Rebreather POD User's Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Public Safety Scuba Diving
Industry Guide 47 A Guide to Public Safety Diving N.C. Department of Labor Occupational Safety and Health Division N.C. Department of Labor 1101 Mail Service Center Raleigh, NC 27699-1101 Cherie Berry Commissioner of Labor N.C. Department of Labor Occupational Safety and Health Program Cherie Berry Commissioner of Labor OSHA State Plan Designee Kevin Beauregard Deputy Commissioner for Safety and Health Scott Mabry Assistant Deputy Commissioner for Safety and Health Tom Savage Standards Officer Author Acknowledgments A Guide to Public Safety Diving has been prepared with materials and information from the General Industry Standards, 29 CFR 1910, Subpart T—Commercial Diving Operations, and OSHA Instruction CPL 02-00-151 (U.S. Department of Labor, Occupational Safety and Health Administration). This guide also contains information from sources such as U.S. Navy Diving Manual, National Association of Search and Rescue, California Department Fish and Game Diving Safety Manual, and the National Fire Protection Association, NFPA 1670—Standard on Operations and Technical Search and Rescue. Through an existing alliance established between the N.C. Department of Labor’s Occupational Safety and Health Divi- sion and the North Carolina Public Safety Divers’ Association (PSDA), a collaborative effort was established to make this guide possible. The PSDA board of directors provided expertise involving public safety diving in sharing best practices and technical knowledge. A special thanks to Chuck Elgin, North Carolina Underwater Response Team, for his dedication and hard work assisting in the development of this publication. This guide is intended to be consistent with all existing OSHA standards; therefore, if an area is considered by the reader to be inconsistent with a standard, then the OSHA standard should be followed. -
History of Scuba Diving About 500 BC: (Informa on Originally From
History of Scuba Diving nature", that would have taken advantage of this technique to sink ships and even commit murders. Some drawings, however, showed different kinds of snorkels and an air tank (to be carried on the breast) that presumably should have no external connecons. Other drawings showed a complete immersion kit, with a plunger suit which included a sort of About 500 BC: (Informaon originally from mask with a box for air. The project was so Herodotus): During a naval campaign the detailed that it included a urine collector, too. Greek Scyllis was taken aboard ship as prisoner by the Persian King Xerxes I. When Scyllis learned that Xerxes was to aack a Greek flolla, he seized a knife and jumped overboard. The Persians could not find him in the water and presumed he had drowned. Scyllis surfaced at night and made his way among all the ships in Xerxes's fleet, cung each ship loose from its moorings; he used a hollow reed as snorkel to remain unobserved. Then he swam nine miles (15 kilometers) to rejoin the Greeks off Cape Artemisium. 15th century: Leonardo da Vinci made the first known menon of air tanks in Italy: he 1772: Sieur Freminet tried to build a scuba wrote in his Atlanc Codex (Biblioteca device out of a barrel, but died from lack of Ambrosiana, Milan) that systems were used oxygen aer 20 minutes, as he merely at that me to arficially breathe under recycled the exhaled air untreated. water, but he did not explain them in detail due to what he described as "bad human 1776: David Brushnell invented the Turtle, first submarine to aack another ship. -
GR03617-01 UDT 2018 Press Pack AW.Indd
