Programming Guide: Revision 1.4 June 14, 1999 Ccopyright 1998 3Dfxo Interactive,N Inc

Total Page:16

File Type:pdf, Size:1020Kb

Programming Guide: Revision 1.4 June 14, 1999 Ccopyright 1998 3Dfxo Interactive,N Inc Voodoo3 High-Performance Graphics Engine for 3D Game Acceleration June 14, 1999 al Voodoo3ti HIGH-PERFORMANCEopy en GdRAPHICS E NGINEC FOR fi ot 3D GAME ACCELERATION on Programming Guide: Revision 1.4 June 14, 1999 CCopyright 1998 3Dfxo Interactive,N Inc. All Rights Reserved D 3Dfx Interactive, Inc. 4435 Fortran Drive San Jose CA 95134 Phone: (408) 935-4400 Fax: (408) 935-4424 Copyright 1998 3Dfx Interactive, Inc. Revision 1.4 Proprietary and Preliminary 1 June 14, 1999 Confidential Voodoo3 High-Performance Graphics Engine for 3D Game Acceleration Notice: 3Dfx Interactive, Inc. has made best efforts to ensure that the information contained in this document is accurate and reliable. The information is subject to change without notice. No responsibility is assumed by 3Dfx Interactive, Inc. for the use of this information, nor for infringements of patents or the rights of third parties. This document is the property of 3Dfx Interactive, Inc. and implies no license under patents, copyrights, or trade secrets. Trademarks: All trademarks are the property of their respective owners. Copyright Notice: No part of this publication may be copied, reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photographic, or otherwise, or used as the basis for manufacture or sale of any items without the prior written consent of 3Dfx Interactive, Inc. If this document is downloaded from the 3Dfx Interactive, Inc. world wide web site, the user may view or print it, but may not transmit copies to any other party and may not post it on any other site or location. Programming Examples: Sample programs in this book may be adapted, in part or in whole, for use in any equipment incorporating Voodoo3. Use in any equipment not incorporating Voodoo3 is expressly prohibited. Proprietary Information: This document contains proprietary information of 3Dfxal Interactive, Inc., and its receipt or possession does not convey any rights to reproduce, disclose its contents, or to manufacture, use or sell anything it may describe. Reproduction, disclosure or use without specific written authorization of 3Dfx Interactive, Inc., is strictly forbidden. ti opy en d C fi ot on C o N D Copyright 1998 3Dfx Interactive, Inc. Revision 1.4 Proprietary and Preliminary 2 June 14, 1999 Confidential Voodoo3 High-Performance Graphics Engine for 3D Game Acceleration Table of Contents Table of Contents..................................................................................................... 3 List of Tables.......................................................................................................... 12 List of Figures ........................................................................................................ 14 1 Introduction ................................................................................................. 15 1.1 Scope of Document ....................................................................................15 1.2 Document History ....................................................................................... 15 1.3 Devices Covered ......................................................................................... 15 1.4 Audience ..................................................................................................... 15 1.5 Conventions ................................................................................................ 15 1.5.1 Acronyms ......................................................................................................................... 15 1.5.2 Number Base ................................................................................................................... 15 1.5.3 Number/Color Formats .....................................................................................................16 1.5.4 Object Grouping ............................................................................................................... 16 1.5.5 Abbreviations .................................................................................................................... 16 2 Product Overview ........................................................................................ 18 2.1 Introduction ................................................................................................. 18 2.1.1 Voodoo Graphics Compatibility ........................................................................................ 18 2.1.2 3D Performance and Quality ............................................................................................ 18 2.1.3 Optimized for Pentium‚ II and AGP-2X Platformal .............................................................. 18 2.1.4 Windows‚ GUI/Video Acceleration .................................................................................... 18 2.1.5 DVD Acceleration ............................................................................................................. 18 2.2 Feature List .................................................................................................ti 18 2.2.1 General Features ............................................................................................................. 18 2.2.2 2D Acceleration .........................................................................................................opy ....... 19 2.2.3 3D Acceleration ................................................................................................................ 