Cooling a Microprocessor Chip

Total Page:16

File Type:pdf, Size:1020Kb

Cooling a Microprocessor Chip INVITED PAPER Cooling a Microprocessor Chip Heat spreading, choice of thermal interface materials, and proper heat-sink design can enhance cooling of microprocessor packages and systems. By Ravi Mahajan, Senior Member IEEE, Chia-pin Chiu, Member IEEE, and Greg Chrysler ABSTRACT | Increasing microprocessor performance has 1965 [1]. This paper will elaborate on the issues and historically been accompanied by increasing power and solutions associated with thermal management of the increasing on-chip power density, both of which present a microprocessor. It will highlight the increased under- cooling challenge. In this paper, the historical evolution of standing of the thermal management challenges and show power is traced and the impact of power and power density on some of the innovations developed to meet these thermal solution designs is summarized. Industrial and aca- challenges. demic researchers have correspondingly increased their focus The microprocessor typically requires thermal man- on elucidating the problem and developing innovative solu- agement in three distinct environments tions in devices, circuits, architectures, packaging and system 1) Cooling is required during functional test to level heatsinking. Examples of some of the current packaging prevent transient temperature rises from causing and system thermal solutions are provided to illustrate the false performance readouts or failures. strategies used in their design. This is followed by a brief 2) During burn-in where infant mortality fails are discussion of some of the future trends in demand and solution identified as a function of the temperature, re- strategies that are being developed by academic and industrial quiring accurate temperature control. researchers to meet these demands. Potential opportunities 3) During functioning in a user environment. Man- and limitations with these strategies are reviewed. aging the thermal environment is essential to ensure reliable, long-term performance. KEYWORDS | Density factor; heatsinks; heat spreaders; micro- Item 1) requires transient thermal management and processors; packaging; thermal interface materials; thermal 2) and 3), to the first order, require steady state thermal management management. The focus in this paper is on 3), i.e., cooling the microprocessor in a user environment. The paper begins with a description of the thermal problem and I. INTRODUCTION describes the impact of cooling hot spots on the die. This The past few decades have seen a revolutionary increase in is followed by a description of the thermal design strat- computing performance and computers have become in- egies and the constraints, under which the thermal prob- creasingly pervasive in all aspects of modern life. Evolution lem needs to be solved. The paper concludes with some of the microprocessor is one of the most visible and re- brief comments on the pros and cons of some of the presentative facets of the computing revolution. Following technologies being developed by academic and industrial Moore’s law [1], the semiconductor industry has success- researchers to meet future challenges. fully doubled transistor density every two years and the microprocessor has been the flagship product, successfully exploiting the increased performance with each new II. THERMAL MANAGEMENT OF technology generation along Moore’s law. One of the MICROPROCESSORS historical consequences of increasing microprocessor performance is an associated increase in power dissipation. A. Cooling Demand This is not a new issue and was highlighted as early as Fig. 1 shows the evolution of Thermal Design Power (TDP)asafunctionoffrequency,whichisonemeasureof performance. TDP is of primary interest to the thermal solution designer and it represents the maximum sus- tained power dissipated by the microprocessor, across a Manuscript received February 8, 2005; revised February 3, 2006. The authors are with the Assembly Technology Development, Intel Corporation, set of realistic applications. It is possible for there to be Chandler, AZ 85226 USA (e-mail: [email protected]). brief bursts of activity where power dissipated by the Digital Object Identifier: 10.1109/JPROC.2006.879800 microprocessor is larger that TDP, but if the bursts are 1476 Proceedings of the IEEE |Vol.94,No.8,August2006 0018-9219/$20.00 Ó2006 IEEE Mahajan et al.: Cooling a Microprocessor Chip Fig. 1. Historical trend chart of microprocessor TDP versus frequency. Data is based on Intel microprocessors and different symbols in the graph represent different classes of microprocessors. The TDP trend for each class is expected to level off with the transition to multicore processors. within the thermal time constant and do not violate the base and into