Opengl Distilled / Paul Martz

Total Page:16

File Type:pdf, Size:1020Kb

Opengl Distilled / Paul Martz Page left blank intently OpenGL® Distilled By Paul Martz ............................................... Publisher: Addison Wesley Professional Pub Date: February 27, 2006 Print ISBN-10: 0-321-33679-8 Print ISBN-13: 978-0-321-33679-8 Pages: 304 Table of Contents | Inde OpenGL opens the door to the world of high-quality, high-performance 3D computer graphics. The preferred application programming interface for developing 3D applications, OpenGL is widely used in video game development, visuali,ation and simulation, CAD, virtual reality, modeling, and computer-generated animation. OpenGL® Distilled provides the fundamental information you need to start programming 3D graphics, from setting up an OpenGL development environment to creating realistic te tures and shadows. .ritten in an engaging, easy-to-follow style, this boo/ ma/es it easy to find the information you0re loo/ing for. 1ou0ll quic/ly learn the essential and most-often-used features of OpenGL 2.0, along with the best coding practices and troubleshooting tips. Topics include Drawing and rendering geometric data such as points, lines, and polygons Controlling color and lighting to create elegant graphics Creating and orienting views Increasing image realism with te ture mapping and shadows Improving rendering performance Preserving graphics integrity across platforms A companion .eb site includes complete source code e amples, color versions of special effects described in the boo/, and additional resources. Page left blank intently Table of contents: Chapter 6. Texture Mapping Copyright ............................................................... 4 Section 6.1. Using Texture Maps ........................... 138 Foreword ............................................................... 6 Section 6.2. Lighting and Shadows with Texture .. 155 Preface ................................................................... 7 Section 6.3. Debugging .......................................... 169 About the Book ..................................................... 8 Section 6.4. More Information ............................... 173 Intended Audience ................................................. 10 Section 6.5. References .......................................... 174 Format of the Book ............................................... 11 Conventions ........................................................... 12 Chapter 7. Extensions and Versions OpenGL® Distilled Web Site ............................... 13 Section 7.1. Extensions .......................................... 176 Acknowledgments ................................................. 14 Section 7.2. Versions ............................................. 181 About the Author ................................................... 15 Section 7.3. Extension- and Version-Safe Code .... 183 Section 7.4. More Information ............................... 187 Chapter 1. An Introduction to OpenGL Section 1.1. What Is OpenGL? .............................. 18 Chapter 8. Platform-Specific Interfaces Section 1.2. GLUT ................................................ 30 Section 8.1. Concepts ............................................. 190 Section 1.3. GLU ................................................... 31 Section 8.2. Apple Mac OS X ................................ 191 Section 1.4. Development Environment ................32 Section 8.3. Linux .................................................. 195 Section 1.5. A Simple Example .............................35 Section 8.4. Microsoft Windows ............................200 Section 1.6. History of OpenGL ............................ 39 Section 8.5. More Information ............................... 204 Section 1.7. More Information .............................. 42 Section 8.6. References .......................................... 205 Section 1.8. References ......................................... 43 Appendix A. Other Features Chapter 2. Drawing Primitives Section A.1. Multisample ...................................... 207 Section 2.1. OpenGL Primitives ............................46 Section A.2. Occlusion Queries ............................. 208 Section 2.2. Specifying Vertex Data ..................... 49 Section A.3. Fog .................................................... 209 Section 2.3. Drawing Details ................................. 63 Section A.4. Clip Planes ........................................ 210 Section 2.4. Performance Issues ............................ 70 Section A.5. Stencil ............................................... 211 Section 2.5. More Information .............................. 74 Section A.6. The Accumulation Buffer ..................212 Section 2.6. References ......................................... 75 Section A.7. Shading Language ............................. 213 Section A.8. References ......................................... 216 Chapter 3. Transformation and Viewing Section 3.1. Coordinate Systems and Matrices ..... 78 Appendix B. Best Practices Section 3.2. The Transformation Pipeline ............. 83 Section B.1. State ................................................... 