19 2.2.4 Video Acceleration ......................................................................................................en ..... 19 2.2.5 Host Interface ................................................................................................................... 19 2.2.6 Memory System ............................................................................................................... 20 2.2.7 Process and Package Technologyd ................................................................................... C 20 2.2.8 Software ........................................................................................................................... 20 3 VGA Core Registersfi ....................................................................................21 3.1 Overview .....................................................................................................ot 21 3.2 General Registers ....................................................................................... 24 3.2.1 Miscellaneous Output ....................................................................................................... 24 3.2.2 FC: Feature Control .......................................................................................................... 25 3.2.3 FEAT: Input Statuson Register 0 .......................................................................................... 25 3.2.4 STAT: Input Status Register 1 .......................................................................................... 26 3.2.5 Motherboard Enable (0x03C3) ......................................................................................... 26 3.2.6 Adapter EnableC (0x46E8) .................................................................................................o N 26 3.2.7 Subsystem Enable (0x0102) ............................................................................................ 27 3.3 CRT Controller Registers ............................................................................ 28 3.3.1 CRX: CRTC Index .........................................................................................................D ... 28 3.3.2 CR0: CRTC Horizontal Total ............................................................................................ 28 3.3.3 CR1: CRTC Horizontal Display Enable End ..................................................................... 29 3.3.4 CR2: CRTC Horizontal Blanking Start .............................................................................. 29 3.3.5 CR3: CRTC Horizontal Blanking End ............................................................................... 29 3.3.6 CR4: CRTC Horizontal Sync Start ................................................................................... 29 3.3.7 CR5: CRTC Horizontal Sync End ..................................................................................... 30 3.3.8 CR6: CRTC Vertical Total ................................................................................................ 30 Copyright 1998 3Dfx Interactive, Inc. Revision 1.4 Proprietary and Preliminary 3 June 14, 1999 Confidential Voodoo3 High-Performance Graphics Engine for 3D Game Acceleration 3.3.9 CR7: CRTC Overflow .......................................................................................................31 3.3.10 CR8: CRTC Preset Row Scan ......................................................................................... 32 3.3.11 CR9:CRTC Maximum Scan Line ...................................................................................... 32 3.3.12 CRA: CRTC Cursor Start ................................................................................................. 33 3.3.13 CRB: CRTC Cursor End ................................................................................................... 33 3.3.14 CRC: CRTC Screen Start Address High .......................................................................... 33 3.3.15 CRD: CRTC Screen
Recommended publications
  • Contributors
    gems_ch001_fm.qxp 2/23/2004 11:13 AM Page xxxiii Contributors Curtis Beeson, NVIDIA Curtis Beeson moved from SGI to NVIDIA’s Demo Team more than five years ago; he focuses on the art path, the object model, and the DirectX ren- derer of the NVIDIA demo engine. He began working in 3D while attending Carnegie Mellon University, where he generated environments for playback on head-mounted displays at resolutions that left users legally blind. Curtis spe- cializes in the art path and object model of the NVIDIA Demo Team’s scene- graph API—while fighting the urge to succumb to the dark offerings of management in marketing. Kevin Bjorke, NVIDIA Kevin Bjorke works in the Developer Technology group developing and promoting next-generation art tools and entertainments, with a particular eye toward the possibilities inherent in programmable shading hardware. Before joining NVIDIA, he worked extensively in the film, television, and game industries, supervising development and imagery for Final Fantasy: The Spirits Within and The Animatrix; performing numerous technical director and layout animation duties on Toy Story and A Bug’s Life; developing games on just about every commercial platform; producing theme park rides; animating too many TV com- mercials; and booking daytime TV talk shows. He attended several colleges, eventually graduat- ing from the California Institute of the Arts film school. Kevin has been a regular speaker at SIGGRAPH, GDC, and similar events for the past decade. Rod Bogart, Industrial Light & Magic Rod Bogart came to Industrial Light & Magic (ILM) in 1995 after spend- ing three years as a software engineer at Pacific Data Images.