the fins of heatsink, and finally convection thermal specifications of the microprocessor, they are not from the fins of the heatsink to the cooling air stream. of interest to the thermal designer [2]. Modern micro- Using a simple thermal resistance model, the cooling processors also include advanced thermal monitors and demand may be represented as fail-safe mechanisms that prevent catastrophic failures by automatically shutting down the microprocessor if the temperature exceeds a predefined limit [3]. Thus, de- Required thermal resistance ¼ðTj À TaÞ=TDP: (1) signing for TDP is adequate to ensure reliable long-term performance. In general terms, the temperature difference ðT À T Þ is As seen from Fig. 1, TDP has in the past increased j a expected to slowly reduce over time, since T can be forced steadily with increasing microprocessor performance, re- j lower by reliability and performance expectations, and T quiring increased focus on thermal management. The tran- a can be forced higher due to heating of the inside box air sition to multicore microprocessors should alleviate the caused by increased integration and shrinking box sizes. growth in TDP with increased performance, and the expec- The thermal problem can thus become increasingly tation is that there will be a power cap for each product difficult either due to increases in TDP, reductions in segment. However, in addition to the TDP, thermal design ðT À T Þ or a combination of both. The thermal solution engineers need to account for thermal nonuniformity j a designer is faced with the challenge of developing a (typically referred to as hot spots, where power densities of thermal solution that has a thermal resistance at or below 300þ W/cm2 are possible) caused by nonuniform distri- the required thermal resistance. bution of power on die (Fig. 2). The thermal impact of nonuniform power distribution is schematically illustrated in Fig. 3. B. Cooling Solution Design and The thermal management problem is one of transport- Development Strategies ing the TDP from the die surface, where the hot spot The general strategy for thermal management focuses temperature is maintained at or below a certain temper- on: ature specification (typically referred to as the junction 1) minimizing impact of local hot spots by improving temperature Tj)toensurereliableperformance,tothe heat spreading; ambient air at temperature Ta. The transfer of the TDP is 2) increasing the power-dissipation capability of the by conduction through the many solid layers and interfaces thermal solutions; of the package into the heatsink, conduction through the 3) expanding the thermal envelopes of systems; Vol. 94, No. 8, August 2006 | Proceedings of the IEEE 1477 Mahajan et al.: Cooling a Microprocessor Chip Fig. 2. Illustrative IR images of two typical microprocessors showing on-die hot spots due to nonuniform power distributions on die. Die sizes are not to scale. 4) developing thermal solutions that meet cost Most of today’s high-performance microprocessors use constraints imposed by business considerations; an area array, flip chip interconnect scheme to connect the 5) developing solutions that fit within form factor active (circuit) side of the die to an organic or ceramic considerations of the chassis. package substrate (see Fig. 4 for a schematic illustration). Thermal management is thus a technical and economic The package substrate is either soldered to the computer challenge. Cost is one of the most important considera- motherboard through a grid array of solder joints, or has tionsintheselectionofathermalsolutionandisoftenthe pins that are inserted into a socket that is soldered to the reason why a new technology may find barriers to in- motherboard (another alternate socket is the land grid troduction especially if it cannot displace an existing array socket where socket fingers contact pads on the sur- technology on a cost performance basis. Fit considerations face of the package). In all cases, when dealing with high are also especially important when increasingly higher cooling demand, and in attempting to establish cooling power components need to be accommodated in the same envelopes, a reasonable first order assumption is that the chassis to prolong use of the same form factor. bulkoftheheatwillhavetoberemovedfromtheinactive Fig. 3. Schematic illustrating typical die power map and the hot spots on the corresponding die temperature map. The red region represents the highest temperature spot. 1478 Proceedings of the IEEE |Vol.94,No.8,August2006 Mahajan et al.: Cooling a Microprocessor Chip Fig. 4. Schematic of the two basic thermal architectures, illustrating their primary heat transfer path. (a) Architecture I. (b) Architecture II. side that is farther away from the motherboard. Given the heatwhiletransportingitfromthedietotheheatsink.
