Archaeal Translation Initiation Revisited: the Initiation Factor 2 and Eukaryotic Initiation Factor 2B ␣--␦ Subunit Families
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
L-Leucine Increases Translation of RPS14 and LARP1 in Erythroblasts
LETTERS TO THE EDITOR Table 1. Top 20 differentially translated known 5’TOP mRNAs in L-leucine increases translation of RPS14 and LARP1 L-leucine treated erythroblasts from del(5q) myelodysplastic syn- in erythroblasts from del(5q) myelodysplastic drome patients. syndrome patients Genes LogFC of TE in patients z score patients Deletion of the long arm of chromosome 5 [del(5q)] is RPS15 3.55 2.46 the most common cytogenetic abnormality found in the RPS27A 3.48 2.40 1 myelodysplastic syndromes (MDS). Patients with the 5q- RPS25 3.47 2.39 syndrome have macrocytic anemia and the del(5q) as the RPS20 3.43 2.35 sole karyotypic abnormality.1 Haploinsufficiency of the ribosomal protein gene RPS14, mapping to the common- RPL12 3.35 2.29 ly deleted region (CDR) on chromosome 5q,2 underlies PABPC4 3.01 2.01 3 the erythroid defect found in the 5q- syndrome, and is RPS24 2.97 1.98 associated with p53 activation,4-6 a block in the process- ing of pre-ribosomal RNA,3 and deregulation of riboso- RPS3 2.95 1.96 mal- and translation-related genes.7 Defective mRNA EEF2 2.83 1.86 translation represents a potential therapeutic target in the RPS18 2.76 1.80 5q- syndrome and other ribosomopathies, such as RPS26 2.75 1.79 Diamond-Blackfan anemia (DBA).8 Evidence suggests that the translation enhancer L- RPS5 2.69 1.74 leucine may have some efficacy in the treatment of the RPS21 2.64 1.70 8 5q- syndrome and DBA. A DBA patient treated with L- RPS9 2.54 1.62 leucine showed a marked improvement in anemia and 8 EIF3E 2.53 1.61 achieved transfusion independence. -
Evolution of Translation EF-Tu: Trna
University of Illinois at Urbana-Champaign Luthey-Schulten Group NIH Resource for Macromolecular Modeling and Bioinformatics Computational Biophysics Workshop Evolution of Translation EF-Tu: tRNA VMD Developer: John Stone MultiSeq Developers Tutorial Authors Elijah Roberts Ke Chen John Eargle John Eargle Dan Wright Zhaleh Ghaemi Jonathan Lai Zan Luthey-Schulten August 2014 A current version of this tutorial is available at http://www.scs.illinois.edu/~schulten/tutorials/ef-tu CONTENTS 2 Contents 1 Introduction 3 1.1 The Elongation Factor Tu . 3 1.2 Getting Started . 4 1.2.1 Requirements . 4 1.2.2 Copying the tutorial files . 4 1.2.3 Working directory . 4 1.2.4 Preferences . 4 1.3 Configuring BLAST for MultiSeq . 5 2 Comparative Analysis of EF-Tu 5 2.1 Finding archaeal EF1A sequences . 6 2.2 Aligning archaeal sequences and removing redundancy . 8 2.3 Finding bacteria EF-Tu sequences . 11 2.4 Performing ClustalW Multiple Sequence and Profile-Profile Align- ments . 12 2.5 Creating Multiple Sequence with MAFFT . 16 2.6 Conservation of EF-Tu among the Bacteria . 16 2.7 Finding conserved residues across the bacterial and archaeal do- mains . 20 2.8 EF-Tu Interface with the Ribosome . 21 3 Computing a Maximum Likelihood Phylogenetic Tree with RAxML 23 3.1 Load the Phylogenetic Tree into MultiSeq . 25 3.2 Reroot and Manipulate the Phylogenetic Tree . 25 4 MultiSeq TCL Scripting: Genomic Context 27 5 Appendix A 30 5.1 Building a BLAST Database . 30 6 Appendix B 31 6.1 Saving QR subset of alignments in PHYLIP and FASTA format 31 6.2 Calculating Maximum Likelihood Trees with RAxML . -
Dynamics of Translation Can Determine the Spatial Organization Of
Dynamics of translation can determine the spatial organization of membrane-bound proteins and their mRNA Elgin Korkmazhana, Hamid Teimourib,c, Neil Petermanb,c, and Erel Levineb,c,1 aHarvard College, Harvard University, Cambridge, MA 02138; bDepartment of Physics, Harvard University, Cambridge, MA 02138; and cFAS Center for Systems Biology, Harvard University, Cambridge, MA 02138 Edited by William Bialek, Princeton University, Princeton, NJ, and approved October 17, 2017 (received for review January 17, 2017) Unlike most macromolecules that are homogeneously distributed these patterns are determined by the organization of the cod- in the bacterial cell, mRNAs that encode inner-membrane proteins ing sequence, the presence of slow codons, the rate of transla- can be