AMD Radeon E8860
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tesla K80 Gpu Accelerator
TESLA K80 GPU ACCELERATOR BD-07317-001_v05 | January 2015 Board Specification DOCUMENT CHANGE HISTORY BD-07317-001_v05 Version Date Authors Description of Change 01 June 23, 2014 GG, SM Preliminary Information (Information contained within this board specification is subject to change) 02 October 8, 2014 GG, SM • Updated product name • Minor change to Table 2 03 October 31, 2014 GG, SM • Added “8-Pin CPU Power Connector” section • Updated Figure 2 04 November 14, 2014 GG, SM • Removed preliminary and NDA • Updated boost clocks • Minor edits throughout document 05 January 30, 2015 GG, SM Updated Table 2 with MTBF data Tesla K80 GPU Accelerator BD-07317-001_v05 | ii TABLE OF CONTENTS Overview ............................................................................................. 1 Key Features ...................................................................................... 2 NVIDIA GPU Boost on Tesla K80 ................................................................ 3 Environmental Conditions ....................................................................... 4 Configuration ..................................................................................... 5 Mechanical Specifications ........................................................................ 6 PCI Express System ............................................................................... 6 Tesla K80 Bracket ................................................................................ 7 8-Pin CPU Power Connector ................................................................... -
AMD's Llano Fusion
AMD’S “LLANO” FUSION APU Denis Foley, Maurice Steinman, Alex Branover, Greg Smaus, Antonio Asaro, Swamy Punyamurtula, Ljubisa Bajic Hot Chips 23, 19th August 2011 TODAY’S TOPICS . APU Architecture and floorplan . CPU Core Features . Graphics Features . Unified Video decoder Features . Display and I/O Capabilities . Power Gating . Turbo Core . Performance 2 | LLANO HOT CHIPS | August 19th, 2011 ARCHITECTURE AND FLOORPLAN A-SERIES ARCHITECTURE • Up to 4 Stars-32nm x86 Cores • 1MB L2 cache/core • Integrated Northbridge • 2 Chan of DDR3-1866 memory • 24 Lanes of PCIe® Gen2 • x4 UMI (Unified Media Interface) • x4 GPP (General Purpose Ports) • x16 Graphics expansion or display • 2 x4 Lanes dedicated display • 2 Head Display Controller • UVD (Unified Video Decoder) • 400 AMD Radeon™ Compute Units • GMC (Graphics Memory Controller) • FCL (Fusion Control Link) • RMB (AMD Radeon™ Memory Bus) • 227mm2, 32nm SOI • 1.45BN transistors 4 | LLANO HOT CHIPS | August 19th, 2011 INTERNAL BUS . Fusion Control Link (FCL) – 128b (each direction) path for IO access to memory – Variable clock based on throughput (LCLK) – GPU access to coherent memory space – CPU access to dedicated GPU framebuffer . AMD Radeon™ Memory Bus (RMB) – 256b (each direction) for each channel for GMC access to memory – Runs on Northbridge clock (NCLK) – Provides full bandwidth path for Graphics access to system memory – DRAM friendly stream of reads and write – Bypasses coherency mechanism 5 | LLANO HOT CHIPS | August 19th, 2011 Dual-channel DDR3 Unified Video DDR3 UVD Decoder NB CPU CPU Graphics SIMD Integrated Integrated GPU, Display Northbridge Array Controller I/O Controllers L2 Display L2 I/OMultimedia Controllers L2 PCI Express I/O - 24 lanes, optional 1 MB L2 cache L2 I/O per core digital display interfaces CPU CPU Digital display interfaces 4 Stars-32nm PCIe CPU cores PPL Display PCIe PCIe Display 6 | LLANO HOT CHIPS | August 19th, 2011 CPU, GPU, UVD AND IO FEATURES STARS-32nm CPU CORE FEATURES . -
ATI Radeon™ HD 3450 Video Guide
