in TEN50 buffer, 10 min in Samples containing 2.5-3.0 mg of protein were heated for 5 min at 100°C in SDS sample buffer [60 mM Tris-HCl, pH TEN50 with 200 mM NaCl, and then for 10 min in TENS0 6.8/1.5% (wt/vol) SDS/50 mM dithiothreitol (DTT)/5% (wt/ with 500 mM NaCl. The blots were dried and exposed to x-ray vol) glycerol], applied to a 100 mm x 1.5 mm x 4 mm well film. in an SDS/5.5% polyacrylamide (49:1, acrylamide to N,N'- methylenebisacrylamide) gel, and separated by electropho- RESULTS resis. The outer edges of the gel were stained and used as a guide to excise the band containing the overexpressed poly- Overexpression and Purification of Ams/Rne/Hmpl. The peptide, which was subsequently eluted from the gel slice structure of a plasmid containing most ofthe ams/rne/hmpl using the Bio-Rad model 422 electroeluter.
Recommended publications
  • Intrinsically Disordered Proteins As Crucial Constituents of Cellular Aqueous Two Phase Systems and Coacervates ⇑ Vladimir N
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 589 (2015) 15–22 journal homepage: www.FEBSLetters.org Hypothesis Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates ⇑ Vladimir N. Uversky a,b,c,d, , Irina M. Kuznetsova d,e, Konstantin K. Turoverov d,e, Boris Zaslavsky f a Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA b Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation c Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia d Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation e St. Petersburg State Polytechnical University, St. Petersburg, Russian Federation f AnalizaDx Inc., 3615 Superior Ave., Suite 4407B, Cleveland, OH 44114, USA article info abstract Article history: Here, we hypothesize that intrinsically disordered proteins (IDPs) serve as important drivers of the Received 17 August 2014 intracellular liquid–liquid phase separations that generate various membrane-less organelles. This Revised 10 October 2014 hypothesis is supported by the overwhelming abundance of IDPs in these organelles. Assembly and Accepted 19 November 2014 disassembly of these organelles are controlled by changes in the concentrations of IDPs, their post- Available online 29 November 2014 translational modifications, binding of specific partners, and changes in the pH and/or temperature Edited by A. Valencia of the solution.
    [Show full text]
  • Dissertation Inês Silva ITQB.Pdf
    The Role of Small RNAs and Ribonucleases in the Control of Gene Expression in Salmonella Typhimurium Inês de Jesus de Almeida e Silva Insert here an image with rounded corners Dissertation presented to obtain the Ph.D degree in Biology Instituto de Tecnologia Química e Biológica | Universidade Nova de Lisboa Oeiras, December, 2012 The Role of Small RNAs and Ribonucleases in the Control of Gene Expression in Salmonella Typhimurium Inês de Jesus de Almeida e Silva Dissertation presented to obtain the Ph.D degree in Biology Instituto de Tecnologia Química e Biológica Universidade Nova de Lisboa Oeiras, December, 2012 Financial Support from Fundação para a Ciência e Tecnologia (FCT) – Ph.D: grant - SFRH / BD / 43211 / 2008. Work performed at: Control of Gene Expression Laboratory Instituto de Tecnologia Química e Biológica Av. da República (EAN) 2781-901 Oeiras – Portugal Tel: +351-21-4469548 Fax: +351-21-4469549 Supervisor : Professora Doutora Cecília Maria Pais de Faria de Andrade Arraiano – Investigadora Coordenadora, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. (Head of the Laboratory of Control of Gene Expression, where the work of this Dissertation was performed) Co-supervisor : Doutora Sandra Cristina de Oliveira Viegas – Investigadora Pós-Doutorada, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. (Post-doc Fellow in the Laboratory of Control of Gene Expression, where the work of this Dissertation was performed) President of the Jury : Doutora Claudina Amélia Marques Rodrigues Pousada – Professora Catedrática Convidada do Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, por delegação; iii Examiners: Professor Doutor Iñigo Lasa Uzcudun – Head of Microbial Biofilm Research Group, Instituto de Agrobiotecnología, Pamplona (Principal Examiner).