    [Show full text]
  • Opengl Distilled / Paul Martz
    Page left blank intently OpenGL® Distilled By Paul Martz ............................................... Publisher: Addison Wesley Professional Pub Date: February 27, 2006 Print ISBN-10: 0-321-33679-8 Print ISBN-13: 978-0-321-33679-8 Pages: 304 Table of Contents | Inde OpenGL opens the door to the world of high-quality, high-performance 3D computer graphics. The preferred application programming interface for developing 3D applications, OpenGL is widely used in video game development, visuali,ation and simulation, CAD, virtual reality, modeling, and computer-generated animation. OpenGL® Distilled provides the fundamental information you need to start programming 3D graphics, from setting up an OpenGL development environment to creating realistic te tures and shadows. .ritten in an engaging, easy-to-follow style, this boo/ ma/es it easy to find the information you0re loo/ing for. 1ou0ll quic/ly learn the essential and most-often-used features of OpenGL 2.0, along with the best coding practices and troubleshooting tips. Topics include Drawing and rendering geometric data such as points, lines, and polygons Controlling color and lighting to create elegant graphics Creating and orienting views Increasing image realism with te ture mapping and shadows Improving rendering performance Preserving graphics integrity across platforms A companion .eb site includes complete source code e amples, color versions of special effects described in the boo/, and additional resources. Page left blank intently Table of contents: Chapter 6. Texture Mapping Copyright ............................................................... 4 Section 6.1. Using Texture Maps ........................... 138 Foreword ............................................................... 6 Section 6.2. Lighting and Shadows with Texture .. 155 Preface ................................................................... 7 Section 6.3. Debugging .......................................... 169 About the Book ....................................................
    [Show full text]
  • Programmable Shading in Opengl
    Computer Graphics - Programmable Shading in OpenGL - Arsène Pérard-Gayot History • Pre-GPU graphics acceleration – SGI, Evans & Sutherland – Introduced concepts like vertex transformation and texture mapping • First-generation GPUs (-1998) – NVIDIA TNT2, ATI Rage, Voodoo3 – Vertex transformation on CPU, limited set of math operations • Second-generation GPUs (1999-2000) – GeForce 256, GeForce2, Radeon 7500, Savage3D – Transformation & lighting, more configurable, still not programmable • Third-generation GPUs (2001) – GeForce3, GeForce4 Ti, Xbox, Radeon 8500 – Vertex programmability, pixel-level configurability • Fourth-generation GPUs (2002) – GeForce FX series, Radeon 9700 and on – Vertex-level and pixel-level programmability (limited) • Eighth-generation GPUs (2007) – Geometry shaders, feedback, unified shaders, … • Ninth-generation GPUs (2009/10) – OpenCL/DirectCompute, hull & tesselation shaders Graphics Hardware Gener Year Product Process Transistors Antialiasing Polygon ation fill rate rate 1st 1998 RIVA TNT 0.25μ 7 M 50 M 6 M 1st 1999 RIVA TNT2 0.22μ 9 M 75 M 9 M 2nd 1999 GeForce 256 0.22μ 23 M 120 M 15 M 2nd 2000 GeForce2 0.18μ 25 M 200 M 25 M 3rd 2001 GeForce3 0.15μ 57 M 800 M 30 M 3rd 2002 GeForce4 Ti 0.15μ 63 M 1,200 M 60 M 4th 2003 GeForce FX 0.13μ 125 M 2,000 M 200 M 8th 2007 GeForce 8800 0.09μ 681 M 36,800 M 13,800 M (GT100) 8th 2008 GeForce 280 0.065μ 1,400 M 48,200 M ?? (GT200) 9th 2009 GeForce 480 0.04μ 3,000 M 42,000 M ?? (GF100) Shading Languages • Small program fragments (plug-ins) – Compute certain aspects of the
    [Show full text]
  • Deconstructing Hardware Usage for General Purpose Computation on Gpus
    Deconstructing Hardware Usage for General Purpose Computation on GPUs Budyanto Himawan Manish Vachharajani Dept. of Computer Science Dept. of Electrical and Computer Engineering University of Colorado University of Colorado Boulder, CO 80309 Boulder, CO 80309 E-mail: {Budyanto.Himawan,manishv}@colorado.edu Abstract performance, in 2001, NVidia revolutionized the GPU by making it highly programmable [3]. Since then, the programmability of The high-programmability and numerous compute resources GPUs has steadily increased, although they are still not fully gen- on Graphics Processing Units (GPUs) have allowed researchers eral purpose. Since this time, there has been much research and ef- to dramatically accelerate many non-graphics applications. This fort in porting both graphics and non-graphics applications to use initial success has generated great interest in mapping applica- the parallelism inherent in GPUs. Much of this work has focused tions to GPUs. Accordingly, several works have focused on help- on presenting application developers with information on how to ing application developers rewrite their application kernels for the perform the non-trivial mapping of general purpose concepts to explicitly parallel but restricted GPU programming model. How- GPU hardware so that there is a good fit between the algorithm ever, there has been far less work that examines how these appli- and the GPU pipeline. cations actually utilize the underlying hardware. Less attention has been given to deconstructing how these gen- This paper focuses on deconstructing how General Purpose ap- eral purpose application use the graphics hardware itself. Nor has plications on GPUs (GPGPU applications) utilize the underlying much attention been given to examining how GPUs (or GPU-like GPU pipeline.
