Genome-Wide Investigation of Cellular Functions for Trna Nucleus

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide Investigation of Cellular Functions for Trna Nucleus Genome-wide Investigation of Cellular Functions for tRNA Nucleus- Cytoplasm Trafficking in the Yeast Saccharomyces cerevisiae DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hui-Yi Chu Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2012 Dissertation Committee: Anita K. Hopper, Advisor Stephen Osmani Kurt Fredrick Jane Jackman Copyright by Hui-Yi Chu 2012 Abstract In eukaryotic cells tRNAs are transcribed in the nucleus and exported to the cytoplasm for their essential role in protein synthesis. This export event was thought to be unidirectional. Surprisingly, several lines of evidence showed that mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm and their distribution is nutrient-dependent. This newly discovered tRNA retrograde process is conserved from yeast to vertebrates. Although how exactly the tRNA nuclear-cytoplasmic trafficking is regulated is still under investigation, previous studies identified several transporters involved in tRNA subcellular dynamics. At least three members of the β-importin family function in tRNA nuclear-cytoplasmic intracellular movement: (1) Los1 functions in both the tRNA primary export and re-export processes; (2) Mtr10, directly or indirectly, is responsible for the constitutive retrograde import of cytoplasmic tRNA to the nucleus; (3) Msn5 functions solely in the re-export process. In this thesis I focus on the physiological role(s) of the tRNA nuclear retrograde pathway. One possibility is that nuclear accumulation of cytoplasmic tRNA serves to modulate translation of particular transcripts. To test this hypothesis, I compared expression profiles from non-translating mRNAs and polyribosome-bound translating mRNAs collected from msn5Δ and mtr10Δ mutants and wild-type cells, in fed or acute amino acid starvation conditions. Microarray data revealed that several amino acid biosynthetic pathways, including the sulfur assimilation, arginine ii biosynthesis, and leucine biosynthesis pathways, are primary targets of the tRNA trafficking processes. I confirmed the microarray data by both Northern and Western blot analyses. Levels of all tested target proteins involved in such amino acid biogenesis pathways are down-regulated when the tRNA nuclear import or re-export is disrupted. The steady state levels of target total RNAs are similar between wild-type cells and tRNA trafficking defective mutants. The data suggest that the reduction of target proteins most likely results from translation defects of the target mRNAs. This study provides information that tRNA nuclear-cytoplasmic dynamics is connected to amino acid biosynthesis via control at the level of translation. iii This thesis is dedicated to my family and the memory of my dear mother. iv Acknowledgements First and foremost I want to thank my advisor Anita K. Hopper, for her warm encouragement and advice. From her I have learned how to enjoy the research life and open my mind for every possibility. She is always patient, optimistic, and enthusiastic, even during difficult moments. I appreciate all her supports and contributions of time, ideas, and funding in my Ph.D pursuits. When I lose my confidence, she always believed me more than myself. I thank her wide knowledge and logical way of thinking, which made this thesis possible. I am grateful for the excellent role model which she provided as a woman scientist. It is my honor to be one of her students. I am acknowledged my thesis committee, Professor Stephen Osmani, Professor Kurt Fredrick, and Professor Jane Jackman, for their interests, professional comments, and personal encouragements. I am also grateful that my previous advisor in the Nationwide Children Hospital, Dr. Akihira Otoshi, for his giving me the chance coming to the United States. I want to thank the director of MCDB graduate program, Professor David Bisaro, for his understanding and decision of accepting me, which made me get the opportunity to join in this wonderful lab. Being part of the Hopper lab would definitely become a beautiful memory in my life. It was my pleasure to work with such nice lab members. I thank our post-docs Rebecca, for her good ideas and always willing to help us whenever we have questions, v and Emily, for her nice communication skills. Thanks to Greetchen, Nripesh, Tsung-Po, Hsiao-Yun (Ivy), Jingyan, and Marina. When I became too serious or too panic, they provided laughs and supports. When I had successful experiments, they shared the joyful moments. My life in the OSU was fulfilling and the learning experience was most comprehensive in my study journey. As a hearing impaired foreigner, I sincerely thank Cindy Knecht and Andrea Crago from the disability service that was provided by the OSU and the