Recommended publications
  • CFD Analyses of a Notebook Computer Thermal Management
    PREPRINT. 1 Ilker Tari and Fidan Seza Yalçin, "CFD Analyses of a Notebook Computer Thermal Management System and a Proposed Passive Cooling Alternative, IEEE Transactions on Components and Packaging Technologies, Vol. 33, No. 2, pp. 443-452 (2010). CFD Analyses of a Notebook Computer Thermal Management System and a Proposed Passive Cooling Alternative Ilker Tari, and Fidan Seza Yalcin H Fin height, mm. Abstract— A notebook computer thermal management system L Heat sink vertical length, mm. is analyzed using a commercial CFD software package (ANSYS Nu Nusselt Number. Fluent). The active and passive paths that are used for heat Pr Prandtl Number. dissipation are examined for different steady state operating Ra Rayleigh Number. conditions. For each case, average and hot-spot temperatures of Re Reynolds Number. the components are compared with the maximum allowable T Temperature, °C or K. operating temperatures. It is observed that when low heat W Heat sink width, mm. dissipation components are put on the same passive path, the 2 increased heat load of the path may cause unexpected hot spot g Gravitational acceleration, m/s . 2 temperatures. Especially, Hard Disk Drive (HDD) is susceptible h Convection heat transfer coefficient, W/(m ·K). to overheating and the keyboard surface may reach k Thermal conductivity, W/(m·K). ergonomically undesirable temperatures. Based on the analysis q Heat transfer rate, W. results and observations, a new component arrangement s Fin spacing, mm. considering passive paths and using the back side of the LCD screen is proposed and a simple correlation based thermal Greek Symbols analysis of the proposed system is presented.
    [Show full text]
  • Desktop 3Rd Generation Intel® Core™ Processor Family, Desktop Intel® Pentium® Processor Family, Desktop Intel® Celeron® Processor Family, and LGA1155 Socket
    Desktop 3rd Generation Intel® Core™ Processor Family, Desktop Intel® Pentium® Processor Family, Desktop Intel® Celeron® Processor Family, and LGA1155 Socket Thermal Mechanical Specifications and Design Guidelines (TMSDG) January 2013 Document Number: 326767-005 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined”.
    [Show full text]
  • Thermal Guide: Intel® Xeon® Processor E5 V4 Product Family
    Intel® Xeon® Processor E5 v4 Product Family Thermal Mechanical Specification and Design Guide June 2016 Document Number: 333812-002 IntelLegal Lines and Disclaimerstechnologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at Intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppal or otherwise) to any intellectual property rights is granted by this document. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware, software and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology. For more information, see http://www.intel.com/technology/turboboost Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548- 4725 or by visiting www.intel.com/design/literature.htm.
    [Show full text]
  • Summarizing CPU and GPU Design Trends with Product Data
    Summarizing CPU and GPU Design Trends with Product Data Yifan Sun, Nicolas Bohm Agostini, Shi Dong, and David Kaeli Northeastern University Email: fyifansun, agostini, shidong, [email protected] Abstract—Moore’s Law and Dennard Scaling have guided the products. Equipped with this data, we answer the following semiconductor industry for the past few decades. Recently, both questions: laws have faced validity challenges as transistor sizes approach • Are Moore’s Law and Dennard Scaling still valid? If so, the practical limits of physics. We are interested in testing the validity of these laws and reflect on the reasons responsible. In what are the factors that keep the laws valid? this work, we collect data of more than 4000 publicly-available • Do GPUs still have computing power advantages over CPU and GPU products. We find that transistor scaling remains CPUs? Is the computing capability gap between CPUs critical in keeping the laws valid. However, architectural solutions and GPUs getting larger? have become increasingly important and will play a larger role • What factors drive performance improvements in GPUs? in the future. We observe that GPUs consistently deliver higher performance than CPUs. GPU performance continues to rise II. METHODOLOGY because of increases in GPU frequency, improvements in the thermal design power (TDP), and growth in die size. But we We have collected data for all CPU and GPU products (to also see the ratio of GPU to CPU performance moving closer to our best knowledge) that have been released by Intel, AMD parity, thanks to new SIMD extensions on CPUs and increased (including the former ATI GPUs)1, and NVIDIA since January CPU core counts.