    [Show full text]
  • AMD Radeon E8860
    Components for AMD’s Embedded Radeon™ E8860 GPU INTRODUCTION The E8860 Embedded Radeon GPU available from CoreAVI is comprised of temperature screened GPUs, safety certi- fiable OpenGL®-based drivers, and safety certifiable GPU tools which have been pre-integrated and validated together to significantly de-risk the challenges typically faced when integrating hardware and software components. The plat- form is an off-the-shelf foundation upon which safety certifiable applications can be built with confidence. Figure 1: CoreAVI Support for E8860 GPU EXTENDED TEMPERATURE RANGE CoreAVI provides extended temperature versions of the E8860 GPU to facilitate its use in rugged embedded applications. CoreAVI functionally tests the E8860 over -40C Tj to +105 Tj, increasing the manufacturing yield for hardware suppliers while reducing supply delays to end customers. coreavi.com [email protected] Revision - 13Nov2020 1 E8860 GPU LONG TERM SUPPLY AND SUPPORT CoreAVI has provided consistent and dedicated support for the supply and use of the AMD embedded GPUs within the rugged Mil/Aero/Avionics market segment for over a decade. With the E8860, CoreAVI will continue that focused support to ensure that the software, hardware and long-life support are provided to meet the needs of customers’ system life cy- cles. CoreAVI has extensive environmentally controlled storage facilities which are used to store the GPUs supplied to the Mil/ Aero/Avionics marketplace, ensuring that a ready supply is available for the duration of any program. CoreAVI also provides the post Last Time Buy storage of GPUs and is often able to provide additional quantities of com- ponents when COTS hardware partners receive increased volume for existing products / systems requiring additional inventory.
    [Show full text]
  • The Opengl Framebuffer Object Extension
    TheThe OpenGLOpenGL FramebufferFramebuffer ObjectObject ExtensionExtension SimonSimon GreenGreen NVIDIANVIDIA CorporationCorporation OverviewOverview •• WhyWhy renderrender toto texture?texture? •• PP--bufferbuffer // ARBARB renderrender texturetexture reviewreview •• FramebufferFramebuffer objectobject extensionextension •• ExamplesExamples •• FutureFuture directionsdirections WhyWhy RenderRender ToTo Texture?Texture? • Allows results of rendering to framebuffer to be directly read as texture • Better performance – avoids copy from framebuffer to texture (glCopyTexSubImage2D) – uses less memory – only one copy of image – but driver may sometimes have to do copy internally • some hardware has separate texture and FB memory • different internal representations • Applications – dynamic textures – procedurals, reflections – multi-pass techniques – anti-aliasing, motion blur, depth of field – image processing effects (blurs etc.) – GPGPU – provides feedback loop WGL_ARB_pbufferWGL_ARB_pbuffer •• PixelPixel buffersbuffers •• DesignedDesigned forfor offoff--screenscreen renderingrendering – Similar to windows, but non-visible •• WindowWindow systemsystem specificspecific extensionextension •• SelectSelect fromfrom anan enumeratedenumerated listlist ofof availableavailable pixelpixel formatsformats usingusing – ChoosePixelFormat() – DescribePixelFormat() ProblemsProblems withwith PBuffersPBuffers • Each pbuffer usually has its own OpenGL context – (Assuming they have different pixel formats) – Can share texture objects, display lists between
    [Show full text]
  • Troubleshooting Guide Table of Contents -1- General Information