218 Section 3.3. Setting the Model-View Matrix .........90 Section B.2. Errors ................................................. 219 Section 3.4. Perspective and Parallel Projections ..93 Section B.3. Precision ............................................ 220 Section 3.5. The Viewport ..................................... 95 Section B.4. Objects ............................................... 224 Section 3.6. Selection ............................................ 96 Section 3.7. More Information .............................. 101 Appendix C. Performance Section 3.8. References ......................................... 102 Section C.1. Measure Performance ........................ 224 Section C.2. Avoid Software Rendering ................ 226 Chapter 4. Lighting Section C.3. Reduce Pipeline Bottlenecks ............. 228 Section 4.1. Overview ........................................... 105 Section C.4. Cull Unseen Geometry ...................... 232 Section 4.2. Normals ............................................. 108 Section C.5. State Changes and Queries ................ 233 Section 4.3. Light Parameters ................................109 Section 4.4. Material Parameters ........................... 111 Appendix D. Troubleshooting and Debugging Section 4.5. Positional and Directional Lights ...... 115 Section D.1. Debugging Tools ............................... 235 Section 4.6. Debugging Lights .............................. 117 Section D.2. OpenGL Errors .................................. 236 Section 4.7. More Information .............................. 120 Section D.3. Debugging a Blank Window ............. 239 Section 4.8. References ......................................... 121 Bibliography .......................................................... 242 Chapter 5. Pixel Rectangles Color Plates ............................................................ 245 Section 5.1. Drawing Pixels .................................. 123 Section 5.2. Reading Pixels ................................... 128 Section 5.3. Copying Pixels .................................. 129 Section 5.4. Performance Issues ............................ 130 Section 5.5. Debugging ......................................... 131 Section 5.6. More Information .............................. 134 Section 5.7. References ......................................... 135 Copyright Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals. The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact: U.S. Corporate and Government Sales (800) 382-3.10 corpsales1pearsontechgroup.com For sales outside the U.S., please contact: 2nternational Sales international1pearsoned.com 3isit us on the Web: www.awprofessional.com Library of Congress Cataloging-in-Publication Data Mart4, 5aul. OpenG7 distilled 5aul Mart4. p. cm. 2ncludes bibliographical references and index. 2S8N 0-321-33970-8 (pbk. : alk. paper) 1. Computer graphics. 2. OpenG7. 2. Title. T385.M3999 2009 009.9'9dc22 2005039.23 Copyright = 2009 5earson Education, 2nc. All rights reserved. 5rinted in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to: 5earson Education, 2nc. Rights and Contracts Aepartment 4 75 Arlington Street, Suite 300 8oston, MA 02119 Fax (917) 8.8-70.7 Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts. First
Recommended publications
  • Deconstructing Hardware Usage for General Purpose Computation on Gpus
    Deconstructing Hardware Usage for General Purpose Computation on GPUs Budyanto Himawan Manish Vachharajani Dept. of Computer Science Dept. of Electrical and Computer Engineering University of Colorado University of Colorado Boulder, CO 80309 Boulder, CO 80309 E-mail: {Budyanto.Himawan,manishv}@colorado.edu Abstract performance, in 2001, NVidia revolutionized the GPU by making it highly programmable [3]. Since then, the programmability of The high-programmability and numerous compute resources GPUs has steadily increased, although they are still not fully gen- on Graphics Processing Units (GPUs) have allowed researchers eral purpose. Since this time, there has been much research and ef- to dramatically accelerate many non-graphics applications. This fort in porting both graphics and non-graphics applications to use initial success has generated great interest in mapping applica- the parallelism inherent in GPUs. Much of this work has focused tions to GPUs. Accordingly, several works have focused on help- on presenting application developers with information on how to ing application developers rewrite their application kernels for the perform the non-trivial mapping of general purpose concepts to explicitly parallel but restricted GPU programming model. How- GPU hardware so that there is a good fit between the algorithm ever, there has been far less work that examines how these appli- and the GPU pipeline. cations actually utilize the underlying hardware. Less attention has been given to deconstructing how these gen- This paper focuses on deconstructing how General Purpose ap- eral purpose application use the graphics hardware itself. Nor has plications on GPUs (GPGPU applications) utilize the underlying much attention been given to examining how GPUs (or GPU-like GPU pipeline.