ATI Radeon™ HD 3450 High Definition HTPC for the masses Table of Contents Introduction................................................................................................. 3 Video Benchmarking Checklist ..................................................................... 7 How To Evaluate Video Playback Performance ............................................. 8 Video Playback Performance ...................................................................... 13 Appendix A: ATI Radeon™ HD 3450 based HTPC ........................................ 16 ©2007 Advanced Micro Devices, Inc., AMD, The AMD arrow, Athlon, ATI, the ATI logo, Avivo, ATI Radeon™ HD 3450 - Video Review Guide 2 Catalyst, The Ultimate Visual Experience and Radeon are trademarks of Advanced Micro Devices, Inc. Features, pricing, availability and specifications may vary by product model and are subject to change without notice. Products may not be exactly as shown. Not all features may be implemented by all manufacturers. Introduction High Definition (HD) content is gaining in popularity, driven by the increasing availability and affordability of HD-capable televisions, new releases of movies on HD media (Blu-rayTM & HD DVD) and a desire by consumers for a more immersive entertainment experience. It may be possible for consumers to upgrade their current PCs by adding new HD DVD and/or Blu-rayTM optical drives; however, the remaining PC components might lack the required processing capabilities for fully featured and smooth HD content playback. HD content presents -
Opengl Distilled / Paul Martz
Page left blank intently OpenGL® Distilled By Paul Martz ............................................... Publisher: Addison Wesley Professional Pub Date: February 27, 2006 Print ISBN-10: 0-321-33679-8 Print ISBN-13: 978-0-321-33679-8 Pages: 304 Table of Contents | Inde OpenGL opens the door to the world of high-quality, high-performance 3D computer graphics. The preferred application programming interface for developing 3D applications, OpenGL is widely used in video game development, visuali,ation and simulation, CAD, virtual reality, modeling, and computer-generated animation. OpenGL® Distilled provides the fundamental information you need to start programming 3D graphics, from setting up an OpenGL development environment to creating realistic te tures and shadows. .ritten in an engaging, easy-to-follow style, this boo/ ma/es it easy to find the information you0re loo/ing for. 1ou0ll quic/ly learn the essential and most-often-used features of OpenGL 2.0, along with the best coding practices and troubleshooting tips. Topics include Drawing and rendering geometric data such as points, lines, and polygons Controlling color and lighting to create elegant graphics Creating and orienting views Increasing image realism with te ture mapping and shadows Improving rendering performance Preserving graphics integrity across platforms A companion .eb site includes complete source code e amples, color versions of special effects described in the boo/, and additional resources. Page left blank intently Table of contents: Chapter 6. Texture Mapping Copyright ............................................................... 4 Section 6.1. Using Texture Maps ........................... 138 Foreword ............................................................... 6 Section 6.2. Lighting and Shadows with Texture .. 155 Preface ................................................................... 7 Section 6.3. Debugging .......................................... 169 About the Book .................................................... -
ATI Radeon™ HD 4870 Computation Highlights
AMD Entering the Golden Age of Heterogeneous Computing Michael Mantor Senior GPU Compute Architect / Fellow AMD Graphics Product Group [email protected] 1 The 4 Pillars of massively parallel compute offload •Performance M’Moore’s Law Î 2x < 18 Month s Frequency\Power\Complexity Wall •Power Parallel Î Opportunity for growth •Price • Programming Models GPU is the first successful massively parallel COMMODITY architecture with a programming model that managgped to tame 1000’s of parallel threads in hardware to perform useful work efficiently 2 Quick recap of where we are – Perf, Power, Price ATI Radeon™ HD 4850 4x Performance/w and Performance/mm² in a year ATI Radeon™ X1800 XT ATI Radeon™ HD 3850 ATI Radeon™ HD 