Linux Graphics Drivers: an Introduction
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Release Notes for X11R6.8.2 the X.Orgfoundation the Xfree86 Project, Inc
Release Notes for X11R6.8.2 The X.OrgFoundation The XFree86 Project, Inc. 9February 2005 Abstract These release notes contains information about features and their status in the X.Org Foundation X11R6.8.2 release. It is based on the XFree86 4.4RC2 RELNOTES docu- ment published by The XFree86™ Project, Inc. Thereare significant updates and dif- ferences in the X.Orgrelease as noted below. 1. Introduction to the X11R6.8.2 Release The release numbering is based on the original MIT X numbering system. X11refers to the ver- sion of the network protocol that the X Window system is based on: Version 11was first released in 1988 and has been stable for 15 years, with only upwardcompatible additions to the coreX protocol, a recordofstability envied in computing. Formal releases of X started with X version 9 from MIT;the first commercial X products werebased on X version 10. The MIT X Consortium and its successors, the X Consortium, the Open Group X Project Team, and the X.OrgGroup released versions X11R3 through X11R6.6, beforethe founding of the X.OrgFoundation. Therewill be futuremaintenance releases in the X11R6.8.x series. However,efforts arewell underway to split the X distribution into its modular components to allow for easier maintenance and independent updates. We expect a transitional period while both X11R6.8 releases arebeing fielded and the modular release completed and deployed while both will be available as different consumers of X technology have different constraints on deployment. Wehave not yet decided how the modular X releases will be numbered. We encourage you to submit bug fixes and enhancements to bugzilla.freedesktop.orgusing the xorgproduct, and discussions on this server take place on <[email protected]>. -
GLSL 4.50 Spec
The OpenGL® Shading Language Language Version: 4.50 Document Revision: 7 09-May-2017 Editor: John Kessenich, Google Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright (c) 2008-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions. -
Reverse Engineering Power Management on NVIDIA Gpus - Anatomy of an Autonomic-Ready System Martin Peres
Reverse Engineering Power Management on NVIDIA GPUs - Anatomy of an Autonomic-ready System Martin Peres To cite this version: Martin Peres. Reverse Engineering Power Management on NVIDIA GPUs - Anatomy of an Autonomic-ready System. ECRTS, Operating Systems Platforms for Embedded Real-Time appli- cations 2013, Jul 2013, Paris, France. hal-00853849 HAL Id: hal-00853849 https://hal.archives-ouvertes.fr/hal-00853849 Submitted on 23 Aug 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reverse engineering power management on NVIDIA GPUs - Anatomy of an autonomic-ready system Martin Peres Ph.D. student at LaBRI University of Bordeaux Hobbyist Linux/Nouveau Developer Email: [email protected] Abstract—Research in power management is currently limited supported nor documented by NVIDIA. As GPUs are leading by the fact that companies do not release enough documentation the market in terms of performance-per-Watt [3], they are or interfaces to fully exploit the potential found in modern a good candidate for a reverse engineering effort of their processors. This problem is even more present in GPUs despite power management features. The choice of reverse engineering having the highest performance-per-Watt ratio found in today’s NVIDIA’s power management features makes sense as they processors. -
THINC: a Virtual and Remote Display Architecture for Desktop Computing and Mobile Devices
THINC: A Virtual and Remote Display Architecture for Desktop Computing and Mobile Devices Ricardo A. Baratto Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2011 c 2011 Ricardo A. Baratto This work may be used in accordance with Creative Commons, Attribution-NonCommercial-NoDerivs License. For more information about that license, see http://creativecommons.org/licenses/by-nc-nd/3.0/. For other uses, please contact the author. ABSTRACT THINC: A Virtual and Remote Display Architecture for Desktop Computing and Mobile Devices Ricardo A. Baratto THINC is a new virtual and remote display architecture for desktop computing. It has been designed to address the limitations and performance shortcomings of existing remote display technology, and to provide a building block around which novel desktop architectures can be built. THINC is architected around the notion of a virtual display device driver, a software-only component that behaves like a traditional device driver, but instead of managing specific hardware, enables desktop input and output to be intercepted, manipulated, and redirected at will. On top of this architecture, THINC introduces a simple, low-level, device-independent representation of display changes, and a number of novel optimizations and techniques to perform efficient interception and redirection of display output. This dissertation presents the design and implementation of THINC. It also intro- duces a number of novel systems which build upon THINC's architecture to provide new and improved desktop computing services. The contributions of this dissertation are as follows: • A high performance remote display system for LAN and WAN environments. -