    [Show full text]
  • AMD Radeon E8860
    Components for AMD’s Embedded Radeon™ E8860 GPU INTRODUCTION The E8860 Embedded Radeon GPU available from CoreAVI is comprised of temperature screened GPUs, safety certi- fiable OpenGL®-based drivers, and safety certifiable GPU tools which have been pre-integrated and validated together to significantly de-risk the challenges typically faced when integrating hardware and software components. The plat- form is an off-the-shelf foundation upon which safety certifiable applications can be built with confidence. Figure 1: CoreAVI Support for E8860 GPU EXTENDED TEMPERATURE RANGE CoreAVI provides extended temperature versions of the E8860 GPU to facilitate its use in rugged embedded applications. CoreAVI functionally tests the E8860 over -40C Tj to +105 Tj, increasing the manufacturing yield for hardware suppliers while reducing supply delays to end customers. coreavi.com [email protected] Revision - 13Nov2020 1 E8860 GPU LONG TERM SUPPLY AND SUPPORT CoreAVI has provided consistent and dedicated support for the supply and use of the AMD embedded GPUs within the rugged Mil/Aero/Avionics market segment for over a decade. With the E8860, CoreAVI will continue that focused support to ensure that the software, hardware and long-life support are provided to meet the needs of customers’ system life cy- cles. CoreAVI has extensive environmentally controlled storage facilities which are used to store the GPUs supplied to the Mil/ Aero/Avionics marketplace, ensuring that a ready supply is available for the duration of any program. CoreAVI also provides the post Last Time Buy storage of GPUs and is often able to provide additional quantities of com- ponents when COTS hardware partners receive increased volume for existing products / systems requiring additional inventory.
    [Show full text]
  • The Opengl Framebuffer Object Extension
    TheThe OpenGLOpenGL FramebufferFramebuffer ObjectObject ExtensionExtension SimonSimon GreenGreen NVIDIANVIDIA CorporationCorporation OverviewOverview •• WhyWhy renderrender toto texture?texture? •• PP--bufferbuffer // ARBARB renderrender texturetexture reviewreview •• FramebufferFramebuffer objectobject extensionextension •• ExamplesExamples •• FutureFuture directionsdirections WhyWhy RenderRender ToTo Texture?Texture? • Allows results of rendering to framebuffer to be directly read as texture • Better performance – avoids copy from framebuffer to texture (glCopyTexSubImage2D) – uses less memory – only one copy of image – but driver may sometimes have to do copy internally • some hardware has separate texture and FB memory • different internal representations • Applications – dynamic textures – procedurals, reflections – multi-pass techniques – anti-aliasing, motion blur, depth of field – image processing effects (blurs etc.) – GPGPU – provides feedback loop WGL_ARB_pbufferWGL_ARB_pbuffer •• PixelPixel buffersbuffers •• DesignedDesigned forfor offoff--screenscreen renderingrendering – Similar to windows, but non-visible •• WindowWindow systemsystem specificspecific extensionextension •• SelectSelect fromfrom anan enumeratedenumerated listlist ofof availableavailable pixelpixel formatsformats usingusing – ChoosePixelFormat() – DescribePixelFormat() ProblemsProblems withwith PBuffersPBuffers • Each pbuffer usually has its own OpenGL context – (Assuming they have different pixel formats) – Can share texture objects, display lists between
    [Show full text]
  • Graphics Pipeline and Rasterization
    Graphics Pipeline & Rasterization Image removed due to copyright restrictions. MIT EECS 6.837 – Matusik 1 How Do We Render Interactively? • Use graphics hardware, via OpenGL or DirectX – OpenGL is multi-platform, DirectX is MS only OpenGL rendering Our ray tracer © Khronos Group. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 2 How Do We Render Interactively? • Use graphics hardware, via OpenGL or DirectX – OpenGL is multi-platform, DirectX is MS only OpenGL rendering Our ray tracer © Khronos Group. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. • Most global effects available in ray tracing will be sacrificed for speed, but some can be approximated 3 Ray Casting vs. GPUs for Triangles Ray Casting For each pixel (ray) For each triangle Does ray hit triangle? Keep closest hit Scene primitives Pixel raster 4 Ray Casting vs. GPUs for Triangles Ray Casting GPU For each pixel (ray) For each triangle For each triangle For each pixel Does ray hit triangle? Does triangle cover pixel? Keep closest hit Keep closest hit Scene primitives Pixel raster Scene primitives Pixel raster 5 Ray Casting vs. GPUs for Triangles Ray Casting GPU For each pixel (ray) For each triangle For each triangle For each pixel Does ray hit triangle? Does triangle cover pixel? Keep closest hit Keep closest hit Scene primitives It’s just a different orderPixel raster of the loops!