Professional Reporters, Inc. Their amazing real-time transcribing work truly helped me overcome the double barriers of disability and language. Thank to OSU provided such a friendly campus. I thank people in the department of Molecular Genetics, in particular Professor Jim Hopper, Professor Paul Herman, and their lab members. In these years of joys and frustrations, thanks for all the supports my friends in Columbus. Thanks to Rosa, Keith and their dog Bailey, for their generosity and warm supports. Thanks to I-Ju, Liang-Chun, and Yuh-Ying, for banding together over food and life. I also thank Kuo-Fang and Shu-Hao, studying together with them was a different and great experience. Also thanks to many old friends in Taiwan, they keep caring about me no matter the distance. Finally, and most importantly, thanks to my parents for their nurture and education. Their unconditional love made me brave to face the challenges and was the motivation of my pursuits. Thanks to my sister and brother, and their families, for their understanding and supports. And last, but not least, to Yuan-Sheng, thank you for the love and consistent being there for me. vi Vita March 1978 ....................................................Born−Taipei, Taiwan 2000...............................................................B.S. Biology, National Taiwan Normal University, Taiwan 2003................................................................M.S. Genetics, National Yang-Ming University, Taiwan 2006 to present ..............................................Graduate Research Associate, Molecular, Cellular, and Developmental Biology Program, The Ohio State University Publication Lai, Y.-S., Murali, S., Ju, H. Y., Wu, M. F., Guo, I. C., Chen, S. C., Fang, K. and Chang, C. Y. Two iridovirus-susceptible cell lines established for kidney and liver of grouper, Epinephelus awoara, and partial characterization of grouper iridovirus. Journal of fish disease 23, 379-338, 2000. vii Lai, Y.-S., Murali, S., Chiu, H. C., Ju, H. Y., Lin, Y. S., Chen, S. C., Guo, I. C., Fang, K. and Chang, C. Y. Preparation of yellow grouper nervous necrosis virus in a new nodavirus- susceptible cell lines from yellow grouper, Epinephelus awoara brain tissue. Journal of fish disease 24,299-309, 2001. Chu, H. Y. Phenotypic Analysis of the Aurora-A Transgenic Mice. Master Thesis. Institute of Genetics, National Yang Ming University, July, 2003. Chu, H. Y. and Otoshi, A. Cloning and functional analysis of hypothalamic homeobox gene Bsx1a and its isoform, Bsx1b., Mol Cell Biol. 27(10), 3743-9, 2007. Li, C.C., Chu, H.Y., Yang, C.W., Chou, C.K. and Tsai, T.F. Aurora-A overexpression in mouse liver causes p53-dependent premitotic arrest during liver regeneration. Mol Cancer Res. 7(5), 678-88, 2009. Chu, H. Y. and Hopper, A. K. Genome-wide investigation of the cellular functions for tRNA nucleus-cytoplasm trafficking in S. cerevisiae. (in prep.) Fields of Study Major Field: Molecular, Cellular and Developmental Biology viii Table of Contents Abstract ............................................................................................................................... ii Acknowledgements ............................................................................................................. v Vita .................................................................................................................................... vii Fields of Study ................................................................................................................. viii Table of Contents ............................................................................................................... ix List of Tables ................................................................................................................... xiv List of Figures .................................................................................................................. xvi Chapter 1 Introduction.................................................................................................. 1 1.1 Nucleocytoplasmic transport ................................................................................ 1 1.2 tRNA biology in yeast .......................................................................................... 5 1.2.1 The life of tRNA: biogenesis, maturation, and turnover ........................... 5 1.2.2 tRNA subcellular dynamics ..................................................................... 10 1.3 Amino acid stress responses ............................................................................... 12 1.4 Microarray analysis ...........................................................................................
Recommended publications
  • METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
    Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0.