    Troubleshooting Guide This troubleshooting guide will provide you with information about Star Wars®: Episode I Battle for Naboo™. You will find solutions to problems that were encountered while running this program in the Windows 95, 98, 2000 and Millennium Edition (ME) Operating Systems. Table of Contents 1. General Information 2. General Troubleshooting 3. Installation 4. Performance 5. Video Issues 6. Sound Issues 7. CD-ROM Drive Issues 8. Controller Device Issues 9. DirectX Setup 10. How to Contact LucasArts 11. Web Sites -1- General Information DISCLAIMER This troubleshooting guide reflects LucasArts’ best efforts to account for and attempt to solve 6 problems that you may encounter while playing the Battle for Naboo computer video game. LucasArts makes no representation or warranty about the accuracy of the information provided in this troubleshooting guide, what may result or not result from following the suggestions contained in this troubleshooting guide or your success in solving the problems that are causing you to consult this troubleshooting guide. Your decision to follow the suggestions contained in this troubleshooting guide is entirely at your own risk and subject to the specific terms and legal disclaimers stated below and set forth in the Software License and Limited Warranty to which you previously agreed to be bound. This troubleshooting guide also contains reference to third parties and/or third party web sites. The third party web sites are not under the control of LucasArts and LucasArts is not responsible for the contents of any third party web site referenced in this troubleshooting guide or in any other materials provided by LucasArts with the Battle for Naboo computer video game, including without limitation any link contained in a third party web site, or any changes or updates to a third party web site.
    [Show full text]
  • Release 85 Notes
    ForceWare Graphics Drivers Release 85 Notes Version 88.61 For Windows Vista x86 and Windows Vista x64 NVIDIA Corporation May 2006 Published by NVIDIA Corporation 2701 San Tomas Expressway Santa Clara, CA 95050 Notice ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of NVIDIA Corporation. Trademarks NVIDIA, the NVIDIA logo, 3DFX, 3DFX INTERACTIVE, the 3dfx Logo, STB, STB Systems and Design, the STB Logo, the StarBox Logo, NVIDIA nForce, GeForce, NVIDIA Quadro, NVDVD, NVIDIA Personal Cinema, NVIDIA Soundstorm, Vanta, TNT2, TNT,
    [Show full text]
  • Bid Bulletin
    Bidding No.: GOODS-21-40 Bidding Title: Supply and Delivery of Office and I.T. Equipment and Supplies Location of the Project: VSU Main, Visca, Baybay City Leyte B I D B U L L E T I N 0 1 Date: 18 August 2021 Project Title: Supply and Delivery of Office and I.T. Equipment and Supplies (GOODS-21-40) Location: VSU Main, Visca, Baybay City, Leyte Bidders are hereby informed/reminded of the following addendums/amendments/clarifications: I. LIST OF REQUIREMENTS (1st Envelope) TECHNICAL COMPONENT ENVELOPE Legal Documents 1 PhilGEPS Certificate of Registration (Platinum) or a. Registration Certificate (SEC, DTI or CDA) b. Mayor's/Business Permit c. Tax Clearance Technical Documents 2 Statement of All On-Going Government & Private Contracts Statement of Bidder's Single Largest Completed Contract (at least 3 50% of the ABC or Php 1,509,108.50 Or Statement of at least two (2) similar completed contracts w/ total amount of at least Php 1,509,108.50 and the largest of which should be at least Php 754,554.25. 4 Bid Security 5 Technical Specifications 6 SCHEDULE of Requirements/Production and delivery schedule 7 Manpower Requirements After Sales service/parts from acceptance of delivered goods (at least 8 1 year for equipment and 3 months for supplies) 9 Original Duly Signed Omnibus Sworn Statement Financial Documents 10 The Supplier’s Audited Financial Statements 11 Net Financial Contracting Capacity (at least Php 3,018,217.00) Or Committed Line of Credit (at least Php 301,821.70) (2nd Envelope) FINANCIAL COMPONENT ENVELOPE 12 Original of duly signed and accomplished Financial Bid Form 13 Original of duly signed and accomplished Price Schedule(s) Bidding No.: GOODS-21-40 Bidding Title: Supply and Delivery of Office and I.T.