UDT 2018 UNDERSEA DEFENCE TECHNOLOGY SEC, Glasgow Visit us on Stand C2 AVON PROTECTION AT UDT 2018 Avon Protection has more than 130 years of experience, delivering performance innovation, design and engineering solutions. Avon Protection’s capabilities include the design, development, test and manufacture of respirators, filters, escape hoods, powered air purifying respirators (PAPRs), self-contained breathing apparatus (SCBA), hybrid systems, thermal imaging, dive computers and closed circuit rebreathers. Over our history of innovation, design and engineering, we have exclusively focused on the military, law enforcement, firefighting and industrial markets, understanding the unique requirements of these specialist, high threat, user groups. This depth of understanding and specialisation has enabled Avon Protection to become the recognised global market leader for respiratory products in this field. PRODUCTS ON SHOW MCM100 MDC150 Mi-TIC S NH15 COMBO 2 AVON PROTECTION AT UDT 2018 MCM100 The MCM100 is a configurable platform to meet multiple military Underwater Breathing Apparatus (UBA) requirements. It is a fully closed circuit, electronically controlled, mixed gas rebreather CE tested to 100m, suitable for a large range of military or tactical diving disciplines such as Mine Countermeasure (MCM), Explosive Ordnance Disposal (EOD) shallow or deep, Mine Investigation and Exploitation (MIE) and Special Operations Forces (SOF). MDC150 The next generation of military dive computer with real-time data/ decompression logging and a custom interface which is fully reconfigurable allowing reprogramming as requirements change. The multiple algorithm capability allows for end user decompression system inclusion. The robust and ergonomic form has been specifically designed for use in demanding military diving applications. Mi-TIC S. -
SCUBA: a Seaductive Diversion from Reality 20 17
SCUBA: A SEAductive DIVERsion from Reality 20 17 504.888.4882 Metairie Diving School, Inc. 4709 Airline Dr. Metairie, LA 70001 (between Clearview & Transcontinental) 46 Years and counting . Homo Aquaticus: Frequently sighted from the intertidal zone to depths in excess of 100’, this creature is slow-moving and somewhat clumsy in comparison to other marine life. Varying greatly in color and size, this animal can be identi- fi ed by a prominent, cylindrical shaped dorsal fi n. Page 2 www.harrysdiveshop.com | 504-888-4882 Table of Contents SCUBA is for YOU if 4 Getting certifi ed is EASY 5 Rental Prices and Policies 7 Medical Questionnaire 8 Our SCUBA Course Policies 10 Myths & Misconceptions 13 In-Water Orientation Dates 14 SCUBA Weekday Open Water Course 16 Accelerated SCUBA Course 17 Private Open Water SCUBA 18 Puchasing Equipment 19 Checkout Dive Weekends 20 Your EARS and diving 22 LEAD weights and you 23 Specialty Courses 26 SCUBA Rangers Kidz Summer Camp 28 Refresher - SCUBA Skills Update 30 Perfect Buoyancy & Underwater SMB deployment 31 NITROX – the breathing gas of choice 32 Advanced SCUBA Diver 33 Master Diver 34 Spearfi shing 35 RESCUE Diver 36 CPR / First Aid / DAN O2 Provider 37 Closed Circuit Rebreather (CCR) 38 Extended Range/Technical Diving 39 Who is HARRY? 41 Who is DAN? 44 Swimming Lessons with Swim-Smart @ Harry’s 46 Saturday LAP Swimming and SCUBA 48 Snorkeling LESSONS 50 Try SCUBA Saturdays 51 Page 3 www.harrysdiveshop.com | 504-888-4882 HARRY’S DIVE SHOP, INC. (Since 1971) Metairie Diving School, Inc. 4709 Airline Dr. -
Oxygen Toxicity and CCR/Rebreather Diving
Home (https://www.diverite.com) Articles (https://www.diverite.com/category/articles/) Oxygen Toxicity and CCR/Rebreather Diving OXYGENOXYGEN TOXICITYTOXICITY ANDAND CCR/RE-CCR/RE- BREATHERBREATHER DIVINGDIVING A couple of years ago I had the privilege of spending five days in Florida with Lamar Hires, the owner of Dive Rite. That was the longest time we have managed to spend togethertogether sincesince hehe ‘certified’‘certified’ meme asas aa fullfull cavecave diverdiver inin 19881988 (I(I hadhad alreadyalready donedone overover 100 exploratory cave dives in Canada). Although I am an Inspiration CCR IT (I have been diving the Inspiration since 2000 and the Megalodon since 2005), I did the full Optima CCR course with Lamar as he had other students to train. During this time Lamar and I had hours to chat and it quickly became apparent that there are serious mistakes being made by rebreather divers as a result of their lack of understanding of oxygen (O2) toxicity in the rebreather diving environment. Lamar asked me to write an article to address some of those mistakes. This article builds on prior articles that I have written on the topic of oxygen toxicity that have appeared on the Dive Rite blog. Oxygen toxicity is a consequence of the biochemical damage that occurs in cells as a result of oxygen free radicals. Whenever oxygen is present, oxygen free radicals are formed. The number of radicals is directly related to the partial pressure of oxygen (pO2). Our cells have several mecha- nisms to inactivate oxygen radicals and to repair the damage that they cause. -
