Oxygen Content in Semi-Closed Rebreathing Apparatuses for Underwater Use. Measurements and Modeling

Total Page:16

File Type:pdf, Size:1020Kb

Oxygen Content in Semi-Closed Rebreathing Apparatuses for Underwater Use. Measurements and Modeling Doctoral Thesis in Technology and Health Stockholm, Sweden 2015 Oxygen content in semi-closed rebreathing apparatuses for underwater use. Measurements and modeling OSKAR FRÅNBERG KTH ROYAL INSTITUTE OF TECHNOLOGY ENGINEERING SCIENCES Oxygen content in semi-closed rebreathing apparatuses for underwater use. Measurements and modeling OSKAR FRÅNBERG Doctoral thesis No. 6 2015 KTH Royal Institute of Technology Engineering Sciences Department of Environmental Physiology SE-171 65, Solna, Sweden ii TRITA-STH Report 2015:6 ISSN 1653-3836 ISRN/KTH/STH/2015:6-SE ISBN 978-91-7595-616-9 Akademisk avhandling som med tillstånd av KTH i Stockholm framlägges till offentlig granskning för avläggande av teknisk doktorsexamen fredagen den 25/9 2015 kl. 09:00 i sal D2 KTH, Lindstedtsvägen 5, Stockholm. iii Messen ist wissen, aber messen ohne Wissen ist kein Wissen Werner von Siemens Å meta e å veta Som man säger på den Kungliga Tekniska Högskolan i Hufvudstaden Att mäta är att väta Som man säger i dykeriforskning Till min familj Olivia, Artur och Filip iv v Abstract The present series of unmanned hyperbaric tests were conducted in order to investigate the oxygen fraction variability in semi-closed underwater rebreathing apparatuses. The tested rebreathers were RB80 (Halcyon dive systems, High springs, FL, USA), IS-Mix (Interspiro AB, Stockholm, Sweden), CRABE (Aqua Lung, Carros Cedex, France), and Viper+ (Cobham plc, Davenport, IA, USA). The tests were conducted using a catalytically based propene combusting metabolic simulator. The metabolic simulator connected to a breathing simulator, both placed inside a hyperbaric pressure chamber, was first tested to demonstrate its usefulness to simulate human respiration in a hyperbaric situation. Following this the metabolic simulator was shown to be a useful tool in accident investigations as well as to assess the impact of different engineering designs and physiological variables on the oxygen content in the gas delivered to the diver by the rebreathing apparatuses. A multi-compartment model of the oxygen fractions was developed and compared to the previously published single-compartment models. The root mean squared error (RMSE) of the multi-compartment model was smaller than the RMSE for the single-compartment model, showing its usefulness to estimate the impact of different designs and physiological variables on the inspired oxygen fraction. Keywords Diving, rebreather, underwater breathing apparatus, unmanned testing, hyperbaric, metabolic simulator, scuba, semi-closed vi List of appended papers The thesis is based on the following papers, which are referred to by their Roman numerals: Paper I FRÅNBERG O, Ericsson M, Larsson A, Lindholm P. (2011) Investigation of a demand-controlled rebreather in connection with a diving accident. Undersea Hyperb Med. 38(1):61-72. Paper II FRÅNBERG O, Loncar M, Larsson Å, Örnhagen H, Gennser M. (2014) A metabolic simulator for unmanned testing of breathing apparatuses in hyperbaric conditions. Aviat Space Environ Med. 85(11):1139-44. Paper III FRÅNBERG O and Gennser M. (2015) Measurement and modeling of oxygen content in a demand mass ratio injection rebreather. Undersea Hyperb Med. (in press) Paper IV FRÅNBERG O and Gennser M. (2015) Modeling a demand constant volume ratio exhaust and a self-mixing constant oxygen injection semi-closed rebreather. Submitted to IEEE Journal of Oceanic Engineering vii Table of content Abstract .................................................................................................................. vi Keywords................................................................................................................ vi List of appended papers ....................................................................................... vii Abbreviations .......................................................................................................... x Introduction ............................................................................................................. 1 The tested rebreathers ........................................................................................ 3 Nomenclature ...................................................................................................... 5 Theoretical models .............................................................................................. 6 Single compartment models ............................................................................ 6 Compartmentalized models ........................................................................... 10 Physiological variables ....................................................................................... 