2900 XT ATI Radeon™ X1900 XTX ATI Radeon™ X1950 PRO 3 Source of GigaFLOPS per watt: maximum theoretical performance divided by maximum board power. Source of GigaFLOPS per $: maximum theoretical performance divided by price as reported on www.buy.com as of 9/24/08 ATI Radeon™HD 4850 Designed to Perform in Single Slot SP Compute Power 1.0 T-FLOPS DP Compute Power 200 G-FLOPS Core Clock Speed 625 Mhz Stream Processors 800 Memory Type GDDR3 Memory Capacity 512 MB Max Board Power 110W Memory Bandwidth 64 GB/Sec 4 ATI Radeon™HD 4870 First Graphics with GDDR5 SP Compute Power 1.2 T-FLOPS DP Compute Power 240 G-FLOPS Core Clock Speed 750 Mhz Stream Processors 800 Memory Type GDDR5 3.6Gbps Memory Capacity 512 MB Max Board Power 160 W Memory Bandwidth 115.2 GB/Sec 5 ATI Radeon™HD 4870 X2 Incredible Balance of Performance,,, Power, Price -
AMD Accelerated Parallel Processing Opencl Programming Guide
AMD Accelerated Parallel Processing OpenCL Programming Guide November 2013 rev2.7 © 2013 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD Accelerated Parallel Processing, the AMD Accelerated Parallel Processing logo, ATI, the ATI logo, Radeon, FireStream, FirePro, Catalyst, and combinations thereof are trade- marks of Advanced Micro Devices, Inc. Microsoft, Visual Studio, Windows, and Windows Vista are registered trademarks of Microsoft Corporation in the U.S. and/or other jurisdic- tions. Other names are for informational purposes only and may be trademarks of their respective owners. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. The information contained herein may be of a preliminary or advance nature and is subject to change without notice. No license, whether express, implied, arising by estoppel or other- wise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as compo- nents in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or envi- ronmental damage may occur. -
Scalability of Terrain Visualization in Large Virtual Environments
WORDT ' Facultyof Mathematics and Natural Department of NIET UITGELEEND Mathematics and Computing Science Scalability of Terrain Visualization in Large Virtual Environments Esger G.N. Abbink Advisors: dr. J.B.TM. Roerdink Department of Mathematics and Computing Science University of Groningen drs. M.J.B. van Delden drs. M. Wierda Virtual Environments, Systems, and Consultancy Zeegse .(,-,-, June,2000 Rkunlv,,,IOIOi*S DDothk W1s*ud. 'iMP* IRS&SIICSIWI'U :.'von S r-;tus800 9' Avr')1rs.r Scalability of terrain visualization in large Virtual Environments Esger G.N. Abbink Department of Mathematics and Computing Science Graduate specialization High Performance Computing and Imaging Studentnumber 0831425 Gerkesklooster/ Zeegse, April 2000 Rapport vesc WR-2000/3 •1 Table of Contents Scalability of terrain visualization in large Virtual Environments..1 1. Introduction 4 2. Virtual Environments 6 2.1 Startingpoints 6 2.2 Means-end analysis 6 2.3 Man-in-the-loop 6 2.4 Hardware 8 2.5 Real-world simulators 9 2.5.1 Flight Simulators 9 2.5.2 Driving Simulators 9 2.5.3 Rail vehicle simulators 10 2.5.4 Ship Simulator 11 2.5.5 yE Walkthrough 11 2.5.6 Entertainment Simulators 12 2.5.7 Telepresence 12 2.5.8 Virtual GIS 13 2.6 Summary & practical continuation 13 3. Scalable terrain visualization 15 3.1 Introduction 15 3.2 The sample implementation 15 3.2.1 Introduction 15 3.2.2 Getting it to work 15 3.2.3 Porting the sample implementation to 4Space 16 3.3 Design 16 3.3.1 Goal 16 3.3.2 Requirements 16 3.3.3 Terrain representation 16 3.3.4 Basic setup 18 3.3.5 Tessellation algorithm 19 3.3.6 Implementation approach 23 3.4 Implementation 24 3.4.1 Terrain data generation 24 3.4.2 Implementing Central Differencing 24 3.4.2 Interfacing 4Space 28 3.4.3 Memory management 29 3.4.4 Dynamic data storages 30 3.4.4.1 Queue 30 3.4.4.2 Dynamic List & Pool 31 3.4.4.3 Red-Black Tree 31 3.4.4.4 Dynamic Storage 32 3.4.4.5 Evaluating performance 33 2 4. -
An Evolution of Mobile Graphics