    [Show full text]
  • Xengt: a Software Based Intel Graphics Virtualization Solution
    XenGT: a Software Based Intel Graphics Virtualization Solution Oct 22, 2013 Haitao Shan, [email protected] Kevin Tian, [email protected] Eddie Dong, [email protected] David Cowperthwaite, [email protected] Agenda • Background • Existing Arts • XenGT Architecture • Performance • Summary 2 Background Graphics Computing • Entertainment applications • Gaming, video playback, browser, etc. • General purpose windowing • Windows Aero, Compiz Fusion, etc • High performance computing • Computer aided designs, weather broadcast, etc. Same capability required, when above tasks are moved into VM 4 Graphics Virtualization • Performance vs. multiplexing • Consistent and rich user experience in all VMs • Share a single GPU among multiple VMs Client Rich Virtual Client Server VDI, transcoder, GPGPU Embedded Smartphone, tablet, IVI 5 Existing Arts Device Emulation • Only for legacy VGA cards • E.g. Cirrus logic VGA card • Limited graphics capability • 2D only • Optimizations on frame buffer operations • E.g. PV framebuffer • Impossible to emulate a modern GPU • Complexity • Poor performance 7 Split Driver Model • Frontend/Backend drivers • Forward OpenGL/DirectX API calls • Implementation specific for the level of forwarding • E.g. VMGL, VMware vGPU, Virgil • Hardware agnostic • Challenges on forwarding between host/guest graphics stacks • API compatibility • CPU overhead 8 Direct Pass-Through/SR-IOV • Best performance with direct pass-through • However no multiplexing 9 XenGT Architecture XenGT • A mediated pass-through solution
    [Show full text]
  • PACKET 7 BOOKSTORE 433 Lecture 5 Dr W IBM OVERVIEW
    “PROCESSORS” and multi-processors Excerpt from Hennessey Computer Architecture book; edits by JT Wunderlich PhD Plus Dr W’s IBM Research & Development: JT Wunderlich PhD “PROCESSORS” Excerpt from Hennessey Computer Architecture book; edits by JT Wunderlich PhD Historical Perspective and Further 7.14 Reading There is a tremendous amount of history in multiprocessors; in this section we divide our discussion by both time period and architecture. We start with the SIMD SIMD=SinGle approach and the Illiac IV. We then turn to a short discussion of some other early experimental multiprocessors and progress to a discussion of some of the great Instruction, debates in parallel processing. Next we discuss the historical roots of the present multiprocessors and conclude by discussing recent advances. Multiple Data SIMD Computers: Attractive Idea, Many Attempts, No Lasting Successes The cost of a general multiprocessor is, however, very high and further design options were considered which would decrease the cost without seriously degrading the power or efficiency of the system. The options consist of recentralizing one of the three major components. Centralizing the [control unit] gives rise to the basic organization of [an] . array processor such as the Illiac IV. Bouknight, et al.[1972] The SIMD model was one of the earliest models of parallel computing, dating back to the first large-scale multiprocessor, the Illiac IV. The key idea in that multiprocessor, as in more recent SIMD multiprocessors, is to have a single instruc- tion that operates on many data items at once, using many functional units (see Figure 7.14.1). Although successful in pushing several technologies that proved useful in later projects, it failed as a computer.