12 Respiration during diving ............................................................................... 12 Immersion ....................................................................................................... 13 Hydrostatic imbalance .................................................................................... 13 Pressure/density ............................................................................................. 13 Resistance ....................................................................................................... 13 Hyperoxia ........................................................................................................ 14 Dead space in the mouthpiece ........................................................................ 14 CO2 retainers and dive experience level ......................................................... 14 Oxygen consumption ...................................................................................... 15 Testing parameters ............................................................................................. 15 Aims ....................................................................................................................... 16 Method ................................................................................................................... 16 Choice of fuel ...................................................................................................... 19 Temperature in the catalyst .............................................................................. 20 Relative humidity .............................................................................................. 23 Calculation volume weighted average............................................................... 23 Results ................................................................................................................... 26 A diving accident (Paper I)................................................................................ 26 The metabolic simulator (Paper II) .................................................................. 27 Demand Mass Ratio Injection rebreather (Paper III) ...................................... 29 Demand Constant Volume Ratio Exhaust (Paper IV) ....................................... 31 Premixed Constant Mass injection and Self-Mixing Constant Oxygen Injection (Paper IV) .......................................................................................................... 32 Discussion ............................................................................................................. 35 viii Gas utilization.................................................................................................... 35 Self-Mixing Demand Controlled ....................................................................... 39 Future of SCR ..................................................................................................... 41 Methodological considerations ......................................................................... 42 Conclusions ........................................................................................................... 43 Acknowledgements ............................................................................................... 44 References ............................................................................................................. 46 ix Abbreviations ATP: ambient temperature and pressure [L] BTPS: body temperature and pressure, water saturated gas at 37°C [L] CMF/CMI: constant mass flow/injection CNS% fraction of the maximum allowed time at a specific oxygen partial pressure, are to be kept low to protect against effects of oxygen toxicity on the central nervous system D: diameter of outer bellows d: diameter of inner bellows DCVRE: demand constant volume ratio exhaust DCMRI: demand constant mass ration injection ECCR: electronic closed circuit rebreathing apparatus EVR: exhaust volume ratio similar to the 퐾푑 퐾푑: dosage ratio of ventilation ̇ 퐾푒: ventilatory equivalent 푅푀푉/푉푂2 퐹ℎ: oxygen fraction in the inhalation hose 퐹푚: oxygen fraction in the metabolic simulator or the alveolar gas in a diver 퐹푚푥: oxygen fraction in the feed gas 퐹푒푛푑 푡푑푎푙 oxygen fraction in the exhalation 퐹푛푠푝푟푒푑 inhaled oxygen fraction 퐹푂2 : inspired oxygen fraction 퐹푂2: oxygen fraction in a defined volume 푠푡푎푟푡 퐹표2 : initial or starting oxygen fraction 퐼푛푐푟푒푎푠푒 푝 퐹표2 oxygen fraction following a descent msw: meters of sea water OC: open circuit breathing apparatus 푃: pressure in ATA 푃푛푐푟푒푎푠푒 pressure increase in ATA 푄푑푙푙: diluent gas flow in to the loop 푄푚푥: fresh gas flow in to the loop 푄푂2: oxygen flow in to the loop ̇ ̇ 푅: respiratory exchange ratio푉퐶푂2/푉푂2from the ventilation 푅푓: respiratory frequency per minute 푅푀푉 minute
Recommended publications
  • History of Scuba Diving About 500 BC: (Informa on Originally From