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_005222025Cyc: Escherichia coli 121 Cellular Overview Connections between pathways are omitted for legibility. pro a dicarboxylate a dicarboxylate an amino putrescine putrescine thiosulfate a hexose 6- glycine betaine glycine succinate γ-butyrobetaine L-ascorbate acid a dipeptide a dipeptide a dipeptide poly-β-1,6- 1-(β-D O-acetyl-L-serine O-acetyl-L-serine spermidine spermidine D-mannitol galactitol sulfate phosphate phosphate phosphate betaine Fe 3+ an amino an amino D-cellobiose an aromatic an aromatic a dipeptide 6 phosphate phosphate N-acetyl-D- thiamine cys cys spermidine spermidine protoheme 2+ citrate N -(D-fructosyl)-L-lysine L-proline betaine glutamate L-proline betaine L-carnitine acid an amino acid an amino an amino an amino an amino a tripeptide a tripeptide a tripeptide amino acid amino acid ribofuranosyl) (R)- putrescine Fe N-acetyl-D- molybdate phosphate a hydroxamate 3+ 3+ arbutin shikimate enterobactin 2-oxoglutarate N 6 -(D-psicosyl)-L-lysine D-sorbitol D-glucosamine D-mannitol galactitol N-acetylneuraminate N-acetylneuraminate sulfate sulfate sulfate glycine betaine
    [Show full text]
  • Anti-Dicer (SAB4200087)
    Anti-Dicer produced in rabbit, affinity isolated antibody Product Number SAB4200087 Product Description Precautions and Disclaimer Anti-Dicer is produced in rabbit using as the For R&D use only. Not for drug, household, or other immunogen a synthetic peptide corresponding to a uses. Please consult the Safety Data Sheet for fragment of human Dicer (Gene ID: 23405) conjugated information regarding hazards and safe handling to KLH. The corresponding sequence is identical in practices. mouse. The antibody is affinity-purified using the immunizing peptide immobilized on agarose. Storage/Stability Store at –20 C. For continuous use, store at 2–8 C for Anti-Dicer recognizes human Dicer. The antibody may up to one month. For extended storage, freeze in be used in several immunochemical techniques working aliquots at –20 C. Repeated freezing and including immunoblotting (218 kDa), immuno- thawing, or storage in “frost-free” freezers, is not precipitation, and immunofluorescence. Detection of recommended. If slight turbidity occurs upon prolonged the Dicer band by immunoblotting is specifically storage, clarify the solution by centrifugation before inhibited with the immunizing peptide. use. Working dilutions should be discarded if not used within 12 hours. Dicer, also known as Dicer1, Endoribonuclease Dicer, Helicase with RNase motif, and HERNA, is a member Product Profile of the RNase III family that catalyzes the first step in the Immunoblotting: a working antibody concentration of RNA interference (RNAi) pathway and initiates 3-6 g/mL is recommended using HeLa cell lysates. formation of the RNA-induced silencing complex (RISC). Dicer processes the dsRNA into small Immunoprecipitation: a working antibody amount of fragments called short interfering RNA (siRNA) or 2.5-5 g is recommended using HeLa cell lysates.