UG1046 Ultrafast Embedded Design Methodology Guide
UltraFast Embedded Design Methodology Guide UG1046 (v2.3) April 20, 2018 Revision History The following table shows the revision history for this document. Date Version Revision 04/20/2018 2.3 • Added a note in the Overview section of Chapter 5. • Replaced BFM terminology with VIP across the user guide. 07/27/2017 2.2 • Vivado IDE updates and minor editorial changes. 04/22/2015 2.1 • Added Embedded Design Methodology Checklist. • Added Accessing Documentation and Training. 03/26/2015 2.0 • Added SDSoC Environment. • Added Related Design Hubs. 10/20/2014 1.1 • Removed outdated information. •In System Level Considerations, added information to the following sections: ° Performance ° Clocking and Reset 10/08/2014 1.0 Initial Release of document. UltraFast Embedded Design Methodology Guide Send Feedback 2 UG1046 (v2.3) April 20, 2018 www.xilinx.com Table of Contents Chapter 1: Introduction Embedded Design Methodology Checklist. 9 Accessing Documentation and Training . 10 Chapter 2: System Level Considerations Performance. 13 Power Consumption . 18 Clocking and Reset. 36 Interrupts . 41 Embedded Device Security . 45 Profiling and Partitioning . 51 Chapter 3: Hardware Design Considerations Configuration and Boot Devices . 63 Memory Interfaces . 69 Peripherals . 76 Designing IP Blocks . 94 Hardware Performance Considerations . 102 Dataflow . 108 PL Clocking Methodology . 112 ACP and Cache Coherency. 116 PL High-Performance Port Access. 120 System Management Hardware Assistance. 124 Managing Hardware Reconfiguration . 127 GPs and Direct PL Access from APU . 133 Chapter 4: Software Design Considerations Processor Configuration . 137 OS and RTOS Choices . 142 Libraries and Middleware . 152 Boot Loaders . 156 Software Development Tools . 162 UltraFast Embedded Design Methodology GuideSend Feedback 3 UG1046 (v2.3) April 20, 2018 www.xilinx.com Chapter 5: Hardware Design Flow Overview . -
High Speed Visualization in the Jetos Aviation Operating System Using Hardware Acceleration*
High Speed Visualization in the JetOS Aviation Operating System Using Hardware Acceleration* Boris Barladian[0000-0002-2391-2067], Nikolay Deryabin[0000-0003-1248-6047], Alexey Voloboy[0000-0003-1252-8294], Vladimir Galaktionov[0000-0001-6460-7539], and Lev Shapiro[0000-0002-6350-851X] The Keldysh Institute of the Applied Mathematics of RAS, Moscow, Russia [email protected],{voloboy, vlgal, pls}@gin.keldysh.ru Abstract. The paper discusses details of the pilot display visualization that uses the hardware acceleration capabilities of the Vivante graphics processor in the JetOS aviation operating system. Previously the OpenGL Safety Critical library was implemented without hardware acceleration. This was done in such a way because software library is easier to certify in accordance with the avionics re- quirements. But usage of the software OpenGL does not provide acceptable visualization speed for modern Flight Display and 3D relief applications. So more complex visualization approach utilized the GPU acceleration capabilities was elaborated. Although the OpenGL library was implemented for a specific GPU and took into account its specificity, the described approach to adapt the MESA open source library can be used for other GPUs. An effective algorithm for multi-window visualization using the implemented library with hardware acceleration is present. The described approach allows you to achieve the visu- alization speed acceptable for the pilot display of the aircraft. Keywords: Pilot Display, Embedded Systems, Real-time Operating System, OpenGL Safety Critical, Multi-windowing. 1 Introduction In [1] requirements were formulated for a real-time operating system (RTOS) de- signed to work with integrated modular avionics. In particular, the RTOS should comply with the ARINC 653 standard [2]. -
Opengl Distilled / Paul Martz