    History of Scuba Diving nature", that would have taken advantage of this technique to sink ships and even commit murders. Some drawings, however, showed different kinds of snorkels and an air tank (to be carried on the breast) that presumably should have no external connecons. Other drawings showed a complete immersion kit, with a plunger suit which included a sort of About 500 BC: (Informaon originally from mask with a box for air. The project was so Herodotus): During a naval campaign the detailed that it included a urine collector, too. Greek Scyllis was taken aboard ship as prisoner by the Persian King Xerxes I. When Scyllis learned that Xerxes was to aack a Greek flolla, he seized a knife and jumped overboard. The Persians could not find him in the water and presumed he had drowned. Scyllis surfaced at night and made his way among all the ships in Xerxes's fleet, cung each ship loose from its moorings; he used a hollow reed as snorkel to remain unobserved. Then he swam nine miles (15 kilometers) to rejoin the Greeks off Cape Artemisium. 15th century: Leonardo da Vinci made the first known menon of air tanks in Italy: he 1772: Sieur Freminet tried to build a scuba wrote in his Atlanc Codex (Biblioteca device out of a barrel, but died from lack of Ambrosiana, Milan) that systems were used oxygen aer 20 minutes, as he merely at that me to arficially breathe under recycled the exhaled air untreated. water, but he did not explain them in detail due to what he described as "bad human 1776: David Brushnell invented the Turtle, first submarine to aack another ship.
    [Show full text]
  • Increased System Fidelity for Navy Aviation Hypoxia Training
    Publications 2017 Increased System Fidelity for Navy Aviation Hypoxia Training Beth. F. Wheeler Atkinson Naval Air Warfare Center Training Systems Divison, [email protected] Janet Marnane Embry-Riddle Aeronautical University, [email protected] Daniel L. Immeker CNATRA, [email protected] Jonathan Reeh Lynntech Inc., [email protected] John Zbranek Lynntech Inc., [email protected] See next page for additional authors Follow this and additional works at: https://commons.erau.edu/publication Part of the Aviation Safety and Security Commons Scholarly Commons Citation Wheeler Atkinson, B. F., Marnane, J., Immeker, D. L., Reeh, J., Zbranek, J., Balasubramanian, A. K., McEttrick, D. M., & Scheeler, W. T. (2017). Increased System Fidelity for Navy Aviation Hypoxia Training. , (). Retrieved from https://commons.erau.edu/publication/697 Wheeler Atkinson, B. F., Marnane, J., Immeker, D. L., Reeh, J., et. al. (2017). Proceedings of the 2017 Interservice/ Industry Training, Simulation, and Education Conference(I/ITSEC), Orlando, FL. This Conference Proceeding is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Authors Beth. F. Wheeler Atkinson, Janet Marnane, Daniel L. Immeker, Jonathan Reeh, John Zbranek, Ashwin K. Balasubramanian, David M. McEttrick, and W. Tyler Scheeler This conference proceeding is available at Scholarly Commons: https://commons.erau.edu/publication/697 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017 Increased System Fidelity for Navy Aviation Hypoxia Training Beth F. Wheeler Atkinson Jonathan Reeh, John Zbranek, Ashwin K. Balasubramanian Naval Air Warfare Center Training Systems Division Lynntech Inc.
    [Show full text]
  • President's Page
    President’s Page New President’s Initiatives As you may have heard by now, our annual meeting in San Diego in May was very successful. The science, working meetings and the social events were fantastic, attendance neared recent record highs (1369), and good financial rev- enue will help keep us solvent. My theme on this page throughout the year will be “Make a Difference in Aerospace Medicine with AsMA.” To do that, we need to have a strong and effective organization in place to serve its members in that goal. In order to allow this, I would like to iterate some initiatives to perform with your help. The first initiative is to increase membership. As an in- ternational leader, AsMA speaks with authority and its posi- tions and resolutions are highly regarded. However, we Philip J. Scarpa, Jr., M.D., M.S. have an issue with declining membership. While we should not strive to have quantity over quality, a very low member- Wikipedia, Facebook, and Twitter accounts, key to market- ship could seriously hinder our inherent activities as an au- ing and branding our organization and key to reaching thoritative leader such as in producing a quality journal, our younger Aerospace Medicine specialists. extensive committee work, and strong advocacy. I propose The third initiative is to strengthen our finances. to appeal to certain groups that may wish to consider AsMA Unfortunately, AsMA lives too close to the break-even point membership, such as aviation nurses, dentists, medevac each year. If we continue unaltered, the organization will coast guard units, and aeromedical examiners.