    [Show full text]
  • PACKET 22 BOOKSTORE, TEXTBOOK CHAPTER Reading Graphics
    A.11 GRAPHICS CARDS, Historical Perspective (edited by J Wunderlich PhD in 2020) Graphics Pipeline Evolution 3D graphics pipeline hardware evolved from the large expensive systems of the early 1980s to small workstations and then to PC accelerators in the 1990s, to $X,000 graphics cards of the 2020’s During this period, three major transitions occurred: 1. Performance-leading graphics subsystems PRICE changed from $50,000 in 1980’s down to $200 in 1990’s, then up to $X,0000 in 2020’s. 2. PERFORMANCE increased from 50 million PIXELS PER SECOND in 1980’s to 1 billion pixels per second in 1990’’s and from 100,000 VERTICES PER SECOND to 10 million vertices per second in the 1990’s. In the 2020’s performance is measured more in FRAMES PER SECOND (FPS) 3. Hardware RENDERING evolved from WIREFRAME to FILLED POLYGONS, to FULL- SCENE TEXTURE MAPPING Fixed-Function Graphics Pipelines Throughout the early evolution, graphics hardware was configurable, but not programmable by the application developer. With each generation, incremental improvements were offered. But developers were growing more sophisticated and asking for more new features than could be reasonably offered as built-in fixed functions. The NVIDIA GeForce 3, described by Lindholm, et al. [2001], took the first step toward true general shader programmability. It exposed to the application developer what had been the private internal instruction set of the floating-point vertex engine. This coincided with the release of Microsoft’s DirectX 8 and OpenGL’s vertex shader extensions. Later GPUs, at the time of DirectX 9, extended general programmability and floating point capability to the pixel fragment stage, and made texture available at the vertex stage.
    [Show full text]
  • Intel Embedded Graphics Drivers, EFI Video Driver, and Video BIOS V10.4
    Intel® Embedded Graphics Drivers, EFI Video Driver, and Video BIOS v10.4 User’s Guide April 2011 Document Number: 274041-032US INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
    [Show full text]
  • Powervr Graphics - Latest Developments and Future Plans
    PowerVR Graphics - Latest Developments and Future Plans Latest Developments and Future Plans A brief introduction • Joe Davis • Lead Developer Support Engineer, PowerVR Graphics • With Imagination’s PowerVR Developer Technology team for ~6 years • PowerVR Developer Technology • SDK, tools, documentation and developer support/relations (e.g. this session ) facebook.com/imgtec @PowerVRInsider │ #idc15 2 Company overview About Imagination Multimedia, processors, communications and cloud IP Driving IP innovation with unrivalled portfolio . Recognised leader in graphics, GPU compute and video IP . #3 design IP company world-wide* Ensigma Communications PowerVR Processors Graphics & GPU Compute Processors SoC fabric PowerVR Video MIPS Processors General Processors PowerVR Vision Processors * source: Gartner facebook.com/imgtec @PowerVRInsider │ #idc15 4 About Imagination Our IP plus our partners’ know-how combine to drive and disrupt Smart WearablesGaming Security & VR/AR Advanced Automotive Wearables Retail eHealth Smart homes facebook.com/imgtec @PowerVRInsider │ #idc15 5 About Imagination Business model Licensees OEMs and ODMs Consumers facebook.com/imgtec @PowerVRInsider │ #idc15 6 About Imagination Our licensees and partners drive our business facebook.com/imgtec @PowerVRInsider │ #idc15 7 PowerVR Rogue Hardware PowerVR Rogue Recap . Tile-based deferred renderer . Building on technology proven over 5 previous generations . Formally announced at CES 2012 . USC - Universal Shading Cluster . New scalar SIMD shader core . General purpose compute is a first class citizen in the core … . … while not forgetting what makes a shader core great for graphics facebook.com/imgtec @PowerVRInsider │ #idc15 9 TBDR Tile-based . Tile-based . Split each render up into small tiles (32x32 for the most part) . Bin geometry after vertex shading into those tiles . Tile-based rasterisation and pixel shading .