    [Show full text]
  • Large Cad Models
    Great decisions in product engineering with NX CAE. Learn more on page 11 DtopEng_banner_NXCAE.indd 1 August 2012 / deskeng.com 7/12/12 9:28:46 AM Workstation Upgrades P. 16 Monitor Technology P. 18 Review: HP Z1 All-in-One Workstation P. 20 TECHNOLOGY FOR DESIGN ENGINEERING FOCUS ON: Test & SPEED UP Measurement LARGE CAD MODELS DIRECT DIGITAL MANUFACTURING P. 32 IMPLEMENT MECHATRONIC TESTING P. 38 HOW TO CALIBRATE TEST SENSORS P. 42 CREATE BREAKTHROUGH DESIGNS BLAZING-FAST GEOMETRY PERFORMANCE FOR COMPLEX DESIGNS - THE NEW AMD FIREPRO TM WORKSTATION GRAPHICS RANGE AMD FIREPRO V4900 AMD FIREPRO V5900 AMD FIREPRO V7900 Maximum Performance The Perfect Balance Create Breakthrough Designs For Your Budget ● 2GB GDDR5 memory (64 GB/s) ● 2GB GDDR5 memory (160 GB/s) ● 1GB GDDR5 memory (64 GB/s) ● 512 Stream Processors ● 1280 Stream Processors ● 480 Stream Processors ● 2 x DisplayPort 1.2, 1 x DVI outputs ● 4 x DisplayPort 1.2 ● 2 x DisplayPort 1.2,1 x DVI outputs ● Support up to 3 displays ● Support up to 4 displays ● Support up to 3 displays ● GeometryBoost ● GeometryBoost ● AMD PowerTune ● AMD PowerTune ● 3D Stereoscopic support ● Framelock, Genlock support AMD FEATURED TECHNOLOGIES “I have been using three and ● Certified and optimized: for all major 3D applications for high four-monitor configurations for a performance and reliability while now, and I can tell you that once you try it, you won’t want ● GeometryBoost Technology: Helps ensure smooth handling of to go back to just two.” complex, highly tessellated models Jason Lewis, CG Channel ● AMD PowerTune Technology: Optimizes power usage in real-time based on current workflow demands ● AMD Eyefinity Technology: Run up to 4 monitors from a single graphics card, boosting productivity by viewing entire workflows Find out more at amd.com/firepronextgen © 2011 Advanced Micro Devices, Inc.
    [Show full text]
  • Intel® Atom Processor 200 Series Mechanical, and Thermal Design
    Intel® Atom™ Processor 200 Series Thermal and Mechanical Design Guidelines — Supporting nettop platform for 2008 June 2008 Document Number: 319979-001 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
    [Show full text]
  • Intel® Celeron™ P4000 and U3000 Mobile Processor Series
    Intel® Celeron™ P4000 and U3000 Mobile Processor Series External Design Specification — Volume One This is volume 1 of 2. Refer to Document 416057 for Volume 2 Rev 1.5 March 2010 Intel Confidential Document Number:442690 INFORMATIONLegal Lines and Disclaimers IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
    [Show full text]
  • Intel® Celeron® D Processor for Embedded Applications Thermal Design Guide Contents
    Intel® Celeron® D Processor for Embedded Applications Thermal Design Guide June 2004 Reference Number: 302647-001 Contents INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® Celeron® D Processor for Embedded Applications may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling1-800-548- 4725, or by visiting Intel's website at http://www.intel.com.
    [Show full text]
  • White Paper | ADVANCED POWER MANAGEMENT HELPS BRING
    White Paper | ADVANCED POWER MANAGEMENT HELPS BRING IMPROVED PERFORMANCE TO HIGHLY INTEGRATED X86 PROCESSORS TABLE OF CONTENTS THE IMPORTANCE OF POWER MANAGEMENT 3 THE X86 EXAMPLES 3 ESTABLISH A REALISTIC WORST-CASE FOR POWER 4 POWER LIMITS CAN TRANSLATE TO PERFORMANCE LIMITS 4 AMD TACKLES THE UNDERUSED TDP HEADROOM ISSUE 5 GOING ABOVE TDP 6 INTELLIGENT BOOST 7 CONFIGURABLE TDP 8 SUMMARY 9 Complex heterogeneous processors have the potential to leave a large amount of performance headroom untapped when workloads don’t utilize all cores. Advanced power management techniques for x86 processors are designed to reduce the power of underutilized cores while also allowing for dynamic allocation of the thermal budget between cores for improved performance. THE IMPORTANCE OF THE X86 EXAMPLE POWER MANAGEMENT Typical x86 processors widely used Those with experience implementing in both consumer and embedded microprocessors know the importance applications are a perfect example: of proper power management. Whether Integration of network and security for simple applications processors or engines, memory controllers, graphics high-end server processors, the ability processing units (GPUs), and video to down-clock, clock-gate, power-off, encode/decode engines has effectively or in some manner disable unused or turned them into heterogeneous underused hardware blocks is crucial in compute units that excel at a wide limiting power consumption. variety of workloads. Better power management benefits The notable thing about traditional range from energy savings within the reduction-based power management data center to improved battery life in is that a particular functional block is mobile devices. But don’t underestimate only turned off when unused, or down- the value of reducing power and clocked when higher performance is increasing efficiency.