concentrated near the inner membrane. Cotranslational tion initiation, and the availability of auxiliary proteins required insertion of the nascent peptide into the membrane brings the for membrane targeting (referred to as the secretory machinery). translating ribosome and the mRNA close to the membrane. This By calculating the distribution of the number of proteins placed suggests that kinetic properties of translation can determine the together in the membrane, we suggest implications of mRNA spatial organization of these mRNAs and proteins, which can be localization on the organization of proteins on the membrane. modulated through posttranscriptional regulation. Here we use a We thus propose a mechanism for the formation of protein clus- simple stochastic model of translation to characterize the effect of ters in the membrane and investigate its implications on the reg- mRNA properties on the dynamics and statistics of its spatial distri- ulation of their size distribution. -
Amino Acid Specificity in Translation
Opinion TRENDS in Biochemical Sciences Vol.30 No.12 December 2005 Amino acid specificity in translation Taraka Dale and Olke C. Uhlenbeck Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA Recent structural and biochemical experiments indicate For example, in the course of deducing the recognition that bacterial elongation factor Tu and the ribosomal rules of aaRSs, several amber-suppressor tRNA bodies A-site show specificity for both the amino acid and the were deliberately mutated such that they were amino- tRNA portions of their aminoacyl-tRNA (aa-tRNA) acylated by a different aaRS, and the resulting ‘identity- substrates. These data are inconsistent with the swapped’ tRNAs were shown to insert the new amino acid traditional view that tRNAs are generic adaptors in into protein [7,8]. In addition, suppressor tRNAs esterified translation. We hypothesize that each tRNA sequence with O30 different unnatural amino acids have been has co-evolved with its cognate amino acid, such that all successfully incorporated into protein [9]. Together, these aa-tRNAs are translated uniformly. data suggest that the translational apparatus lacks specificity for different amino acids, once they are Introduction esterified onto tRNA. The mechanism of protein synthesis is traditionally In a few isolated cases, however, the translation considered to have two phases with different specificities machinery seems to show specificity for the esterified towards the 20 amino acid side chains (Figure 1). In the amino acid. A prominent example occurs in the transami- first phase, each amino acid is specifically recognized by dation pathway, which is used as an alternative to GlnRS its cognate aminoacyl-tRNA synthetase (aaRS) and to produce Gln-tRNAGln in many bacteria and archaea esterified to the appropriate tRNA to form an aminoacyl- [10,11]. -
Regulatory Features of the 5'Untranslated Leader Region Of
MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Racheal A. Devine Candidate for the Degree Doctor of Philosophy ______________________________________ Mitch Balish, Ph.D., Director ______________________________________ Eileen Bridge, Ph.D., Reader ______________________________________ Rachael Morgan-Kiss, Ph.D., Reader ______________________________________ Xiao-Wen Cheng, Ph.D., Reader ______________________________________ Jack Vaughn, Ph.D., Graduate School Representative ABSTRACT REGULATORY FEATURES OF THE 5’ UNTRANSLATED LEADER REGION OF aroL IN ESCHERICHIA COLI K12 AND THE sRNA, ryhB, IN SHEWANELLA ONEIDENSIS MR-1 by Racheal A. Devine RNA is an important regulator of gene expression within bacterial, eukaryotic, and archaeal cells. This work focuses on two aspects of RNA regulation: the first half investigates the role of regulatory features within the 5’ untranslated leader region (UTR) of the E. coli aroL mRNA and the second half focuses on an sRNA in S. oneidensis MR- 1. The 5’UTR of mRNAs contain information necessary for ribosome recognition and subsequent translation initiation. Translation initiation is a prominent part of gene expression, as it is the rate-limiting step of translation. The 70S ternary initiation complex contains initiator tRNA and the mRNA’s start codon positioned in the P-site of the 70S ribosome. The Shine-Dalgarno (SD) sequence within the 5’UTR of the mRNA is an important feature that helps facilitate the initial interaction between the mRNA and the 30S subunit. Translation of mRNAs lacking an SD has been reported and suggests that alternative mechanisms of mRNA-30S interactions exist. The aroL mRNA contains a short open reading frame within its 5’UTR. -