Special Operations Rebreathers
Special Operations Underwater Life Support Systems INTRODUCTION TO JFD JFD is the world leading underwater capability provider facilitating the commercial and defence diving industries by offering innovative diving, submarine rescue and subsea technical solutions. JFD has a well-established history in the development of advanced and innovative diving and submarine rescue systems spanning over 30 years. Our systems continue to set the president in terms of capability and performance and JFD is relied upon by divers worldwide across both the defence and commercial sectors. Our products and services have been delivered to a large number of countries across all continents. With in-service support established in many of these locations and tailored Integrated Logistics Support (ILS) packages, JFD is able to provide high customer equipment availability, rapid technical support and tailored training packages. 2 | Introduction JFD offers two highly capable underwater life support systems to meet the full mission profile of today’s Special Operations diver. A modular approach enables customisation of the life support system in response to demands across the full operational spectrum. SHADOW ENFORCER The solution for extended duration and deeper diving The lightweight solution for short duration mission mission profiles. profiles. 3 | Offering A common life support platform facilitates a multi-mission capability offering numerous operational and logistic benefits that include: ENHANCED MISSION EFFECTIVENESS • Front and back mount options • Oxygen -
Amphora Multi-Mission Rebreather
AMPHORA MULTI-MISSION REBREATHER Introduction: √ The AMPHORA rebreather is based on the current FROGS combat swimmer breathing apparatus √ The AMPHORA can be used as a combat swimmers apparatus or as a shallow water Mine Counter Measure (MCM) rig √ The AMPHORA is also designed for use on the SDV General concept: The simple operation of the gas switch allows the user to switch gas during the dive between breathing pure oxygen in closed circuit or nitrox in semi-closed circuit Operating principle The AMPHORA is a closed circuit apparatus in the oxygen dive configuration and is a Constant Mass Flow Injection apparatus (CMI) in the mixed gas dive configuration Description: Specifications: Ø The AMPHORA is based on the combat Ø Dimensions: 415mm (height) x swimmer FROGS apparatus 285mm (width) x 370mm (length) Ø The AMPHORA is made up of two Ø Nominal duration: - Oxygen : A 2.1L components: cyl.provides a dive duration of 240 Ø The chest-mounted unit includes the minutes at 7 meters breathing apparatus with a 2.1L oxygen Ø Mixture : A 2L cyl. with a 60%02- cylinder 40%N2 gives a dive duration of 60 Ø The 2L mixture cylinder is fitted either minutes on the diver’s leg or on the diver’s back Ø Cartridge capacity: 2.5 kg of using the FROGS harness absorbent Ø Another option: 1.5L mixture cylinder Ø Weight (charged): Approx.14.5 Kgs fitted on the cover for the front unit & 5 Kgs for the 2L Mix cylinder and Mix Reg. Ø Buoyancy: Approx. 500g negative Aqua Lung • 2340 Cousteau Court, Vista, CA 92081 • TEL: 760.597.5000 • FAX: 760.597.4914 • www.aqualung.com/military Front Back Technical data: The Amphora is a Constant Mass Flow Injection apparatus (CMI). -
Design Guidelines for Carbon Dioxide Scrubbers I