    [Show full text]
  • 9.Texture Mapping
    OpenGL_PG.book Page 359 Thursday, October 23, 2003 3:23 PM Chapter 9 9.Texture Mapping Chapter Objectives After reading this chapter, you’ll be able to do the following: • Understand what texture mapping can add to your scene • Specify texture images in compressed and uncompressed formats • Control how a texture image is filtered as it’s applied to a fragment • Create and manage texture images in texture objects and, if available, control a high-performance working set of those texture objects • Specify how the color values in the image combine with those of the fragment to which it’s being applied • Supply texture coordinates to indicate how the texture image should be aligned with the objects in your scene • Generate texture coordinates automatically to produce effects such as contour maps and environment maps • Perform complex texture operations in a single pass with multitexturing (sequential texture units) • Use texture combiner functions to mathematically operate on texture, fragment, and constant color values • After texturing, process fragments with secondary colors • Perform transformations on texture coordinates using the texture matrix • Render shadowed objects, using depth textures 359 OpenGL_PG.book Page 360 Thursday, October 23, 2003 3:23 PM So far, every geometric primitive has been drawn as either a solid color or smoothly shaded between the colors at its vertices—that is, they’ve been drawn without texture mapping. If you want to draw a large brick wall without texture mapping, for example, each brick must be drawn as a separate polygon. Without texturing, a large flat wall—which is really a single rectangle—might require thousands of individual bricks, and even then the bricks may appear too smooth and regular to be realistic.
    [Show full text]
  • PACKET 22 BOOKSTORE, TEXTBOOK CHAPTER Reading Graphics
    A.11 GRAPHICS CARDS, Historical Perspective (edited by J Wunderlich PhD in 2020) Graphics Pipeline Evolution 3D graphics pipeline hardware evolved from the large expensive systems of the early 1980s to small workstations and then to PC accelerators in the 1990s, to $X,000 graphics cards of the 2020’s During this period, three major transitions occurred: 1. Performance-leading graphics subsystems PRICE changed from $50,000 in 1980’s down to $200 in 1990’s, then up to $X,0000 in 2020’s. 2. PERFORMANCE increased from 50 million PIXELS PER SECOND in 1980’s to 1 billion pixels per second in 1990’’s and from 100,000 VERTICES PER SECOND to 10 million vertices per second in the 1990’s. In the 2020’s performance is measured more in FRAMES PER SECOND (FPS) 3. Hardware RENDERING evolved from WIREFRAME to FILLED POLYGONS, to FULL- SCENE TEXTURE MAPPING Fixed-Function Graphics Pipelines Throughout the early evolution, graphics hardware was configurable, but not programmable by the application developer. With each generation, incremental improvements were offered. But developers were growing more sophisticated and asking for more new features than could be reasonably offered as built-in fixed functions. The NVIDIA GeForce 3, described by Lindholm, et al. [2001], took the first step toward true general shader programmability. It exposed to the application developer what had been the private internal instruction set of the floating-point vertex engine. This coincided with the release of Microsoft’s DirectX 8 and OpenGL’s vertex shader extensions. Later GPUs, at the time of DirectX 9, extended general programmability and floating point capability to the pixel fragment stage, and made texture available at the vertex stage.
    [Show full text]
  • Linux Hardware Compatibility HOWTO
    Linux Hardware Compatibility HOWTO Steven Pritchard Southern Illinois Linux Users Group [email protected] 3.1.5 Copyright © 2001−2002 by Steven Pritchard Copyright © 1997−1999 by Patrick Reijnen 2002−03−28 This document attempts to list most of the hardware known to be either supported or unsupported under Linux. Linux Hardware Compatibility HOWTO Table of Contents 1. Introduction.....................................................................................................................................................1 1.1. Notes on binary−only drivers...........................................................................................................1 1.2. Notes on commercial drivers............................................................................................................1 1.3. System architectures.........................................................................................................................1 1.4. Related sources of information.........................................................................................................2 1.5. Known problems with this document...............................................................................................2 1.6. New versions of this document.........................................................................................................2 1.7. Feedback and corrections..................................................................................................................3 1.8. Acknowledgments.............................................................................................................................3
    [Show full text]