    [Show full text]
  • GR03617-01 UDT 2018 Press Pack AW.Indd
    UDT 2018 UNDERSEA DEFENCE TECHNOLOGY SEC, Glasgow Visit us on Stand C2 AVON PROTECTION AT UDT 2018 Avon Protection has more than 130 years of experience, delivering performance innovation, design and engineering solutions. Avon Protection’s capabilities include the design, development, test and manufacture of respirators, filters, escape hoods, powered air purifying respirators (PAPRs), self-contained breathing apparatus (SCBA), hybrid systems, thermal imaging, dive computers and closed circuit rebreathers. Over our history of innovation, design and engineering, we have exclusively focused on the military, law enforcement, firefighting and industrial markets, understanding the unique requirements of these specialist, high threat, user groups. This depth of understanding and specialisation has enabled Avon Protection to become the recognised global market leader for respiratory products in this field. PRODUCTS ON SHOW MCM100 MDC150 Mi-TIC S NH15 COMBO 2 AVON PROTECTION AT UDT 2018 MCM100 The MCM100 is a configurable platform to meet multiple military Underwater Breathing Apparatus (UBA) requirements. It is a fully closed circuit, electronically controlled, mixed gas rebreather CE tested to 100m, suitable for a large range of military or tactical diving disciplines such as Mine Countermeasure (MCM), Explosive Ordnance Disposal (EOD) shallow or deep, Mine Investigation and Exploitation (MIE) and Special Operations Forces (SOF). MDC150 The next generation of military dive computer with real-time data/ decompression logging and a custom interface which is fully reconfigurable allowing reprogramming as requirements change. The multiple algorithm capability allows for end user decompression system inclusion. The robust and ergonomic form has been specifically designed for use in demanding military diving applications. Mi-TIC S.
    [Show full text]
  • Oxygen Toxicity and CCR/Rebreather Diving
    Home (https://www.diverite.com) Articles (https://www.diverite.com/category/articles/) Oxygen Toxicity and CCR/Rebreather Diving OXYGENOXYGEN TOXICITYTOXICITY ANDAND CCR/RE-CCR/RE- BREATHERBREATHER DIVINGDIVING A couple of years ago I had the privilege of spending five days in Florida with Lamar Hires, the owner of Dive Rite. That was the longest time we have managed to spend togethertogether sincesince hehe ‘certified’‘certified’ meme asas aa fullfull cavecave diverdiver inin 19881988 (I(I hadhad alreadyalready donedone overover 100 exploratory cave dives in Canada). Although I am an Inspiration CCR IT (I have been diving the Inspiration since 2000 and the Megalodon since 2005), I did the full Optima CCR course with Lamar as he had other students to train. During this time Lamar and I had hours to chat and it quickly became apparent that there are serious mistakes being made by rebreather divers as a result of their lack of understanding of oxygen (O2) toxicity in the rebreather diving environment. Lamar asked me to write an article to address some of those mistakes. This article builds on prior articles that I have written on the topic of oxygen toxicity that have appeared on the Dive Rite blog. Oxygen toxicity is a consequence of the biochemical damage that occurs in cells as a result of oxygen free radicals. Whenever oxygen is present, oxygen free radicals are formed. The number of radicals is directly related to the partial pressure of oxygen (pO2). Our cells have several mecha- nisms to inactivate oxygen radicals and to repair the damage that they cause.