"NCSCTECH MAN 4110-1-83 I (REVISION A) S00 TECHNICAL MANUAL tow DESIGN GUIDELINES FOR CARBON DIOXIDE SCRUBBERS I MAY 1983 REVISED JULY 1985 Prepared by M. L. NUCKOLS, A. PURER, G. A. DEASON I OF * Approved for public release; , J 1"73 distribution unlimited NAVAL COASTAL SYSTEMS CENTER PANAMA CITY, FLORIDA 32407 85. .U 15 (O SECURITY CLASSIFICATION OF TNIS PAGE (When Data Entered) R O DOCULMENTATIONkB PAGE READ INSTRUCTIONS REPORT DOCUMENTATION~ PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2a. GOVT AQCMCSION N (.SAECIP F.NTTSChALOG NUMBER "NCSC TECHMAN 4110-1-83 (Rev A) A, -NI ' 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED "Design Guidelines for Carbon Dioxide Scrubbers '" 6. PERFORMING ORG. REPORT N UMBER A' 7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(S) M. L. Nuckols, A. Purer, and G. A. Deason 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK AREA 6t WORK UNIT NUMBERS Naval Coastal PanaaLSystems 3407Project CenterCty, S0394, Task Area Panama City, FL 32407210,WrUnt2 22102, Work Unit 02 II. CONTROLLING OFFICE NAME AND ADDRE1S t2. REPORT 3ATE May 1983 Rev. July 1985 13, NUMBER OF PAGES 69 14- MONI TORING AGENCY NAME & ADDRESS(if different from Controtling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED ISa. OECL ASSI FICATION/DOWNGRADING _ __N•AEOULE 16. DISTRIBUTION STATEMENT (of thia Repott) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report) IS. SUPPLEMENTARY NOTES II. KEY WORDS (Continue on reverse side If noceassry and Identify by block number) Carbon Dioxide; Scrubbers; Absorption; Design; Life Support; Pressure; "Swimmer Diver; Environmental Effects; Diving., 20. -
Technologies for Underwater Archaeology and Maritime Preservation
Technologies for Underwater Archaeology and Maritime Preservation September 1987 NTIS order #PB88-142559 Recommended Citation: U.S. Congress, Office of Technology Assessment, Technologies for Underwater Archaeol- ogy and Maritime Preservation— Background Paper, OTA-BP-E-37 (Washington, DC: U.S. Government Printing Office, September 1987). Library of Congress Catalog Card Number 87-619848 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form on the last page of this background paper) Foreword Exploration, trading, and other maritime activity along this Nation’s coast and through its inland waters have played crucial roles in the discovery, settlement, and develop- ment of the United States. The remnants of these activities include such varied cul- tural historic resources as Spanish, English, and American shipwrecks off the Atlantic and Pacific coasts; abandoned lighthouses; historic vessels like Maine-built coastal schooners, or Chesapeake Bay Skipjacks; and submerged prehistoric villages in the Gulf Coast. Together, this country’s maritime activities make up a substantial compo- nent of U.S. history. This background paper describes and assesses the role of technology in underwater archaeology and historic maritime preservation. As several underwater projects have recently demonstrated, advanced technology, often developed for other uses, plays an increasingly important role in the discovery and recovery of historic shipwrecks and their contents. For example, the U.S. Government this summer employed a powerful remotely operated vehicle to map and explore the U.S.S. Monitor, which lies on the bottom off Cape Hatteras. This is the same vehicle used to recover parts of the space shuttle Challenger from the ocean bottom in 1986. -
Safe Diving Distances from Transmitting Sonar, from the US Navy Diving Manual
APPENDIX 1A 6DIH'LYLQJ'LVWDQFHVIURP 7UDQVPLWWLQJ6RQDU 1A-1 INTRODUCTION The purpose of this appendix is to provide guidance regarding safe diving distances and exposure times for divers operating in the vicinity of ships transmit- ting with sonar. Table 1A-1 provides guidance for selecting Permissable Exposure Limits Tables; Table 1A-2 provides additional guidance for helmeted divers. Tables 1A-3 through 1A-5 provide specific procedures for diving operations involving AN/SQS-23, -26, -53, -56; AN/SQQ-14, -30, and -32; AN/BSY-1, -2; and AN/BQQ-5 sonars. Section 1A-6 provides guidance and precautions concerning diver exposure to low-frequency sonar (160-320Hz). Contact NAVSEA Supervisor of Diving (00C3B) for guidance on other sonars. This appendix has been substantially revised from Safe Diving Distances from Trans- mitting Sonar (NAVSEAINST 3150.2 Series) and should be read in its entirety. 1A-2 BACKGROUND Chapter 18 of OPNAVINST 5100.23 Series is the basic instruction governing hearing conservation and noise abatement, but it does not address exposure to waterborne sound. Tables 1A-3 through 1A-6 are derived from experimental and theoretical research conducted at the Naval Submarine Medical Research Labora- tory (NSMRL) and Naval Experimental Diving Unit (NEDU). This instruction provides field guidance for determining safe diving distances from transmitting sonar. This instruction supplements OPNAVINST 5100.23 Series, and should be implemented in conjunction with OPNAVINST 5100.23 Series by commands that employ divers. The Sound Pressure Level (SPL), not distance, is the determining factor for estab- lishing a Permissible Exposure Limit (PEL). The exposure SPLs in Tables 1A-3 through 1A-6 are based upon the sonar equation and assume omni-directional sonar and inverse square law spreading. -