Page left blank intently OpenGL® Distilled By Paul Martz ............................................... Publisher: Addison Wesley Professional Pub Date: February 27, 2006 Print ISBN-10: 0-321-33679-8 Print ISBN-13: 978-0-321-33679-8 Pages: 304 Table of Contents | Inde OpenGL opens the door to the world of high-quality, high-performance 3D computer graphics. The preferred application programming interface for developing 3D applications, OpenGL is widely used in video game development, visuali,ation and simulation, CAD, virtual reality, modeling, and computer-generated animation. OpenGL® Distilled provides the fundamental information you need to start programming 3D graphics, from setting up an OpenGL development environment to creating realistic te tures and shadows. .ritten in an engaging, easy-to-follow style, this boo/ ma/es it easy to find the information you0re loo/ing for. 1ou0ll quic/ly learn the essential and most-often-used features of OpenGL 2.0, along with the best coding practices and troubleshooting tips. Topics include Drawing and rendering geometric data such as points, lines, and polygons Controlling color and lighting to create elegant graphics Creating and orienting views Increasing image realism with te ture mapping and shadows Improving rendering performance Preserving graphics integrity across platforms A companion .eb site includes complete source code e amples, color versions of special effects described in the boo/, and additional resources. Page left blank intently Table of contents: Chapter 6. Texture Mapping Copyright ............................................................... 4 Section 6.1. Using Texture Maps ........................... 138 Foreword ............................................................... 6 Section 6.2. Lighting and Shadows with Texture .. 155 Preface ................................................................... 7 Section 6.3. Debugging .......................................... 169 About the Book .................................................... -
Porting Tizen-IVI 3.0 to an ARM Based Soc Platform
Porting Tizen-IVI 3.0 to an ARM based SoC Platform Damian Hobson-Garcia Automotive Linux Summit July 1-2, 2014 Tokyo, Japan Tizen IVI support Until recently… Intel architecture (x86) system – Tizen IVI 2.0alpha, Tizen IVI 3.0 ARM architecture based system – Tizen IVI 2.0alpha (ivi-panda) Need to port Tizen IVI 3.0 to ARM ourselves Current State of Affairs Intel architecture (x86) system – Tizen IVI 2.0alpha, Tizen IVI 3.0 – Tizen Common NEW ARM architecture based system – Tizen IVI 2.0alpha (ivi-panda) – Tizen Common NEW Tizen IVI now based on Tizen Common – Lots of reuse Target Platform Renesas R-Car Gen2 series platform R-Car M2 – ARM Cortex A15 x2 R-Car H2 – ARM Cortex A15 x4, + ARM Cortex A7 x4 (option) 3D Graphics System – Imagination Technologies PowerVR series On board IP blocks – H/W video decode/encode – image processing Agenda Objective Methodology Porting Tasks – Weston/Wayland Integration – WebKit Integration – GStreamer Integration Objective Tizen IVI 3.0 on R-Car M2/H2 1. Standard Native Applications – Terminal program – Open GL/ES applications 2. Web – Browser and web applications 3. Multimedia – Video playback (1080p @ 30fps) Local Build Methodology Tizen IVI 3.0 milestone releases we used: – M2-Sep (released Oct 11, 2013) – M2-EOY (released Jan 15, 2014) – M2-March2014 (released April 11, 2014) Non-hardware dependant packages – Rebuild for ARM instruction set Hardware dependant packages – Replace/update with R-Car M2/H2 support Tizen Common/IVI Rebase Methodology Reuse Tizen Common ARM support for Tizen -
Troubleshooting Passwords
Troubleshooting Passwords The following procedures may be used to troubleshoot password problems: • Performing Password Recovery with an Existing Administrator, page 1 • Performing Password Recovery with No Existing Administrator, page 1 • Performing Password Recovery for the Linux Grapevine User Account, page 2 Performing Password Recovery with an Existing Administrator To perform password recovery for a user (administrator, installer or observer) where there exists at least one controller administrator (ROLE_ADMIN) user account, take the following steps: 1 Contact the existing administrator to set up a temporary password for the user that requires password recovery. Note The administrator can set up a temporary password by deleting the user's account and then recreating it with the lost password. The user can then log back into the controller to regain access and change the password once again to whatever he or she desires. 2 The user then needs to log into the controller with the temporary password and change the password. Note Passwords are changed in the controller GUI using the Change Password window. For information about changing passwords, see Chapter 4, Managing Users and Roles in the Cisco Application Policy Infrastructure Controller Enterprise Module Configuration Guide. Performing Password Recovery with No Existing Administrator The following procedure describes how to perform password recovery where there exists only one controller administrator (ROLE_ADMIN) user account and this account cannot be successfully logged into. Cisco Application Policy Infrastructure Controller Enterprise Module Troubleshooting Guide, Release 1.3.x 1 Troubleshooting Passwords Performing Password Recovery for the Linux Grapevine User Account Note We recommend that you create at least two administrator accounts for your deployment. -