AN EVOLUTION OF MOBILE GRAPHICS Michael C. Shebanow Vice President, Advanced Processor Lab Samsung Electronics July 20, 20131 DISCLAIMER • The views herein are my own • They do not represent Samsung’s vision nor product plans 2 • The Mobile Market • Review of GPU Tech • GPU Efficiency • User Experience • Tech Challenges • Summary 3 The Rise of the Mobile GPU & Connectivity A NEW WORLD COMING? 4 DISCRETE GPU MARKET Flattening 5 MOBILE GPU MARKET Smart • In 2012, an estimated 800+ Phones million mobile GPUs shipped “Phablets” • ~123M tablets • ~712M smart phones Tablets • Will easily exceed 1B in the coming years • Trend: • Discrete GPU relatively flat • Mobile is growing rapidly 6 WW INTERNET TRAFFIC • Source: Cisco VNI Mobile INET IP Traffic growth Traffic • Internet traffic growth Year (TB/sec) rate (TB/sec) rate is staggering 2005 0.9 0.00 2006 1.5 65% 0.00 • 2012 total traffic is 2007 2.5 61% 0.01 13.7 GB per person 2008 3.8 54% 0.01 per month 2009 5.6 45% 0.04 2010 7.8 40% 0.10 • 2012 smart phone 2011 10.6 36% 0.23 traffic at 2012 12.4 17% 0.34 0.342 GB per person per month • 2017 smart phone traffic expected at 2.7 GB per person per month 7 WHERE ARE WE HEADED?… • Enormous quantity of GPUs • Large amount of interconnectivity • Better I/O 8 GPU Pipelines A BRIEF REVIEW OF GPU TECH 9 MOBILE GPU PIPELINE ARCHITECTURES Tile-based immediate mode rendering IA VS CCV RS PS ROP (TBIMR) Tile-based deferred IA VS CCV scene rendering (TBDR) RS PS ROP IA = input assembler VS = vertex shader CCV = cull, clip, viewport transform RS = rasterization, -
DRAFT - DATED MATERIAL the CONTENTS of THIS REVIEWER’S GUIDE IS INTENDED SOLELY for REFERENCE WHEN REVIEWING Rev a VERSIONS of VOODOO5 5500 REFERENCE BOARDS
Voodoo5™ 5500 for the PC Reviewer’s Guide DRAFT - DATED MATERIAL THE CONTENTS OF THIS REVIEWER’S GUIDE IS INTENDED SOLELY FOR REFERENCE WHEN REVIEWING Rev A VERSIONS OF VOODOO5 5500 REFERENCE BOARDS. THIS INFORMATION WILL BE REGULARLY UPDATED, AND REVIEWERS SHOULD CONTACT THE PERSONS LISTED IN THIS GUIDE FOR UPDATES BEFORE EVALUATING ANY VOODOO5 5500BOARD. 3dfx Interactive, Inc. 4435 Fortran Dr. San Jose, Ca 95134 408-935-4400 Brian Burke 214-570-2113 [email protected] PT Barnum 214-570-2226 [email protected] Bubba Wolford 281-578-7782 [email protected] www.3dfx.com www.3dfxgamers.com Copyright 2000 3dfx Interactive, Inc. All Rights Reserved. All other trademarks are the property of their respective owners. Visit the 3dfx Virtual Press Room at http://www.3dfx.com/comp/pressweb/index.html. Voodoo5 5500 Reviewers Guide xxxx 2000 Table of Contents Benchmarking the Voodoo5 5500 Page 5 • Cures for common benchmarking and image quality mistakes • Tips for benchmarking • Overclocking Guide INTRODUCTION Page 11 • Optimized for DVD Acceleration • Scalable Performance • Trend-setting Image quality Features • Texture Compression • Glide 2.x and 3.x Compatibility: The Most Titles • World-class Window’s GUI/video Acceleration SECTION 1: Voodoo5 5500 Board Overview Page 12 • General Features • 3D Features set • 2D Features set • Voodoo5 Video Subsystem • SLI • Texture compression • Fill Rate vs T&L • T-Buffer introduction • Alternative APIs (Al Reyes on Mac, Linux, BeOS and more) • Pricing & Availability • Warranty • Technical Support • Photos, screenshots, -
NVIDIA Quadro P4000
NVIDIA Quadro P4000 GP104 1792 112 64 8192 MB GDDR5 256 bit GRAPHICS PROCESSOR CORES TMUS ROPS MEMORY SIZE MEMORY TYPE BUS WIDTH The Quadro P4000 is a professional graphics card by NVIDIA, launched in February 2017. Built on the 16 nm process, and based on the GP104 graphics processor, the card supports DirectX 12.0. The GP104 graphics processor is a large chip with a die area of 314 mm² and 7,200 million transistors. Unlike the fully unlocked GeForce GTX 1080, which uses the same GPU but has all 2560 shaders enabled, NVIDIA has disabled some shading units on the Quadro P4000 to reach the product's target shader count. It features 1792 shading units, 112 texture mapping units and 64 ROPs. NVIDIA has placed 8,192 MB GDDR5 memory on the card, which are connected using a 256‐bit memory interface. The GPU is operating at a frequency of 1227 MHz, which can be