    [Show full text]
  • The Diversity of Dolichol-Linked Precursors to Asn-Linked Glycans Likely Results from Secondary Loss of Sets of Glycosyltransferases
    The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases John Samuelson*†, Sulagna Banerjee*, Paula Magnelli*, Jike Cui*, Daniel J. Kelleher‡, Reid Gilmore‡, and Phillips W. Robbins* *Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 715 Albany Street, Boston, MA 02118-2932; and ‡Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01665-0103 Contributed by Phillips W. Robbins, December 17, 2004 The vast majority of eukaryotes (fungi, plants, animals, slime mold, to N-glycans of improperly folded proteins, which are retained in and euglena) synthesize Asn-linked glycans (Alg) by means of a the ER by conserved glucose-binding lectins (calnexin͞calreticulin) lipid-linked precursor dolichol-PP-GlcNAc2Man9Glc3. Knowledge of (13). Although the Alg glycosyltransferases in the lumen of ER this pathway is important because defects in the glycosyltrans- appear to be eukaryote-specific, archaea and Campylobacter sp. ferases (Alg1–Alg12 and others not yet identified), which make glycosylate the sequon Asn and͞or contain glycosyltransferases dolichol-PP-glycans, lead to numerous congenital disorders of with domains like those of Alg1, Alg2, Alg7, and STT3 (1, 14–16). glycosylation. Here we used bioinformatic and experimental Protists, unicellular eukaryotes, suggest three notable exceptions methods to characterize Alg glycosyltransferases and dolichol- to the N-linked glycosylation path described in yeast and animals PP-glycans of diverse protists, including many human patho- (17). First, the kinetoplastid Trypanosoma cruzi (cause of Chagas gens, with the following major conclusions. First, it is demon- myocarditis), fails to glucosylate the dolichol-PP-linked precursor strated that common ancestry is a useful method of predicting and so makes dolichol-PP-GlcNAc2Man9 (18).
    [Show full text]
  • Physical Interactions Between the Alg1, Alg2, and Alg11 Mannosyltransferases of the Endoplasmic Reticulum
    Glycobiology vol. 14 no. 6 pp. 559±570, 2004 DOI: 10.1093/glycob/cwh072 Advance Access publication on March 24, 2004 Physical interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic reticulum Xiao-Dong Gao2, Akiko Nishikawa1, and Neta Dean1 begins on the cytosolic face of the ER, where seven sugars (two N-acetylglucoseamines and five mannoses) are added 1Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, sequentially to dolichyl phosphate on the outer leaflet of NY 11794-5215, and 2Research Center for Glycoscience, National the ER, using nucleotide sugar donors (Abeijon and Institute of Advanced Industrial Science and Technology, Tsukuba Hirschberg, 1992; Perez and Hirschberg, 1986; Snider and Downloaded from https://academic.oup.com/glycob/article/14/6/559/638968 by guest on 30 September 2021 Central 6, 1-1 Higashi, Tsukuba 305-8566, Japan Rogers, 1984). After a ``flipping'' or translocation step, the Received on January 26, 2004; revised on March 2, 2004; accepted on last seven sugars (four mannoses and three glucoses) are March 2, 2004 added within the lumen of the ER, using dolichol-linked sugar donors (Burda and Aebi, 1999). Once assembled, the The early steps of N-linked glycosylation involve the synthesis oligosaccharide is transferred from the lipid to nascent of a lipid-linked oligosaccharide, Glc3Man9GlcNAc2-PP- protein in a reaction catalyzed by oligosaccharyltransferase. dolichol, on the endoplasmic reticulum (ER) membrane. After removal of terminal glucoses and a single mannose, Prior to its lumenal translocation and transfer to nascent nascent glycoproteins bearing the N-linked Man8GlcNAc2 glycoproteins, mannosylation of Man5GlcNAc2-PP-dolichol core can exit the ER to the Golgi, where this core may is catalyzed by the Alg1, Alg2, and Alg11 mannosyltrans- undergo further carbohydrate modifications.