    [Show full text]
  • SUPLEMENTARY MATERIAL 1) Comparative Analysis of The
    1 SUPLEMENTARY MATERIAL 2 1) Comparative analysis of the different differential expression methods applied to the 3 transcriptome of Vanilla planifolia Jacks. 4 5 6 7 8 9 10 11 12 13 14 2dpi 10dpi 15 16 Supplemental Figure S1. Venn diagram showing the comparison of the differentially 17 expressed unigenes obtained with the methods DESeq2, EdgeR, NOISeq, and DESeq. At the 18 center of the diagram we observed that the EdgeR method comprises the great majority of 19 genes determined by the other methods. The right panel corresponds to 2 dpi, while the left 20 panel corresponds to 10 dpi. 21 22 23 24 25 26 2) Global expression profiles in response to infection caused by Fusarium 27 oxysporum f. sp. vanillae in vanilla. 28 . 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 2dpi 10dpi 51 Supplemental Figure S2. Heat map that contrasts the global vanilla response to 52 Fusarium oxysporum f. sp. vanillae. On the right we observe the early response 53 (2dpi); while in the left panel it presents the response to 10dpi. All differentially 54 expressed unigenes are included. 55 56 3) Expression profiles related to biotic stress, in the late response (10dpi) of 57 vanilla to Fusarium oxysporum f. sp. vanillae 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Supplemental Figure S3. Heat map indicating the expression profiles of the annotated DEG 72 unigenes, corresponding to 10dpi. The numbers in the figure correspond to different 73 categories of gene ontology, as described below: 25 C1-metabolism, 11 lipid metabolism, 3 74 minor CHO metabolism, 13 amino acid metabolism, 16 secondary metabolism, 26 misc, 17 75 hormone metabolism, 30 signalling, 31 cell, 23 nucleotide metabolism, 27 RNA, 28 DNA, 76 33 development, 24 Biodegradation of Xenobiotics, 18 Co-factor and vitamine metabolism, 77 35 not assigned, 34 transport, 29 protein, 20 stress, 2 major CHO metabolism, 10 cell wall.
    [Show full text]
  • Ribonuclease E Organizes the Protein Interactions in the Escherichia Coli RNA Degradosome
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome Nathalie F. Vanzo,1 Yeun Shan Li,2 Be´atrice Py,2,3 Erwin Blum,2 Christopher F. Higgins,2,4 Lelia C. Raynal,1 Henry M. Krisch,1 and Agamemnon J. Carpousis1,5 1Laboratoire de Microbiologie et Ge´ne´tique Mole´culaire, UPR 9007, Centre National de la Recherche Scientifique (CNRS), 31062 Toulouse Cedex, France; 2Nuffield Department of Clinical Biochemistry and Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK The Escherichia coli RNA degradosome is the prototype of a recently discovered family of multiprotein machines involved in the processing and degradation of RNA. The interactions between the various protein components of the RNA degradosome were investigated by Far Western blotting, the yeast two-hybrid assay, and coimmunopurification experiments. Our results demonstrate that the carboxy-terminal half (CTH) of ribonuclease E (RNase E) contains the binding sites for the three other major degradosomal components, the DEAD-box RNA helicase RhlB, enolase, and polynucleotide phosphorylase (PNPase). The CTH of RNase E acts as the scaffold of the complex upon which the other degradosomal components are assembled. Regions for oligomerization were detected in the amino-terminal and central regions of RNase E. Furthermore, polypeptides derived from the highly charged region of RNase E, containing the RhlB binding site, stimulate RhlB activity at least 15-fold, saturating at one polypeptide per RhlB molecule. A model for the regulation of the RhlB RNA helicase activity is presented.
    [Show full text]
  • Rnase E Activity Is Conferred by a Single Polypeptide
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 9006-9010, October 1993 Biochemustry RNase E activity is conferred by a single polypeptide: Overexpression, purification, and properties of the ams/rne/hmpl gene product (endoribonuclease/RNA processing) R. S. CORMACK, J. L. GENEREAUX, AND G. A. MACKIE* Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1 Communicated by Myron K. Brakke, June 29, 1993 (receivedfor review May 10, 1993) ABSTRACT Ribonuclease E, an enzyme that processes encoding a high molecular mass protein hypothesized to be pre-SS rRNA from Its precursor, is now believed to be the involved in nucleoid partitioning or cell wall invagination major endoribonuclease participating in mRNA turnover in during division (16). The revised DNA sequence, coterminal Escherichia coli. The product of the ams/rne/hmpl gene, with the 5' end of the two previous sequences, encodes a which is required for RNase E activity, was overexpressed, protein of 1025 amino acid residues whose predicted relative purified to near homogeneity by electroelution from an molecular mass would be 114,000. This polypeptide displays SDS/polyacrylamide gel, and renatured. The purified poly- anomalous electrophoretic mobility in SDS/polyacrylamide peptide possesses nucleolytic activity in vitro with a specificity gels, however, and migrates with an apparent size of 180 kDa identical to that observed for crude RNase E preparations. In (16). It has not been proven that the polypeptide encoded by addition, both UV crosslinking and RNA-protein blotting the ams/rne/hmpl gene is, in fact, a ribonuclease or is unambiguously showed that the Ams/Rne/Hmpl polypeptide intimately associated with the cleavage ofRNA either in vitro has a high affnity for RNA.
