Firestorm: Operating Systems for Power-Constrained Architectures

Total Page:16

File Type:pdf, Size:1020Kb

Firestorm: Operating Systems for Power-Constrained Architectures Firestorm: Operating Systems for Power-Constrained Architectures Sankaralingam Panneerselvam and Michael M. Swift Computer Sciences Department, University of Wisconsin–Madison fsankarp, [email protected] Abstract distribution units relative to peak power draw. Energy limits The phenomenon of Dark Silicon has made processors over- are also dictated by the limited capacity of batteries. How- provisioned with compute units that cannot be used at full ever, in many systems, the primary limit comes not from the performance without exceeding power limits. Such limits ability to acquire power, but instead from the ability to dis- primarily exist to exercise control over heat dissipation. Cur- sipate power as heat once it has been used. rent systems support mechanisms to ensure system-wide Thermal limits are dictated by the physical properties guarantees of staying within the power and thermal limit. of the processor materials and also comfort of the user— However, these mechanisms are not sufficient to provide people do not want their legs scorched when sitting with a process-level control to ensure applications level SLAs: laptop. Thus, power is limited to prevent processor chips power may be wasted on low-priority applications while from over-heating, which can lead to thermal breakdown. high-priority ones are throttled. As a result, the maximum performance of a system is lim- We built Firestorm, an operating system extension that ited by its cooling capacity, which determines its ability to introduces power and thermal awareness. Firestorm consid- dissipate heat. Cooling capacity varies across the comput- ers power a limited resource and distributes it to applications ing landscape, from servers with external chilled air to desk- based on their importance. To control temperature, Firestorm tops with large fans to laptops to fan-less mobile devices. also introduces the notion of thermal capacity as another Furthermore, cooling capacity can change dynamically with resource that the OS manages. These abstractions, imple- software-controlled fans [32] or physically reconfigurable mented in Firestorm with mechanisms and policies to dis- systems, such as dockable tablets [33]. tribute power and limit heat production, help applications Processors support mechanisms to enforce both power to achieve guaranteed performance and stay within the sys- and temperature limits. For example, recent Intel proces- tem limits. In experiments, we show that Firestorm improved sors provide Running Average Power Limit (RAPL) coun- performance by up to 10% by avoiding thermal interference ters to enforce a power limit on the entire processor [27]. In and can guarantee SLAs for soft real time applications in the software, power capping services, such as the Linux power presence of limited power and competing applications. capping framework [25] uses these limits to control power usage. Processor vendors define a metric Thermal Design 1. Introduction Power (TDP) for every processor model to guide the re- quirements of the cooling system needed to dissipate power. Moore’s law paved the way for doubling the transistors in Most processors have a safeguard mechanism that throttles the same chip area by reducing transistor sizes with every the processor by reducing the frequency or duty cycle (frac- generation while also scaling voltage down. However, with tion of cycles where work happens) on reaching a critical the end of Dennard’s scaling, voltage and hence the power temperature. In software, the thermal daemon [34] aims to draw of transistors is no longer dropping proportionally to increase performance by deploying increasing cooling (e.g., size. As a result, modern processors cannot use all parts of increasing fan speed) if possible before resorting to throt- the processor simultaneously without exceeding the power tling. limit. This manifests as an increasing proportion of dark silicon [7]. In other words, the compute capacity of current Challenges. The drawback with current hardware and soft- and future processors is and will be over-provisioned with ware mechanisms that enforce power and thermal limits are respect to the available power. that they only offer system-wide guarantees but do not en- Power limits are influenced by different factors such as able application-level guarantees. the capacity of power distribution infrastructure, battery sup- Power distribution: When power is limited, current systems ply limits, and the thermal capacity of the system. Power (hardware and software) throttle all applications equally. limits in datacenters can arise from underprovisioning power However, this approach ignores users’ scheduling priorities: power should be distributed among applications based on a proportional share policy to distribute power, which iso- their importance, so that high-priority applications can use lates applications from each other. When sufficient power is more power to run faster, while low-priority applications not available, the agent runs a task at lower power and hence have their power reduced and bear most of the performance lower performance. lost. In order to support the thermal requirements of high- Thermal interference: An application that makes heavy use priority programs, Firestorm introduces a new thermal con- of a processor can trigger temperature throttling that reduces serve policy that allows applications to reserve thermal ca- CPU frequency or duty cycle. This can affect all cores, and pacity (i.e., keep the processor cooler) needed during exe- hence all running applications. Furthermore, throttling