EF-Tu and Rnase E Are Functionally Connected
Till min familj List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Hammarlöf, D.L., Hughes, D. (2008) Mutants of the RNA- processing enzyme RNase E reverse the extreme slow-growth phenotype caused by a mutant translation factor EF-Tu. Molecular Microbiology, 70(5), 1194-1209 II †Bergman, J., †Hammarlöf, D.L., Hughes D. (2011) Reducing ppGpp levels rescues the extreme growth defect of mutant EF-Tu. Manuscript III Hammarlöf, D.L., Liljas, L., Hughes, D. (2011) Temperature- sensitive mutants of RNase E in Salmonella enterica. Journal of Bacteriology. In press IV †Hammarlöf, D.L., †Bergman, J., Hughes, D. (2011) Extragenic suppressors of RNase E. Manuscript †These authors contributed equally. Reprints were made with permission from the respective publishers. Contents Introduction ................................................................................................... 11 Bacterial growth ....................................................................................... 11 Translation in bacteria .............................................................................. 12 The ribosome ....................................................................................... 12 The translation cycle ............................................................................ 13 Elongation Factor Tu ................................................................................ 14 The most abundant protein in the cell ................................................. -
USP16 Counteracts Mono-Ubiquitination of Rps27a And
RESEARCH ARTICLE USP16 counteracts mono-ubiquitination of RPS27a and promotes maturation of the 40S ribosomal subunit Christian Montellese1†, Jasmin van den Heuvel1,2, Caroline Ashiono1, Kerstin Do¨ rner1,2, Andre´ Melnik3‡, Stefanie Jonas1§, Ivo Zemp1, Paola Picotti3, Ludovic C Gillet1, Ulrike Kutay1* 1Institute of Biochemistry, ETH Zurich, Zurich, Switzerland; 2Molecular Life Sciences Ph.D. Program, Zurich, Switzerland; 3Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland Abstract Establishment of translational competence represents a decisive cytoplasmic step in the biogenesis of 40S ribosomal subunits. This involves final 18S rRNA processing and release of residual biogenesis factors, including the protein kinase RIOK1. To identify novel proteins promoting the final maturation of human 40S subunits, we characterized pre-ribosomal subunits trapped on RIOK1 by mass spectrometry, and identified the deubiquitinase USP16 among the captured factors. We demonstrate that USP16 constitutes a component of late cytoplasmic pre-40S subunits that promotes the removal of ubiquitin from an internal lysine of ribosomal protein *For correspondence: RPS27a/eS31. USP16 deletion leads to late 40S subunit maturation defects, manifesting in [email protected] incomplete processing of 18S rRNA and retarded recycling of late-acting ribosome biogenesis Present address: †CSL Behring, factors, revealing an unexpected contribution of USP16 to the ultimate step of 40S synthesis. CSL Biologics Research Center, Finally, ubiquitination of RPS27a appears to depend on active translation, pointing at a potential ‡ Bern, Switzerland; MSD Merck connection between 40S maturation and protein synthesis. Sharp & Dohme AG, Lucerne, Switzerland; §Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland Introduction Ribosomes stand at the center of translation in all kingdoms of life, catalyzing the synthesis of pro- Competing interests: The teins by reading a messenger RNA (mRNA) template. -
Initiation Factor Eif5b Catalyzes Second GTP-Dependent Step in Eukaryotic Translation Initiation
Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation Joon H. Lee*†, Tatyana V. Pestova†‡§, Byung-Sik Shin*, Chune Cao*, Sang K. Choi*, and Thomas E. Dever*¶ *Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2716; ‡Department of Microbiology and Immunology, State University of New York Health Science Center, Brooklyn, NY 11203; and §A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia Edited by Harry F. Noller, University of California, Santa Cruz, CA, and approved October 31, 2002 (received for review September 19, 2002) Initiation factors IF2 in bacteria and eIF2 in eukaryotes are GTPases In addition, when nonhydrolyzable GDPNP was substituted Met that bind Met-tRNAi to the small ribosomal subunit. eIF5B, the for GTP, eIF5B catalyzed subunit joining; however, the factor eukaryotic ortholog of IF2, is a GTPase that promotes ribosomal was unable to dissociate from the 80S ribosome after subunit subunit joining. Here we show that eIF5B GTPase activity is re- joining (7). quired for protein synthesis. Mutation of the conserved Asp-759 in To dissect the function of the eIF5B G domain and test the human eIF5B GTP-binding domain to Asn converts eIF5B to an model that two GTP molecules are required in translation XTPase and introduces an XTP requirement for subunit joining and initiation, we mutated conserved residues in the eIF5B G translation initiation. Thus, in contrast to bacteria where the single domain and tested the function of the mutant proteins in GTPase IF2 is sufficient to catalyze translation initiation, eukaryotic translation initiation. -
History of the Ribosome and the Origin of Translation
History of the ribosome and the origin of translation Anton S. Petrova,1, Burak Gulena, Ashlyn M. Norrisa, Nicholas A. Kovacsa, Chad R. Berniera, Kathryn A. Laniera, George E. Foxb, Stephen C. Harveyc, Roger M. Wartellc, Nicholas V. Huda, and Loren Dean Williamsa,1 aSchool of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332; bDepartment of Biology and Biochemistry, University of Houston, Houston, TX, 77204; and cSchool of Biology, Georgia Institute of Technology, Atlanta, GA 30332 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved November 6, 2015 (received for review May 18, 2015) We present a molecular-level model for the origin and evolution of building up of the functional centers, proceeds to the establishment the translation system, using a 3D comparative method. In this model, of the common core, and continues to the development of large the ribosome evolved by accretion, recursively adding expansion metazoan rRNAs. segments, iteratively growing, subsuming, and freezing the rRNA. Incremental evolution of function is mapped out by stepwise Functions of expansion segments in the ancestral ribosome are accretion of rRNA. In the extant ribosome, specific segments of assigned by correspondence with their functions in the extant rRNA perform specific functions including peptidyl transfer, ribosome. The model explains the evolution of the large ribosomal subunit association, decoding, and energy-driven translocation subunit, the small ribosomal subunit, tRNA, and mRNA. Prokaryotic (11). The model assumes that the correlations of rRNA segments ribosomes evolved in six phases, sequentially acquiring capabilities with their functions have been reasonably maintained over the for RNA folding, catalysis, subunit association, correlated evolution, broad course of ribosomal evolution. -
João Cancela De Amorim Falcão Paredes Estudo Molecular Da
Universidade de Aveiro Departamento de Biologia 2010 João Cancela de Estudo molecular da degeneração e evolução Amorim Falcão celular induzidas por erros na tradução do mRNA Paredes Molecular study of cell degeneration and evolution induced by mRNA mistranslation Universidade de Aveiro Departamento de Biologia 2010 João Cancela de Estudo molecular da degeneração e evolução Amorim Falcão celular induzidas por erros na tradução do mRNA Paredes Molecular study of cell degeneration and evolution induced by mRNA mistranslation Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Biologia, realizada sob a orientação científica do Doutor Manuel António da Silva Santos, Professor Associado do Departamento de Biologia da Universidade de Aveiro. Apoio financeiro do POCI 2010 no âmbito do III Quadro Comunitário de Apoio, comparticipado pelo FSE e por fundos nacionais do MCES/FCT. “The known is finite, the unknown infinite; intellectually we stand on an islet in the midst of an illimitable ocean of inexplicability. Our business in every generation is to reclaim a little more land, to add something to the extent and the solidity of our possessions” Thomas Henry Huxley (1825 – 1895) o júri presidente Doutor Domingos Moreira Cardoso Professor Catedrático da Universidade de Aveiro Doutora Claudina Amélia Marques Rodrigues Pousada Professora Catedrática Convidada da Universidade Nova de Lisboa Doutor António Carlos Matias Correia Professor Catedrático da Universidade de Aveiro Doutor -