    [Show full text]
  • Expression Gene Network Analyses Reveal Molecular Mechanisms And
    www.nature.com/scientificreports OPEN Diferential expression and co- expression gene network analyses reveal molecular mechanisms and candidate biomarkers involved in breast muscle myopathies in chicken Eva Pampouille1,2, Christelle Hennequet-Antier1, Christophe Praud1, Amélie Juanchich1, Aurélien Brionne1, Estelle Godet1, Thierry Bordeau1, Fréderic Fagnoul2, Elisabeth Le Bihan-Duval1 & Cécile Berri1* The broiler industry is facing an increasing prevalence of breast myopathies, such as white striping (WS) and wooden breast (WB), and the precise aetiology of these occurrences remains poorly understood. To progress our understanding of the structural changes and molecular pathways involved in these myopathies, a transcriptomic analysis was performed using an 8 × 60 K Agilent chicken microarray and histological study. The study used pectoralis major muscles from three groups: slow-growing animals (n = 8), fast-growing animals visually free from defects (n = 8), or severely afected by both WS and WB (n = 8). In addition, a weighted correlation network analysis was performed to investigate the relationship between modules of co-expressed genes and histological traits. Functional analysis suggested that selection for fast growing and breast meat yield has progressively led to conditions favouring metabolic shifts towards alternative catabolic pathways to produce energy, leading to an adaptive response to oxidative stress and the frst signs of infammatory, regeneration and fbrosis processes. All these processes are intensifed in muscles afected by severe myopathies, in which new mechanisms related to cellular defences and remodelling seem also activated. Furthermore, our study opens new perspectives for myopathy diagnosis by highlighting fne histological phenotypes and genes whose expression was strongly correlated with defects. Te poultry industry relies on the production of fast-growing chickens, which are slaughtered at high weights and intended for cutting and processing.
    [Show full text]
  • Identification of Candidate Substrates of the Leucine Rich Repeat Kinase 2 by Mass Spectrometry
    Identification of candidate substrates of the leucine rich repeat kinase 2 by mass spectrometry- based phosphoproteomics William Carl Edelman A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Judit Villén, Chair Leo Pallanck Deborah Nickerson Program Authorized to Offer Degree: Department of Genome Sciences 2 © Copyright 2016 William Carl Edelman 3 University of Washington Abstract Identification of candidate substrates of the leucine rich repeat kinase 2 by mass spectrometry-based phosphoproteomics William Carl Edelman Chair of the Supervisory Committee: Assistant Professor, Judit Villén Department of Genome Sciences Mutations in the kinase domain of the leucine rich repeat kinase (LRRK2) have been implicated in heritable forms of Parkinson’s disease (PD). Specifically, a glycine to serine mutation (G2019S) has demonstrated hyperactive autophosphorylation, neuronal toxicity, and locomotor deficits in the fruit fly Drosophila melanogaster— all of which are related to its pathogenicity in PD. My dissertation focuses on identifying novel substrates of LRRK2 through analysis of proteome-wide changes in protein abundance as well as identifying changes in phosphorylation of proteins in vitro and in the in vivo fruit fly model. Using mass spectrometry, I provide quantitative information on thousands of proteins and phosphorylation sites. In vitro kinase assays on peptides derived from fly heads or a neuroblastoma cell line provide evidence for direct substrates of LRRK2, while the in vivo experiment in flies expressing LRRK2 identifies both direct and indirect phosphorylation substrates of the kinase. Herein, I present evidence for novel, LRRK2-mediated phosphorylation sites in the Drosophila melanogaster and the neuroblastoma models of PD.
    [Show full text]
  • Injury by Mechanical Ventilation Gene Transcription and Promotion Of
    Modulation of Lipopolysaccharide-Induced Gene Transcription and Promotion of Lung Injury by Mechanical Ventilation This information is current as William A. Altemeier, Gustavo Matute-Bello, Sina A. of September 29, 2021. Gharib, Robb W. Glenny, Thomas R. Martin and W. Conrad Liles J Immunol 2005; 175:3369-3376; ; doi: 10.4049/jimmunol.175.5.3369 http://www.jimmunol.org/content/175/5/3369 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2005/08/23/175.5.3369.DC1 Material http://www.jimmunol.org/ References This article cites 37 articles, 7 of which you can access for free at: http://www.jimmunol.org/content/175/5/3369.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Modulation of Lipopolysaccharide-Induced Gene Transcription and Promotion of Lung Injury by Mechanical Ventilation1 William A.