stays cution. Thus, the system does not allow other applications in effect for a while as the processor cools. As a result, a low to exhaust the thermal capacity by raising the temperature priority or malicious application can trigger throttling that too high. Firestorm incorporates a system-specific thermal reduces the performance of high-priority applications. model to predict the thermal capacity needed based on the work to be performed by an application. Firestorm also ex- Performance Boosting: Applications may be able to tem- tends Chameleon’s [21] execution object abstraction to cre- porarily overclock the core to achieve extra performance if ate thermal headroom for sequential applications. This is they run for short enough periods that throttling does not get done by creating execution object over multiple cores where triggered. This is often called computational sprinting [26]. few cores are forced to an idle state and the resultant power Turbo Boost in Intel processors [12] is similar but more con- savings is used to boost the performance of the active cores. servative. Such sprinting techniques require enough thermal For cases where applications do not reserve thermal ca- headroom to run without overheating and also requires the pacity, Firestorm supports a selective throttling policy to iso- processor stay cool between activities. late applications from thermal interference caused by back- Prior work. There has been a great deal of prior work with ground or low priority applications. When the processor is respect to power and thermal management. They can be clas- nearing the critical temperature (temperature beyond which sified under the theme of improving performance (e.g., [14]) processors can breakdown), power given to low priority ap- or energy efficiency (e.g., [31]), and minimizing interference plications is reduced. This preserves the performance of im- within a power or thermal limit (e.g., [8]). These works differ portant applications at the cost of low priority applications. from ours in that they assume a homogeneous set of appli- The contributions of Firestorm include actively allocating cation performance goals, while our work deliberately tar- power to applications, reserving thermal capacity for high- gets systems that run a mix of soft real time, best effort, and priority applications, designing a set of interfaces a system background tasks. Also, power and thermal capacity are de- requires from a power and a thermal model for making pendent on each other, where one without another does not power management decisions, and simple power and thermal guarantee performance. Power without thermal capacity re- models that are fast and simple enough to deploy practically. sults in throttling and thermal capacity without power results Through experiments we show that Firestorm is able to in low performance. Our system takes a holistic view on both assign more power to applications with higher shares and power and thermal capacity by allowing applications to co- prevent interference from lower priority programs. Firestorm allocate them for better performance. also balances the performance of multiple applications un- Firestorm. Just as the OS actively manages resources such der a power budget compared to the native Linux RAPL as CPU and memory, we argue that operating systems should mechanism that prefers parallel programs over sequen- treat power and thermal capacity as primary resources in the tial programs. In a case where thermal interference from system. Towards this goal, we built Firestorm, which extends background application costs performance, Firestorm allows Linux with power and thermal awareness. Firestorm intro- high-priority tasks to run at full speed, as compared to 19% duces new abstractions to manage power and thermal capac- slower under native Linux, while background tasks run 28% ity; new interfaces are added (a) for applications to gather slower to reduce heat production. power and thermal
Recommended publications
  • CFD Analyses of a Notebook Computer Thermal Management
    PREPRINT. 1 Ilker Tari and Fidan Seza Yalçin, "CFD Analyses of a Notebook Computer Thermal Management System and a Proposed Passive Cooling Alternative, IEEE Transactions on Components and Packaging Technologies, Vol. 33, No. 2, pp. 443-452 (2010). CFD Analyses of a Notebook Computer Thermal Management System and a Proposed Passive Cooling Alternative Ilker Tari, and Fidan Seza Yalcin H Fin height, mm. Abstract— A notebook computer thermal management system L Heat sink vertical length, mm. is analyzed using a commercial CFD software package (ANSYS Nu Nusselt Number. Fluent). The active and passive paths that are used for heat Pr Prandtl Number. dissipation are examined for different steady state operating Ra Rayleigh Number. conditions. For each case, average and hot-spot temperatures of Re Reynolds Number. the components are compared with the maximum allowable T Temperature, °C or K. operating temperatures. It is observed that when low heat W Heat sink width, mm. dissipation components are put on the same passive path, the 2 increased heat load of the path may cause unexpected hot spot g Gravitational acceleration, m/s . 2 temperatures. Especially, Hard Disk Drive (HDD) is susceptible h Convection heat transfer coefficient, W/(m ·K). to overheating and the keyboard surface may reach k Thermal conductivity, W/(m·K). ergonomically undesirable temperatures. Based on the analysis q Heat transfer rate, W. results and observations, a new component arrangement s Fin spacing, mm. considering passive paths and using the back side of the LCD screen is proposed and a simple correlation based thermal Greek Symbols analysis of the proposed system is presented.