    [Show full text]
  • Intel® Xeon® Processor E5 V3 Family Thermal Guide
    Intel ® Xeon® Processor E5-1600 / 2600 / 4600 v3 Product Families Thermal Mechanical Specification and Design Guide October 2015 Order No.: 330786-003US You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit http:// www.intel.com/design/literature.htm. Basis, BlueMoon, BunnyPeople, Celeron, Centrino, Cilk, Flexpipe, Intel, the Intel logo, the Intel Anti-Theft technology logo, Intel AppUp, the Intel AppUp logo, Intel Atom, Intel CoFluent, Intel Core, Intel Inside, the Intel Inside logo, Intel Insider, Intel NetMerge, Intel NetStructure, Intel RealSense, Intel SingleDriver, Intel SpeedStep, Intel vPro, Intel Xeon Phi, Intel XScale, InTru, the InTru logo, the InTru Inside logo, InTru soundmark, Iris, Itanium, Kno, Look Inside., the Look Inside. logo, MCS, MMX, Pentium, picoArray, Picochip, picoXcell, Puma, Quark, SMARTi, smartSignaling, Sound Mark, Stay With It, the Engineering Stay With It logo, The Creators Project, The Journey Inside, Thunderbolt, the Thunderbolt logo, Transcede, Transrf, Ultrabook, VTune, Xeon, X-GOLD and XMM are trademarks of Intel Corporation in the U.S.
    [Show full text]
  • Intel® Pentium® 4 Processor with 512-KB L2 Cache on 0.13 Micron Process Thermal Design Guidelines Design Guide
    R Intel® Pentium® 4 Processor with 512-KB L2 Cache on 0.13 Micron Process Thermal Design Guidelines Design Guide Supporting the Intel® Pentium® 4 Processor with Hyper-Threading Technology1 November 2002 Document Number: 252161-001 R INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® Pentium® 4 processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. 1Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor at 3.06 GHz or higher, a chipset and BIOS that utilize this technology, and an operating system that includes optimizations for this technology.
    [Show full text]
  • Thermal Modeling and Management of Microprocessors
    Thermal Modeling and Management of Microprocessors A Dissertation Presented to the faculty of the School of Engineering and Applied Science University of Virginia In Partial Fulfillment of the requirements for the Degree Doctor of Philosophy Computer Science by Karthik Sankaranarayanan May 2009 Approvals This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Computer Science Karthik Sankaranarayanan Approved: Kevin Skadron (Advisor) Jack W. Davidson (Chair) 7 Mircea R. Stan (Co-Advisor) James P. Cohoon John Lach Accepted by the School of Engineering and Applied Science: April 2009 Abstract The most recent, and arguably one of the most difficult obstacles to the exponential growth in transistor density predicted by Moore’s Law is that of removing the large amount of heat generated within the tiny area of a microprocessor. The exponential increase in power density and its direct relation to on-chip temperature have, in recent processors, led to very high cooling costs. Since temperature also has an exponential effect on lifetime reliability and leakage power, it has become a first-class design constraint in microprocessor development akin to performance. This dissertation describes work to address the temperature challenge from the perspective of the architecture of the microprocessor. It proposes both the infrastructure to model the problem and several mechanisms that form part of the solution. This research describes HotSpot, an efficient and extensible microarchitectural thermal modeling tool that is used to guide the design and evalua- tion of various thermal management techniques. It presents several Dynamic Thermal Management (DTM) schemes that distribute heat both over time and space by controlling the level of compu- tational activity.
    [Show full text]