The Closed Circuit Rebreather (CCR): Is It the Safest Device for Deep Scientific Diving?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Marine Archive doi:10.3723/ut.34.031 Underwater Technology, Vol. 34, No. 1, pp. 31–38, 2016 www.sut.org The closed circuit rebreather (CCR): is it the safest device for deep scientific diving? Alain Norro* Royal Belgian Institute for Natural Sciences, Operational Directorate Nature, Gulledelle 100, B-1200 Brussels-Belgium Briefing Technical Received 12 August 2016; Accepted 20 September 2016 Abstract During both World Wars, many improvements were The closed circuit rebreather (CCR) is not a new diving tech- made to rebreathers based on their use for covert nology. From the late 1990s CCR units were commercially military actions. available in Europe, and increasingly more divers, and The first electronic closed circuit rebreather, among them scientific divers, have been trained to use known as the Electrolung, was marketed in 1969. them. Even if many benefits exist for using CCR for all diving However, it was not until the late 1990s when elec- depth ranges, it is in the deep diving zone ranging from tronic CCR started to be sold into the mainstream 50 m to 100 m of sea water where the main advantages to scuba diving markets, with the introduction of the using this equipment exist. Using rebreathers does carry BUDDY-INSPIRATION (now renamed the Ambient additional risks, and these must be mitigated to ensure safe Pressure Diving’s Inspiration CCR range). Modern usage. A standard for CCR scientific diving has existed for CCRs for the European market are made by a small many years in the USA, and the levels of expertise within the number of manufacturers, and their design and European scientific diving community are now sufficient for construction must follow the European Normative a European standard to be established. -
Scottish Borders Council
SCOTTISH BORDERS COUNCIL PLANNING AND BUILDING STANDARDS COMMITTEE 7 SEPTEMBER 2020 APPLICATION FOR PLANNING PERMISSION ITEM: REFERENCE NUMBER: 20/00523/FUL OFFICER: Paul Duncan WARD: East Berwickshire PROPOSAL: Erection of mixed use building comprising of office (Class 4) and storage (Class 6) and associated development including servicing, parking, re-profiling of existing shelter mound and demolition of adjacent harbour wall SITE: Land North West of Fishmarket, Gunsgreen Quay, Eyemouth APPLICANT: Neart Na Gaoithe Offshore Wind Ltd AGENT: Young Planning & Energy Consenting BACKGROUND Eyemouth Harbour has been selected as a preferred location for an Operations & Maintenance (O&M) base to support the 450MW Neart na Gaoithe (NnG) Offshore Wind Farm [pronounced “nart na gweeha”]. The O&M base would house office, warehousing and staff welfare facilities required to support work servicing the wind farm once constructed. NnG began offshore construction of the wind farm in August of this year. SITE DESCRIPTION The proposed site is located at Eyemouth’s deep water harbour. Distinct from the original harbour to the south, the deep water harbour was formed in the late 1990s and is accessed by a direct distributor road via the Eyemouth High School roundabout to the south of the town. The Fishmarket building was erected around the same time and lies roughly perpendicular to the southern boundary of the proposed site. A significant portion of the proposed site has been occupied by harbour users mainly for storage purposes in an area known as Smeaton’s Yard. An old stone wall separates the yard from the quayside to the south. To the west of the site is the narrow harbour entrance known as The Canyon.