    [Show full text]
  • DICER1 Gene Dicer 1, Ribonuclease III
    DICER1 gene dicer 1, ribonuclease III Normal Function The DICER1 gene provides instructions for making a protein that plays a role in regulating the activity (expression) of other genes. The Dicer protein aids in the production of a molecule called microRNA (miRNA). MicroRNAs are short lengths of RNA, a chemical cousin of DNA. Dicer cuts (cleaves) precursor RNA molecules to produce miRNA. MicroRNAs control gene expression by blocking the process of protein production. In the first step of making a protein from a gene, another type of RNA called messenger RNA (mRNA) is formed and acts as the blueprint for protein production. MicroRNAs attach to specific mRNA molecules and stop the process by which protein is made. Sometimes, miRNAs break down the mRNA, which also blocks protein production. Through this role in regulating the expression of genes, Dicer is involved in many processes, including cell growth and division (proliferation) and the maturation of cells to take on specialized functions (differentiation). Health Conditions Related to Genetic Changes DICER1 syndrome Mutations in the DICER1 gene cause DICER1 syndrome. People with this condition have an increased risk of developing many types of tumors, particularly certain tumors of the lungs (pleuropulmonary blastoma); kidneys (cystic nephroma); ovaries (Sertoli- Leydig tumors); and thyroid, a butterfly-shaped gland in the lower neck (multinodular goiter). Most of these mutations lead to an abnormally short Dicer protein that is likely unable to produce miRNA. Without regulation by
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • In Vitrocytotoxicity of Ranpirnase (Onconase)
    Postepy Hig Med Dosw (online), 2013; 67: 1166-1172 www.phmd.pl e-ISSN 1732-2693 Original Article Received: 2013.06.09 Accepted: 2013.10.13 In vitro cytotoxicity of ranpirnase (onconase) Published: 2013.12.02 in combination with components of R-CHOP regimen against diffuse large B cell lymphoma (DLBCL) cell line* Działanie cytotoksyczne onkonazy w skojarzeniu z lekami schematu R-CHOP na komórki linii chłoniaka rozlanego z dużych komórek B (DLBCL)* Agata Majchrzak1, , , , , , Magdalena Witkowska1,2, , , , Aleksandra Authors’ Contribution: Mędra1, , , Małgorzata Zwolińska1,2, , , , Jakub Bogusz1, , Barbara Study Design Cebula-Obrzut1, , , , , Zbigniew Darzynkiewicz3, , , Tadeusz Robak2, , , , Data Collection 1, , , , , , Statistical Analysis Piotr Smolewski Data Interpretation Manuscript Preparation 1 Department of Experimental Hematology and Literature Search 2 Department of Hematology, Medical University of Lodz, Poland, Funds Collection 3 The Brander Cancer Research Institute, New York Medical College, Valhalla, NY, USA Summary Ranpirnase (onconase; ONC) is an endoribonuclease obtained from the frog Rana pipiens. This enzyme exhibits anticancer properties mediated by degradation of cellular RNA and induction of apoptosis. In this study we assessed cytotoxicity of ONC in combination with currently used anticancer drugs on a human diffuse large B-cell lymphoma (DLBCL)-derived cell line (Toledo). Cytotoxic activity was measured by the exclusion of propidium iodide assay while apoptosis was assessed using the annexin-V binding method. Additionally, flow cytometry was used to assess the decline of mitochondrial potential and to determine activation of caspases 3, 8 and 9. It was observed that in vitro treatment with ONC in combination with rituximab, mafosfa- mide, vincristine, doxorubicin, and dexamethasone (drugs corresponding with elements of R-CHOP regimen) resulted in increased cytotoxicity.