    [Show full text]
  • Desktop 3Rd Generation Intel® Core™ Processor Family, Desktop Intel® Pentium® Processor Family, Desktop Intel® Celeron® Processor Family, and LGA1155 Socket
    Desktop 3rd Generation Intel® Core™ Processor Family, Desktop Intel® Pentium® Processor Family, Desktop Intel® Celeron® Processor Family, and LGA1155 Socket Thermal Mechanical Specifications and Design Guidelines (TMSDG) January 2013 Document Number: 326767-005 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined”.
    [Show full text]
  • Thermal Guide: Intel® Xeon® Processor E5 V4 Product Family
    Intel® Xeon® Processor E5 v4 Product Family Thermal Mechanical Specification and Design Guide June 2016 Document Number: 333812-002 IntelLegal Lines and Disclaimerstechnologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at Intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppal or otherwise) to any intellectual property rights is granted by this document. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware, software and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology. For more information, see http://www.intel.com/technology/turboboost Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548- 4725 or by visiting www.intel.com/design/literature.htm.
    [Show full text]
  • Summarizing CPU and GPU Design Trends with Product Data
    Summarizing CPU and GPU Design Trends with Product Data Yifan Sun, Nicolas Bohm Agostini, Shi Dong, and David Kaeli Northeastern University Email: fyifansun, agostini, shidong, [email protected] Abstract—Moore’s Law and Dennard Scaling have guided the products. Equipped with this data, we answer the following semiconductor industry for the past few decades. Recently, both questions: laws have faced validity challenges as transistor sizes approach • Are Moore’s Law and Dennard Scaling still valid? If so, the practical limits of physics. We are interested in testing the validity of these laws and reflect on the reasons responsible. In what are the factors that keep the laws valid? this work, we collect data of more than 4000 publicly-available • Do GPUs still have computing power advantages over CPU and GPU products. We find that transistor scaling remains CPUs? Is the computing capability gap between CPUs critical in keeping the laws valid. However, architectural solutions and GPUs getting larger? have become increasingly important and will play a larger role • What factors drive performance improvements in GPUs? in the future. We observe that GPUs consistently deliver higher performance than CPUs. GPU performance continues to rise II. METHODOLOGY because of increases in GPU frequency, improvements in the thermal design power (TDP), and growth in die size. But we We have collected data for all CPU and GPU products (to also see the ratio of GPU to CPU performance moving closer to our best knowledge) that have been released by Intel, AMD parity, thanks to new SIMD extensions on CPUs and increased (including the former ATI GPUs)1, and NVIDIA since January CPU core counts.