    [Show full text]
  • Blimp1 Regulates the Transition of Neonatal to Adult Intestinal Epithelium
    UCLA UCLA Previously Published Works Title Blimp1 regulates the transition of neonatal to adult intestinal epithelium. Permalink https://escholarship.org/uc/item/01x184nd Journal Nature communications, 2(1) ISSN 2041-1723 Authors Muncan, Vanesa Heijmans, Jarom Krasinski, Stephen D et al. Publication Date 2011-08-30 DOI 10.1038/ncomms1463 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE Received 11 May 2011 | Accepted 28 Jul 2011 | Published 30 Aug 2011 DOI: 10.1038/ncomms1463 Blimp1 regulates the transition of neonatal to adult intestinal epithelium Vanesa Muncan1,2,3, Jarom Heijmans1,2,3, Stephen D. Krasinski4, Nikè V. Büller1,2,3, Manon E. Wildenberg1,2,3, Sander Meisner1, Marijana Radonjic5, Kelly A. Stapleton4, Wout H. Lamers1, Izak Biemond3, Marius A. van den Bergh Weerman6, Dónal O’Carroll7, James C. Hardwick3, Daniel W. Hommes3 & Gijs R. van den Brink1,2,3 In many mammalian species, the intestinal epithelium undergoes major changes that allow a dietary transition from mother’s milk to the adult diet at the end of the suckling period. These complex developmental changes are the result of a genetic programme intrinsic to the gut tube, but its regulators have not been identified. Here we show that transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp1) is highly expressed in the developing and postnatal intestinal epithelium until the suckling to weaning transition. Intestine-specific deletion of Blimp1 results in growth retardation and excessive neonatal mortality. Mutant mice lack all of the typical epithelial features of the suckling period and are born with features of an adult-like intestine.
    [Show full text]
  • Regulatory Features of the 5'Untranslated Leader Region Of
    MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Racheal A. Devine Candidate for the Degree Doctor of Philosophy ______________________________________ Mitch Balish, Ph.D., Director ______________________________________ Eileen Bridge, Ph.D., Reader ______________________________________ Rachael Morgan-Kiss, Ph.D., Reader ______________________________________ Xiao-Wen Cheng, Ph.D., Reader ______________________________________ Jack Vaughn, Ph.D., Graduate School Representative ABSTRACT REGULATORY FEATURES OF THE 5’ UNTRANSLATED LEADER REGION OF aroL IN ESCHERICHIA COLI K12 AND THE sRNA, ryhB, IN SHEWANELLA ONEIDENSIS MR-1 by Racheal A. Devine RNA is an important regulator of gene expression within bacterial, eukaryotic, and archaeal cells. This work focuses on two aspects of RNA regulation: the first half investigates the role of regulatory features within the 5’ untranslated leader region (UTR) of the E. coli aroL mRNA and the second half focuses on an sRNA in S. oneidensis MR- 1. The 5’UTR of mRNAs contain information necessary for ribosome recognition and subsequent translation initiation. Translation initiation is a prominent part of gene expression, as it is the rate-limiting step of translation. The 70S ternary initiation complex contains initiator tRNA and the mRNA’s start codon positioned in the P-site of the 70S ribosome. The Shine-Dalgarno (SD) sequence within the 5’UTR of the mRNA is an important feature that helps facilitate the initial interaction between the mRNA and the 30S subunit. Translation of mRNAs lacking an SD has been reported and suggests that alternative mechanisms of mRNA-30S interactions exist. The aroL mRNA contains a short open reading frame within its 5’UTR.
    [Show full text]
  • Clinical Utility Gene Card For: ALG1 Defective Congenital Disorder of Glycosylation
    European Journal of Human Genetics (2015) 23, doi:10.1038/ejhg.2015.9 & 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/ejhg CLINICAL UTILITY GENE CARD Clinical utility gene card for: ALG1 defective congenital disorder of glycosylation Jaak Jaeken*,1, Dirk Lefeber2 and Gert Matthijs3 European Journal of Human Genetics (2015) 23, doi:10.1038/ejhg.2015.9; published online 4 February 2015 1. DISEASE CHARACTERISTICS are known to the authors. The frequency and the prevalence of the 1.1 Name of the disease (synonyms) disease are not known. Deficiency of GDP-Man:GlcNAc2-PP-Dol mannosyltransferase, manno- syltransferase 1 deficiency, ALG1-CDG, CDG-Ik. 1.9 Diagnostic setting 1.2 OMIM# of the disease 608540 Yes No A. (Differential) diagnostics ⊠ ⊠ 1.3 Name of the analysed genes or DNA/chromosome segments: B. Predictive testing C. Risk assessment in relatives ⊠ □ ALG1. D. Prenatal ⊠ □ 1.4 OMIM# of the gene 605907. Comment: ALG1-CDG belongs to the five most common N-glycosylation 1.5 Mutational spectrum disorders together with PMM2-CDG, ALG6-CDG, MPI-CDG and Thirteen variants have been reported: ten missense variants, two SRD5A3-CDG. It is an autosomal recessive disease with a broad splicing variants and one deletion variant. The most frequent variant clinical spectrum, and with early death at the second day of life to – is c.773C4T(p.Ser258Leu)1–6 (www.lovd.nl/ALG1). The standard survival beyond the age of 20 years.1 10 Its phenotype is characterized reference sequence indicating reported variants (ENSG00000033011) by a predominant neurological involvement.