    [Show full text]
  • Powervr Hardware Architecture Overview for Developers
    Public Imagination Technologies PowerVR Hardware Architecture Overview for Developers Public. This publication contains proprietary information which is subject to change without notice and is supplied 'as is' without warranty of any kind. Redistribution of this document is permitted with acknowledgement of the source. Filename : PowerVR Hardware.Architecture Overview for Developers Version : PowerVR SDK REL_18.2@5224491 External Issue Issue Date : 23 Nov 2018 Author : Imagination Technologies Limited PowerVR Hardware 1 Revision PowerVR SDK REL_18.2@5224491 Imagination Technologies Public Contents 1. Introduction ................................................................................................................................. 3 2. Overview of Modern 3D Graphics Architectures ..................................................................... 4 2.1. Single Instruction, Multiple Data ......................................................................................... 4 2.1.1. Parallelism ................................................................................................................ 4 2.2. Vector and Scalar Processing ............................................................................................ 5 2.2.1. Vector ....................................................................................................................... 5 2.2.2. Scalar ....................................................................................................................... 5 3. Overview of Graphics
    [Show full text]
  • Programming Guide: Revision 1.4 June 14, 1999 Ccopyright 1998 3Dfxo Interactive,N Inc
    Voodoo3 High-Performance Graphics Engine for 3D Game Acceleration June 14, 1999 al Voodoo3ti HIGH-PERFORMANCEopy en GdRAPHICS E NGINEC FOR fi ot 3D GAME ACCELERATION on Programming Guide: Revision 1.4 June 14, 1999 CCopyright 1998 3Dfxo Interactive,N Inc. All Rights Reserved D 3Dfx Interactive, Inc. 4435 Fortran Drive San Jose CA 95134 Phone: (408) 935-4400 Fax: (408) 935-4424 Copyright 1998 3Dfx Interactive, Inc. Revision 1.4 Proprietary and Preliminary 1 June 14, 1999 Confidential Voodoo3 High-Performance Graphics Engine for 3D Game Acceleration Notice: 3Dfx Interactive, Inc. has made best efforts to ensure that the information contained in this document is accurate and reliable. The information is subject to change without notice. No responsibility is assumed by 3Dfx Interactive, Inc. for the use of this information, nor for infringements of patents or the rights of third parties. This document is the property of 3Dfx Interactive, Inc. and implies no license under patents, copyrights, or trade secrets. Trademarks: All trademarks are the property of their respective owners. Copyright Notice: No part of this publication may be copied, reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photographic, or otherwise, or used as the basis for manufacture or sale of any items without the prior written consent of 3Dfx Interactive, Inc. If this document is downloaded from the 3Dfx Interactive, Inc. world wide web site, the user may view or print it, but may not transmit copies to any other party and may not post it on any other site or location.
    [Show full text]
  • Real-Time Ray-Tracing Techniques for Integration Into Existing Renderers TAKAHIRO HARADA, AMD 3/2018 AGENDA
    Real-Time Ray-Tracing Techniques for Integration into Existing Renderers TAKAHIRO HARADA, AMD 3/2018 AGENDA y Radeon ProRender, Radeon Rays update y Unity GPU Lightmapper using Radeon Rays (by Jesper) ‒ Helping the game content creator to make better assets y Radeon ProRender + Universal Scene Description ‒ Real-time preview of assets y Radeon ProRender Real-time Rendering ‒ Hybrid ray tracing is a stepping stone to a fully ray traced future, as the same path was followed with production movie rendering. Our solution provides a was to fully path traced rendering with Radeon pro render 2 | GDC 2018 | 19-23 MARCH 2018 RADEON PRORENDER, RADEON RAYS AMD’s Ray tracing solutions 3 | GDC 2018 | 19-23 MARCH 2018 RADEON PRORENDER, RADEON RAYS AMD’S RAY TRACING SOLUTIONS y Radeon ProRender ‒ A complete renderer (ray casting, shading) ‒ Physically based rendering library ‒ Output - Rendered image ‒ For renderer users, or developers y Radeon Rays ‒ For developers ‒ Ray intersection library ‒ Output - Intersections 4 | GDC 2018 | 19-23 MARCH 2018 RADEON PRORENDER y For developers y For content creators ‒ SDK available today on request ‒ https://pro.radeon.com/en/software/prorender/ ‒ [email protected] y Plugins ‒ Maya, 3DS Max, Blender, Rhino, SolidWorks y C API y Direct integration y OpenCL 1.2, Metal 2 ‒ Cinema4D (Maxon, R19~) ‒ Modo (The Foundry, Beta) y Multi platform solution ‒ OS (Windows, MacOs, Linux) ‒ Vendors (AMD,…) RPR for Blender on MacOs 5 | GDC 2018 | 19-23 MARCH 2018 (BMW from Mike Pan) RADEON PRORENDER FEATURE HIGHLIGHTS y Heterogeneous
    [Show full text]