boosted up to 1480 MHz, memory is running at 1502 MHz. We recommend the NVIDIA Quadro P4000 for gaming with highest details at resolutions up to, and including, 5760x1080. Being a single‐slot card, the NVIDIA Quadro P4000 draws power from 1x 6‐pin power connectors, with power draw rated at 105 W maximum. Display outputs include: 4x DisplayPort. Quadro P4000 is connected to the rest of the system using a PCIe 3.0 x16 interface. The card measures 241 mm in length, and features a single‐slot cooling solution. Graphics Processor Graphics Card GPU Name: GP104 Released: Feb 6th, 2017 Architecture: Pascal Production Active Status: Process Size: 16 nm Bus Interface: PCIe 3.0 x16 Transistors: 7,200 -
Graphics Card Support List
Graphics card support list Device Name Chipset ASUS GTXTITAN-6GD5 NVIDIA GeForce GTX TITAN ZOTAC GTX980 NVIDIA GeForce GTX980 ASUS GTX980-4GD5 NVIDIA GeForce GTX980 MSI GTX980-4GD5 NVIDIA GeForce GTX980 Gigabyte GV-N980D5-4GD-B NVIDIA GeForce GTX980 MSI GTX970 GAMING 4G GOLDEN EDITION NVIDIA GeForce GTX970 Gigabyte GV-N970IXOC-4GD NVIDIA GeForce GTX970 ASUS GTX780TI-3GD5 NVIDIA GeForce GTX780Ti ASUS GTX770-DC2OC-2GD5 NVIDIA GeForce GTX770 ASUS GTX760-DC2OC-2GD5 NVIDIA GeForce GTX760 ASUS GTX750TI-OC-2GD5 NVIDIA GeForce GTX750Ti ASUS ENGTX560-Ti-DCII/2D1-1GD5/1G NVIDIA GeForce GTX560Ti Gigabyte GV-NTITAN-6GD-B NVIDIA GeForce GTX TITAN Gigabyte GV-N78TWF3-3GD NVIDIA GeForce GTX780Ti Gigabyte GV-N780WF3-3GD NVIDIA GeForce GTX780 Gigabyte GV-N760OC-4GD NVIDIA GeForce GTX760 Gigabyte GV-N75TOC-2GI NVIDIA GeForce GTX750Ti MSI NTITAN-6GD5 NVIDIA GeForce GTX TITAN MSI GTX 780Ti 3GD5 NVIDIA GeForce GTX780Ti MSI N780-3GD5 NVIDIA GeForce GTX780 MSI N770-2GD5/OC NVIDIA GeForce GTX770 MSI N760-2GD5 NVIDIA GeForce GTX760 MSI N750 TF 1GD5/OC NVIDIA GeForce GTX750 MSI GTX680-2GB/DDR5 NVIDIA GeForce GTX680 MSI N660Ti-PE-2GD5-OC/2G-DDR5 NVIDIA GeForce GTX660Ti MSI N680GTX Twin Frozr 2GD5/OC NVIDIA GeForce GTX680 GIGABYTE GV-N670OC-2GD NVIDIA GeForce GTX670 GIGABYTE GV-N650OC-1GI/1G-DDR5 NVIDIA GeForce GTX650 GIGABYTE GV-N590D5-3GD-B NVIDIA GeForce GTX590 MSI N580GTX-M2D15D5/1.5G NVIDIA GeForce GTX580 MSI N465GTX-M2D1G-B NVIDIA GeForce GTX465 LEADTEK GTX275/896M-DDR3 NVIDIA GeForce GTX275 LEADTEK PX8800 GTX TDH NVIDIA GeForce 8800GTX GIGABYTE GV-N26-896H-B -
Sapphire Hd 7870 2Gb Gddr5 Xt with Boost
SAPPHIRE HD 7870 2GB GDDR5 XT WITH BOOST The SAPPHIRE HD 7870 XT with Boost delivers a new price:performance point to the series. It is based on AMD’s Tahiti architecture with its 256-bit memory interface, and 1536 stream processors and 96 Texture units, unlike the remainder of the HD 7800 series that uses the Pitcairn architecture. Configured with 2GB of high speed GDDR5 memory running at 1500 MHz (6GHz effective) the SAPPPHIRE HD 7870 XT has a core clock of 925MHz which dynamically rises to 975MHz with PowerTune Boost, AMDs dynamic performance enhancement for games. For enthusiasts wishing to maximise performance of this graphics card, the latest version of the SAPPHIRE overclocking tool, TriXX supports this technology and is available free to download from the SAPPHIRE website. SAPPHIRE TriXX allows tuning of GPU voltage as well as core and memory clocks, whilst continuously displaying temperature. Manual control of fan speed is supported, as well as user created fan profiles and the ability to save up to four different performance settings. Like66 Shop Now Overview System Requirements News Download Specification 1 x HDMI (with 3D) Output 2 x Mini-DisplayPort 1 x Dual-Link DVI-I Default:925 MHz Eclk; With Boost: 975 : MHz Core Clock GPU 28 nm Chip 1536 x Stream Processors 2048 MB Size Video Memory 256 -bit GDDR5 6000 MHz Effective 275(L)x115(W)x35(H) mm Size. Dimension 2 x slot Driver CD Software SAPPHIRE TriXX Utility CrossFire™ Bridge Interconnect Cable DVI to VGA Adapter Accessory Mini-DP to DP Cable 6 PIN to 4 PIN Power Cable x 2 Overview HDMI (with 3D) Support for Deep Color, 7.1 High Bitrate Audio, and 3D Stereoscopic, ensuring the highest quality Blu-ray and video experience possible from your PC.