    [Show full text]
  • Respiratory and Gastrointestinal Involvement in Birth Asphyxia
    Academic Journal of Pediatrics & Neonatology ISSN 2474-7521 Research Article Acad J Ped Neonatol Volume 6 Issue 4 - May 2018 Copyright © All rights are reserved by Dr Rohit Vohra DOI: 10.19080/AJPN.2018.06.555751 Respiratory and Gastrointestinal Involvement in Birth Asphyxia Rohit Vohra1*, Vivek Singh2, Minakshi Bansal3 and Divyank Pathak4 1Senior resident, Sir Ganga Ram Hospital, India 2Junior Resident, Pravara Institute of Medical Sciences, India 3Fellow pediatrichematology, Sir Ganga Ram Hospital, India 4Resident, Pravara Institute of Medical Sciences, India Submission: December 01, 2017; Published: May 14, 2018 *Corresponding author: Dr Rohit Vohra, Senior resident, Sir Ganga Ram Hospital, 22/2A Tilaknagar, New Delhi-110018, India, Tel: 9717995787; Email: Abstract Background: The healthy fetus or newborn is equipped with a range of adaptive, strategies to reduce overall oxygen consumption and protect vital organs such as the heart and brain during asphyxia. Acute injury occurs when the severity of asphyxia exceeds the capacity of the system to maintain cellular metabolism within vulnerable regions. Impairment in oxygen delivery damage all organ system including pulmonary and gastrointestinal tract. The pulmonary effects of asphyxia include increased pulmonary vascular resistance, pulmonary hemorrhage, pulmonary edema secondary to cardiac failure, and possibly failure of surfactant production with secondary hyaline membrane disease (acute respiratory distress syndrome).Gastrointestinal damage might include injury to the bowel wall, which can be mucosal or full thickness and even involve perforation Material and methods: This is a prospective observational hospital based study carried out on 152 asphyxiated neonates admitted in NICU of Rural Medical College of Pravara Institute of Medical Sciences, Loni, Ahmednagar, Maharashtra from September 2013 to August 2015.
    [Show full text]
  • Special Operations Rebreathers
    Special Operations Underwater Life Support Systems INTRODUCTION TO JFD JFD is the world leading underwater capability provider facilitating the commercial and defence diving industries by offering innovative diving, submarine rescue and subsea technical solutions. JFD has a well-established history in the development of advanced and innovative diving and submarine rescue systems spanning over 30 years. Our systems continue to set the president in terms of capability and performance and JFD is relied upon by divers worldwide across both the defence and commercial sectors. Our products and services have been delivered to a large number of countries across all continents. With in-service support established in many of these locations and tailored Integrated Logistics Support (ILS) packages, JFD is able to provide high customer equipment availability, rapid technical support and tailored training packages. 2 | Introduction JFD offers two highly capable underwater life support systems to meet the full mission profile of today’s Special Operations diver. A modular approach enables customisation of the life support system in response to demands across the full operational spectrum. SHADOW ENFORCER The solution for extended duration and deeper diving The lightweight solution for short duration mission mission profiles. profiles. 3 | Offering A common life support platform facilitates a multi-mission capability offering numerous operational and logistic benefits that include: ENHANCED MISSION EFFECTIVENESS • Front and back mount options • Oxygen
    [Show full text]
  • Amphora Multi-Mission Rebreather
    AMPHORA MULTI-MISSION REBREATHER Introduction: √ The AMPHORA rebreather is based on the current FROGS combat swimmer breathing apparatus √ The AMPHORA can be used as a combat swimmers apparatus or as a shallow water Mine Counter Measure (MCM) rig √ The AMPHORA is also designed for use on the SDV General concept: The simple operation of the gas switch allows the user to switch gas during the dive between breathing pure oxygen in closed circuit or nitrox in semi-closed circuit Operating principle The AMPHORA is a closed circuit apparatus in the oxygen dive configuration and is a Constant Mass Flow Injection apparatus (CMI) in the mixed gas dive configuration Description: Specifications: Ø The AMPHORA is based on the combat Ø Dimensions: 415mm (height) x swimmer FROGS apparatus 285mm (width) x 370mm (length) Ø The AMPHORA is made up of two Ø Nominal duration: - Oxygen : A 2.1L components: cyl.provides a dive duration of 240 Ø The chest-mounted unit includes the minutes at 7 meters breathing apparatus with a 2.1L oxygen Ø Mixture : A 2L cyl. with a 60%02- cylinder 40%N2 gives a dive duration of 60 Ø The 2L mixture cylinder is fitted either minutes on the diver’s leg or on the diver’s back Ø Cartridge capacity: 2.5 kg of using the FROGS harness absorbent Ø Another option: 1.5L mixture cylinder Ø Weight (charged): Approx.14.5 Kgs fitted on the cover for the front unit & 5 Kgs for the 2L Mix cylinder and Mix Reg. Ø Buoyancy: Approx. 500g negative Aqua Lung • 2340 Cousteau Court, Vista, CA 92081 • TEL: 760.597.5000 • FAX: 760.597.4914 • www.aqualung.com/military Front Back Technical data: The Amphora is a Constant Mass Flow Injection apparatus (CMI).