    [Show full text]
  • Large Cad Models
    Great decisions in product engineering with NX CAE. Learn more on page 11 DtopEng_banner_NXCAE.indd 1 August 2012 / deskeng.com 7/12/12 9:28:46 AM Workstation Upgrades P. 16 Monitor Technology P. 18 Review: HP Z1 All-in-One Workstation P. 20 TECHNOLOGY FOR DESIGN ENGINEERING FOCUS ON: Test & SPEED UP Measurement LARGE CAD MODELS DIRECT DIGITAL MANUFACTURING P. 32 IMPLEMENT MECHATRONIC TESTING P. 38 HOW TO CALIBRATE TEST SENSORS P. 42 CREATE BREAKTHROUGH DESIGNS BLAZING-FAST GEOMETRY PERFORMANCE FOR COMPLEX DESIGNS - THE NEW AMD FIREPRO TM WORKSTATION GRAPHICS RANGE AMD FIREPRO V4900 AMD FIREPRO V5900 AMD FIREPRO V7900 Maximum Performance The Perfect Balance Create Breakthrough Designs For Your Budget ● 2GB GDDR5 memory (64 GB/s) ● 2GB GDDR5 memory (160 GB/s) ● 1GB GDDR5 memory (64 GB/s) ● 512 Stream Processors ● 1280 Stream Processors ● 480 Stream Processors ● 2 x DisplayPort 1.2, 1 x DVI outputs ● 4 x DisplayPort 1.2 ● 2 x DisplayPort 1.2,1 x DVI outputs ● Support up to 3 displays ● Support up to 4 displays ● Support up to 3 displays ● GeometryBoost ● GeometryBoost ● AMD PowerTune ● AMD PowerTune ● 3D Stereoscopic support ● Framelock, Genlock support AMD FEATURED TECHNOLOGIES “I have been using three and ● Certified and optimized: for all major 3D applications for high four-monitor configurations for a performance and reliability while now, and I can tell you that once you try it, you won’t want ● GeometryBoost Technology: Helps ensure smooth handling of to go back to just two.” complex, highly tessellated models Jason Lewis, CG Channel ● AMD PowerTune Technology: Optimizes power usage in real-time based on current workflow demands ● AMD Eyefinity Technology: Run up to 4 monitors from a single graphics card, boosting productivity by viewing entire workflows Find out more at amd.com/firepronextgen © 2011 Advanced Micro Devices, Inc.
    [Show full text]
  • Intel® Atom Processor 200 Series Mechanical, and Thermal Design
    Intel® Atom™ Processor 200 Series Thermal and Mechanical Design Guidelines — Supporting nettop platform for 2008 June 2008 Document Number: 319979-001 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
    [Show full text]
  • Intel® Celeron™ P4000 and U3000 Mobile Processor Series
    Intel® Celeron™ P4000 and U3000 Mobile Processor Series External Design Specification — Volume One This is volume 1 of 2. Refer to Document 416057 for Volume 2 Rev 1.5 March 2010 Intel Confidential Document Number:442690 INFORMATIONLegal Lines and Disclaimers IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
    [Show full text]
  • Intel® Celeron® D Processor for Embedded Applications Thermal Design Guide Contents
    Intel® Celeron® D Processor for Embedded Applications Thermal Design Guide June 2004 Reference Number: 302647-001 Contents INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® Celeron® D Processor for Embedded Applications may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling1-800-548- 4725, or by visiting Intel's website at http://www.intel.com.
    [Show full text]
  • White Paper | ADVANCED POWER MANAGEMENT HELPS BRING
    White Paper | ADVANCED POWER MANAGEMENT HELPS BRING IMPROVED PERFORMANCE TO HIGHLY INTEGRATED X86 PROCESSORS TABLE OF CONTENTS THE IMPORTANCE OF POWER MANAGEMENT 3 THE X86 EXAMPLES 3 ESTABLISH A REALISTIC WORST-CASE FOR POWER 4 POWER LIMITS CAN TRANSLATE TO PERFORMANCE LIMITS 4 AMD TACKLES THE UNDERUSED TDP HEADROOM ISSUE 5 GOING ABOVE TDP 6 INTELLIGENT BOOST 7 CONFIGURABLE TDP 8 SUMMARY 9 Complex heterogeneous processors have the potential to leave a large amount of performance headroom untapped when workloads don’t utilize all cores. Advanced power management techniques for x86 processors are designed to reduce the power of underutilized cores while also allowing for dynamic allocation of the thermal budget between cores for improved performance. THE IMPORTANCE OF THE X86 EXAMPLE POWER MANAGEMENT Typical x86 processors widely used Those with experience implementing in both consumer and embedded microprocessors know the importance applications are a perfect example: of proper power management. Whether Integration of network and security for simple applications processors or engines, memory controllers, graphics high-end server processors, the ability processing units (GPUs), and video to down-clock, clock-gate, power-off, encode/decode engines has effectively or in some manner disable unused or turned them into heterogeneous underused hardware blocks is crucial in compute units that excel at a wide limiting power consumption. variety of workloads. Better power management benefits The notable thing about traditional range from energy savings within the reduction-based power management data center to improved battery life in is that a particular functional block is mobile devices. But don’t underestimate only turned off when unused, or down- the value of reducing power and clocked when higher performance is increasing efficiency.