    [Show full text]
  • Supplementary Information
    Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020 Supplementary Information Electrical tension-triggered conversion of anaerobic to aerobic respiration of Shewanella putrefaciens CN32 while promoting biofilm growth in microbial fuel cells Xiu He a, Xiaoshuai Wu c,Yan Qiao a*,Tianbao Hu a, Deng Wang a, Xiao Han a and Changt Ming Li a ,b ,c ,d* a Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, No. 2 T iansheng Road, Chongqing 400715, P. R. China. b Chongqing Engineering Research Center for Rapid Diagnosis of Dread Disease, Southwest University, Chongqin g 400715, P. R. China. c Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215011, P. R. China. d Institute of Advanced Crossfield Science, Qingdao University, Qingdao 266071, P. R. China. * Corresponding author. E-mail: yanqiao@ swu.edu.cn; [email protected] Experimental section: Bacteria culture A single colony of S. putrefaciens CN32 (ATCC, BBA-1097) was cultured aerobically in 100 ml LB at 30 °C overnight1 and the cells were harvested and inoculated into fresh LB. After grown at 30 °C for 6 hours, the cells were by centrifuging at 4 °C (6000 rpm, 5 min) for MFC half-cell operation2. Before every test, nitrogen was purged into the suspension for 30 min to remove oxygen from the cell. MFC half-cell operation For the anodic half-cell analysis, a piece of 1 cm∗1cm a NiO nanowire decelerated carbon cloth was used as working electrode, saturated calomel electrode (SCE) was used as the reference electrode and titanium plate as the counter electrode3.
    [Show full text]
  • Lp16-PSP, a Member of Yjgf/Yer057c/UK114 Protein
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 September 2017 doi:10.20944/preprints201709.0119.v1 Peer-reviewed version available at Int. J. Mol. Sci. 2017, 18, 2407; doi:10.3390/ijms18112407 1 Article 2 Lp16-PSP, a member of YjgF/YER057c/UK114 Protein 3 Family Induces Apoptosis and p21WAF1/CIP1 mediated G1 4 Cell Cycle Arrest in Human Acute Promyelocytic 5 Leukemia (APL) HL-60 Cells 6 Thomson Patrick Joseph1†, Warren Chanda1†, Abdullah Faqeer Muhammad2, Sadia Kanwal3, Samana 7 Batool1, Meishan Zhang1, MinTao Zhong1 and Min Huang1* 8 1Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, 9 China 10 2Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China 11 3Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China 12 †Contributed Equally 13 *Corresponding Author: [email protected]; +8641186110304 14 Abstract: 15 Lp16-PSP from Lentinula edodes strain C91-3 has been reported previously in our laboratory to have selective 16 cytotoxic activity against a panel of human cell lines. Herein, we have used several parameters in order to 17 characterize the Lp16-PSP-induced cell death using HL-60 as model cancer. The results of phase contrast 18 microscopy, nuclear examination, DNA fragmentation detection and flow cytometry revealed that high 19 doses of Lp16-PSP resulted in the induction of apoptosis in HL-60 cells. The colorimetric assay showed the 20 activation of caspase-8, -9 and -3 cascade highlighting the involvement of Fas/FasL-related pathway. 21 Whereas, western blot revealed the cleavage of caspase-3, increased expression of Bax, the release of 22 cytochrome c and decreased expression of Bcl-2 in a dose-dependent manner, suggesting the intrinsic 23 pathway might be involved in Lp16-PSP-induced apoptosis either.
    [Show full text]