    [Show full text]
  • Design Guidelines for Carbon Dioxide Scrubbers I
    "NCSCTECH MAN 4110-1-83 I (REVISION A) S00 TECHNICAL MANUAL tow DESIGN GUIDELINES FOR CARBON DIOXIDE SCRUBBERS I MAY 1983 REVISED JULY 1985 Prepared by M. L. NUCKOLS, A. PURER, G. A. DEASON I OF * Approved for public release; , J 1"73 distribution unlimited NAVAL COASTAL SYSTEMS CENTER PANAMA CITY, FLORIDA 32407 85. .U 15 (O SECURITY CLASSIFICATION OF TNIS PAGE (When Data Entered) R O DOCULMENTATIONkB PAGE READ INSTRUCTIONS REPORT DOCUMENTATION~ PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2a. GOVT AQCMCSION N (.SAECIP F.NTTSChALOG NUMBER "NCSC TECHMAN 4110-1-83 (Rev A) A, -NI ' 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED "Design Guidelines for Carbon Dioxide Scrubbers '" 6. PERFORMING ORG. REPORT N UMBER A' 7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(S) M. L. Nuckols, A. Purer, and G. A. Deason 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK AREA 6t WORK UNIT NUMBERS Naval Coastal PanaaLSystems 3407Project CenterCty, S0394, Task Area Panama City, FL 32407210,WrUnt2 22102, Work Unit 02 II. CONTROLLING OFFICE NAME AND ADDRE1S t2. REPORT 3ATE May 1983 Rev. July 1985 13, NUMBER OF PAGES 69 14- MONI TORING AGENCY NAME & ADDRESS(if different from Controtling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED ISa. OECL ASSI FICATION/DOWNGRADING _ __N•AEOULE 16. DISTRIBUTION STATEMENT (of thia Repott) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report) IS. SUPPLEMENTARY NOTES II. KEY WORDS (Continue on reverse side If noceassry and Identify by block number) Carbon Dioxide; Scrubbers; Absorption; Design; Life Support; Pressure; "Swimmer Diver; Environmental Effects; Diving., 20.