    [Show full text]
  • Intel® Xeon® Processor E5 V3 Family Thermal Guide
    Intel ® Xeon® Processor E5-1600 / 2600 / 4600 v3 Product Families Thermal Mechanical Specification and Design Guide October 2015 Order No.: 330786-003US You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit http:// www.intel.com/design/literature.htm. Basis, BlueMoon, BunnyPeople, Celeron, Centrino, Cilk, Flexpipe, Intel, the Intel logo, the Intel Anti-Theft technology logo, Intel AppUp, the Intel AppUp logo, Intel Atom, Intel CoFluent, Intel Core, Intel Inside, the Intel Inside logo, Intel Insider, Intel NetMerge, Intel NetStructure, Intel RealSense, Intel SingleDriver, Intel SpeedStep, Intel vPro, Intel Xeon Phi, Intel XScale, InTru, the InTru logo, the InTru Inside logo, InTru soundmark, Iris, Itanium, Kno, Look Inside., the Look Inside. logo, MCS, MMX, Pentium, picoArray, Picochip, picoXcell, Puma, Quark, SMARTi, smartSignaling, Sound Mark, Stay With It, the Engineering Stay With It logo, The Creators Project, The Journey Inside, Thunderbolt, the Thunderbolt logo, Transcede, Transrf, Ultrabook, VTune, Xeon, X-GOLD and XMM are trademarks of Intel Corporation in the U.S.
    [Show full text]
  • Intel® Pentium® 4 Processor with 512-KB L2 Cache on 0.13 Micron Process Thermal Design Guidelines Design Guide
    R Intel® Pentium® 4 Processor with 512-KB L2 Cache on 0.13 Micron Process Thermal Design Guidelines Design Guide Supporting the Intel® Pentium® 4 Processor with Hyper-Threading Technology1 November 2002 Document Number: 252161-001 R INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® Pentium® 4 processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. 1Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor at 3.06 GHz or higher, a chipset and BIOS that utilize this technology, and an operating system that includes optimizations for this technology.
    [Show full text]
  • Thermal Modeling and Management of Microprocessors
    Thermal Modeling and Management of Microprocessors A Dissertation Presented to the faculty of the School of Engineering and Applied Science University of Virginia In Partial Fulfillment of the requirements for the Degree Doctor of Philosophy Computer Science by Karthik Sankaranarayanan May 2009 Approvals This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Computer Science Karthik Sankaranarayanan Approved: Kevin Skadron (Advisor) Jack W. Davidson (Chair) 7 Mircea R. Stan (Co-Advisor) James P. Cohoon John Lach Accepted by the School of Engineering and Applied Science: April 2009 Abstract The most recent, and arguably one of the most difficult obstacles to the exponential growth in transistor density predicted by Moore’s Law is that of removing the large amount of heat generated within the tiny area of a microprocessor. The exponential increase in power density and its direct relation to on-chip temperature have, in recent processors, led to very high cooling costs. Since temperature also has an exponential effect on lifetime reliability and leakage power, it has become a first-class design constraint in microprocessor development akin to performance. This dissertation describes work to address the temperature challenge from the perspective of the architecture of the microprocessor. It proposes both the infrastructure to model the problem and several mechanisms that form part of the solution. This research describes HotSpot, an efficient and extensible microarchitectural thermal modeling tool that is used to guide the design and evalua- tion of various thermal management techniques. It presents several Dynamic Thermal Management (DTM) schemes that distribute heat both over time and space by controlling the level of compu- tational activity.
    [Show full text]