Version 7.8-Systemd
Linux From Scratch Version 7.8-systemd Created by Gerard Beekmans Edited by Douglas R. Reno Linux From Scratch: Version 7.8-systemd by Created by Gerard Beekmans and Edited by Douglas R. Reno Copyright © 1999-2015 Gerard Beekmans Copyright © 1999-2015, Gerard Beekmans All rights reserved. This book is licensed under a Creative Commons License. Computer instructions may be extracted from the book under the MIT License. Linux® is a registered trademark of Linus Torvalds. Linux From Scratch - Version 7.8-systemd Table of Contents Preface .......................................................................................................................................................................... vii i. Foreword ............................................................................................................................................................. vii ii. Audience ............................................................................................................................................................ vii iii. LFS Target Architectures ................................................................................................................................ viii iv. LFS and Standards ............................................................................................................................................ ix v. Rationale for Packages in the Book .................................................................................................................... x vi. Prerequisites -
Ati Driver Freebsd
Ati driver freebsd Hey, I`m new to teh the bsd *BSD world and just installed Freebsd FreeBSD. Only thing missing is my video driver. ATI Radeon X How to Solved - Switch between ATI and VESA drivers? If you want to automatically load a video driver at boot time, we recommend to do it from /etc/:Radeon: It allows the use of newer xfvideo-ati drivers and AMD GPUs. This project started in January Initial radeon code comes from Linux. EndSection DESCRIPTION radeon is an Xorg driver for ATI/AMD RADEON-based video cards with the following features: o Full support for 8-, , and. This package contains the xfvideo-ati driver. xdrivers/drm-kmod: Port for the DRM kernel drivers for FreeBSD This port. If I boot X11 with no or with ati driver, the system stops responding, although cursor continues to follow mouse movements. (I suppose. To all those concerned, I have read that FreeBSD would be supported by the latest graphic card drivers, which was also confirmed by. I bought an expensive ATI card when they announced they'll go Note that AMD doesn't provide a driver for FreeBSD, so you'll be using the. We now know for sure that FreeBSD will ship with a kernel mode-setting driver for supporting open-source AMD Radeon graphics with its. AMD tech support has allegedly confirmed that Catalyst is being ported to FreeBSD. A Phoronix reader pointed out this thread. I am not sure that FreeBSD will fully support this card. The Xorg version for FreeBSD is and the ATI driver used is version The reason is, AMD/ATI doesn't support FreeBSD, and you have to resort to the sucky open source drivers. -
The Opengl Graphics System
OpenGL R ES Native Platform Graphics Interface (Version 1.0) Editor: Jon Leech Copyright c 2002-2003 Promoters of the Khronos Group (3Dlabs, ARM Ltd., ATI Technologies, Inc., Discreet, Ericsson Mobile, Imagination Technologies Group plc, Motorola, Inc., Nokia, Silicon Graphics, Inc., SK Telecom, and Sun Microsystems). This document is protected by copyright, and contains information proprietary to The Khronos Group. Any copying, adaptation, distribution, public performance, or public display of this document without the express written consent of the copy- right holders is strictly prohibited. The receipt or possession of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manu- facture, use, or sell anything that it may describe, in whole or in part. R This document is a derivative work of ”OpenGL Graphics with the X Window System (Version 1.4)”. Silicon Graphics, Inc. owns, and reserves all rights in, the latter document. OpenGL is a registered trademark, and OpenGL ES is a trademark, of Silicon Graphics, Inc. Contents 1 Overview 1 2 EGL Operation 2 2.1 Native Window System and Rendering APIs . 2 2.1.1 Scalar Types . 2 2.1.2 Displays . 3 2.2 Rendering Contexts and Drawing Surfaces . 3 2.2.1 Using Rendering Contexts . 4 2.2.2 Rendering Models . 4 2.2.3 Interaction With Native Rendering . 4 2.3 Direct Rendering and Address Spaces . 5 2.4 Shared State . 5 2.4.1 Texture Objects . 6 2.5 Multiple Threads . 6 2.6 Power Management . 7 3 EGL Functions and Errors 8 3.1 Errors .