Mitochondrial Translation and Beyond: Processes Implicated in Combined Oxidative Phosphorylation Deficiencies
Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology Volume 2010, Article ID 737385, 24 pages doi:10.1155/2010/737385 Review Article Mitochondrial Translation and Beyond: Processes Implicated in Combined Oxidative Phosphorylation Deficiencies Paulien Smits, Jan Smeitink, and Lambert van den Heuvel Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Nijmegen Medical Center, Geert Grooteplein 10, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands Correspondence should be addressed to Lambert van den Heuvel, [email protected] Received 31 October 2009; Accepted 29 January 2010 Academic Editor: Aikaterini Kontrogianni-Konstantopoulos Copyright © 2010 Paulien Smits et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Mitochondrial disorders are a heterogeneous group of often multisystemic and early fatal diseases, which are amongst the most common inherited human diseases. These disorders are caused by defects in the oxidative phosphorylation (OXPHOS) system, which comprises five multisubunit enzyme complexes encoded by both the nuclear and the mitochondrial genomes. Due to the multitude of proteins and intricacy of the processes required for a properly functioning OXPHOS system, identifying the genetic defect that underlies an OXPHOS deficiency is not an easy task, especially in the case of combined OXPHOS defects. In the present communication we give an extensive overview of the proteins and processes (in)directly involved in mitochondrial translation and the biogenesis of the OXPHOS system and their roles in combined OXPHOS deficiencies. This knowledge is important for further research into the genetic causes, with the ultimate goal to effectively prevent and cure these complex and often devastating disorders. -
Open FINAL GRAD SCHOOL.Pdf
The Pennsylvania State University The Graduate School Eberly College of Science PHOSPHOPROTEOMIC ANALYSIS OF RIBOSOMAL PROTEINS: IMPLICATIONS IN TRANSLATION AND APOPTOSIS A Dissertation in Biochemistry, Microbiology, and Molecular Biology by Jennifer Lynn Miller © 2009 Jennifer Lynn Miller Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2009 The dissertation of Jennifer Lynn Miller was reviewed and approved* by the following: Emine C. Koc Assistant Professor Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee Robert A. Schlegel Professor of Biochemistry and Molecular Biology Wendy Hanna-Rose Assistant Professor Biochemistry and Molecular Biology Ming Tien Professor of Biochemistry Erin D. Sheets Assistant Professor of Chemistry Richard J. Frisque Professor of Molecular Virology Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School. ABSTRACT Mammalian mitochondrial ribosomes synthesize thirteen proteins that are essential for oxidative phosphorylation. Besides having a major role in ATP synthesis, mitochondria also contribute to biochemical processes coordinating apoptosis, mitochondrial diseases, and aging in eukaryotic cells. This unique class of ribosomes is protein-rich and distinct from cytoplasmic ribosomes. However, mitochondrial ribosomes (55S) share a significant homology to bacterial ribosomes (70S), particularly in size, the general mechanism of translation, and ribosomal protein content. Due to the overall resemblance between the two systems and the earlier reports of post-translational modifications, we investigated how phosphorylation of ribosomal proteins from bacteria and mitochondria regulates translation and other acquired roles. Identification of twenty- four phosphorylated 70S and 55S ribosomal proteins as well as the potential endogenous kinase was achieved using 2D-gel electrophoresis and tandem mass spectrometry.