    [Show full text]
  • Mapping Active Site Residues in Glutamate-5-Kinase. the Substrate Glutamate and the Feed-Back Inhibitor Proline Bind at Overlapping Sites
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 580 (2006) 6247–6253 Mapping active site residues in glutamate-5-kinase. The substrate glutamate and the feed-back inhibitor proline bind at overlapping sites Isabel Pe´rez-Arellanoa, Vicente Rubiob, Javier Cerveraa,* a Centro de Investigacio´n Prı´ncipe Felipe, Avda. Autopista del Saler, 16, Valencia 46013, Spain b Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig 11, Valencia 46010, Spain Received 22 August 2006; revised 10 October 2006; accepted 12 October 2006 Available online 20 October 2006 Edited by Stuart Ferguson (a domain named after pseudo uridine synthases and archaeo- Abstract Glutamate-5-kinase (G5K) catalyzes the controlling first step of proline biosynthesis. Substrate binding, catalysis sine-specific transglycosylases) domain [10]. AAK domains and feed-back inhibition by proline are functions of the N-termi- bind ATP and a phosphorylatable acidic substrate, and make nal 260-residue domain of G5K. We study here the impact on a phosphoric anhydride [11]. The function of the PUA domain these functions of 14 site-directed mutations affecting 9 residues (a domain characteristically found in some RNA-modifying of Escherichia coli G5K, chosen on the basis of the structure of enzymes) [12] is not known. By deleting the PUA domain of the bisubstrate complex of the homologous enzyme acetylgluta- E. coli G5K we showed [10] that the isolated AAK domain, mate kinase (NAGK). The results support the predicted roles as the complete enzyme, forms tetramers, catalyzes the reac- of K10, K217 and T169 in catalysis and ATP binding and of tion and is feed-back inhibited by proline.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Discovery of an Alternate Metabolic Pathway for Urea Synthesis in Adult Aedes Aegypti Mosquitoes
    Discovery of an alternate metabolic pathway for urea synthesis in adult Aedes aegypti mosquitoes Patricia Y. Scaraffia*†‡, Guanhong Tan§, Jun Isoe*†, Vicki H. Wysocki*§, Michael A. Wells*†, and Roger L. Miesfeld*† Departments of §Chemistry and *Biochemistry and Molecular Biophysics and †Center for Insect Science, University of Arizona, Tucson, AZ 85721-0088 Edited by Anthony A. James, University of California, Irvine, CA, and approved December 4, 2007 (received for review August 27, 2007) We demonstrate the presence of an alternate metabolic pathway We previously reported that mosquitoes dispose of toxic for urea synthesis in Aedes aegypti mosquitoes that converts uric ammonia through glutamine (Gln) and proline (Pro) synthesis, acid to urea via an amphibian-like uricolytic pathway. For these along with excretion of ammonia, uric acid, and urea (20). By studies, female mosquitoes were fed a sucrose solution containing using labeled isotopes and mass spectrometry techniques (21), 15 15 15 15 15 NH4Cl, [5- N]-glutamine, [ N]-proline, allantoin, or allantoic we have recently determined how the N from NH4Cl is acid. At 24 h after feeding, the feces were collected and analyzed incorporated into the amide side chain of Gln, and then into Pro, in a mass spectrometer. Specific enzyme inhibitors confirmed that in Ae. aegypti (22). In the present article we demonstrate that the 15 15 15 mosquitoes incorporate N from NH4Cl into [5- N]-glutamine nitrogen of the amide group of Gln contributes to uric acid and use the 15N of the amide group of glutamine to produce synthesis in mosquitoes and, surprisingly, that uric acid can be 15 labeled uric acid.
    [Show full text]