    [Show full text]
  • Acute Effects of Mechanical Ventilation with Hyperoxia on the Morphometry of the Rat Diaphragm
    ISSN 1413-3555 Rev Bras Fisioter, São Carlos, v. 13, n. 6, p. 487-92, nov./dez. 2009 ARTIGO ORIGIN A L ©Revista Brasileira de Fisioterapia Efeitos agudos da ventilação mecânica com hiperoxia na morfometria do diafragma de ratos Acute effects of mechanical ventilation with hyperoxia on the morphometry of the rat diaphragm Célia R. Lopes1, André L. M. Sales2, Manuel De J. Simões3, Marco A. Angelis4, Nuno M. L. Oliveira5 Resumo Contextualização: A asssistência ventilória mecânica (AVM) prolongada associada a altas frações de oxigênio produz impacto negativo na função diafragmática. No entanto, não são claros os efeitos agudos da AVM associada a altas frações de oxigênio em pulmões aparentemente sadios. Objetivo: Analisar os efeitos agudos da ventilação mecânica com hiperóxia na morfometria do diafragma de ratos. Métodos: Estudo experimental prospectivo, com nove ratos Wistar, com peso de 400±20 g, randomizados em dois grupos: controle (n=4), anestesiados, traqueostomizados e mantidos em respiração espontânea em ar ambiente por 90 minutos e experimental (n=5), também anestesiados, curarizados, traqueostomizados e mantidos em ventilação mecânica controlada pelo mesmo tempo. Foram submetidos à toracotomia mediana para coleta da amostra das fibras costais do diafragma que foram seccionadas a cada 5 µm e coradas pela hematoxilina e eosina para o estudo morfométrico. Para a análise estatística, foi utilizado o teste t de Student não pareado, com nível de significância de p<0,05. Resultados: Não foram encontrados sinais indicativos de lesão muscular aguda, porém observou-se dilatação dos capilares sanguíneos no grupo experimental. Os dados morfométricos do diâmetro transverso máximo da fibra muscular costal foram em média de 61,78±17,79 µm e de 70,75±9,93 µm (p=0,045) nos grupos controle e experimental respectivamente.
    [Show full text]
  • Subacute Normobaric Oxygen and Hyperbaric Oxygen Therapy in Drowning, Reversal of Brain Volume Loss: a Case Report
    [Downloaded free from http://www.medgasres.com on Monday, July 3, 2017, IP: 12.22.86.35] CASE REPORT Subacute normobaric oxygen and hyperbaric oxygen therapy in drowning, reversal of brain volume loss: a case report Paul G. Harch1, *, Edward F. Fogarty2 1 Department of Medicine, Section of Emergency Medicine, University Medical Center, Louisiana State University School of Medicine, New Orleans, LA, USA 2 Department of Radiology, University of North Dakota School of Medicine, Bismarck, ND, USA *Correspondence to: Paul G. Harch, M.D., [email protected] or [email protected]. orcid: 0000-0001-7329-0078 (Paul G. Harch) Abstract A 2-year-old girl experienced cardiac arrest after cold water drowning. Magnetic resonance imaging (MRI) showed deep gray mat- ter injury on day 4 and cerebral atrophy with gray and white matter loss on day 32. Patient had no speech, gait, or responsiveness to commands on day 48 at hospital discharge. She received normobaric 100% oxygen treatment (2 L/minute for 45 minutes by nasal cannula, twice/day) since day 56 and then hyperbaric oxygen treatment (HBOT) at 1.3 atmosphere absolute (131.7 kPa) air/45 minutes, 5 days/week for 40 sessions since day 79; visually apparent and/or physical examination-documented neurological improvement oc- curred upon initiating each therapy. After HBOT, the patient had normal speech and cognition, assisted gait, residual fine motor and temperament deficits. MRI at 5 months after injury and 27 days after HBOT showed near-normalization of ventricles and reversal of atrophy. Subacute normobaric oxygen and HBOT were able to restore drowning-induced cortical gray matter and white matter loss, as documented by sequential MRI, and simultaneous neurological function, as documented by video and physical examinations.
    [Show full text]
  • The Closed Circuit Rebreather (CCR): Is It the Safest Device for Deep Scientific Diving?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Marine Archive doi:10.3723/ut.34.031 Underwater Technology, Vol. 34, No. 1, pp. 31–38, 2016 www.sut.org The closed circuit rebreather (CCR): is it the safest device for deep scientific diving? Alain Norro* Royal Belgian Institute for Natural Sciences, Operational Directorate Nature, Gulledelle 100, B-1200 Brussels-Belgium Briefing Technical Received 12 August 2016; Accepted 20 September 2016 Abstract During both World Wars, many improvements were The closed circuit rebreather (CCR) is not a new diving tech- made to rebreathers based on their use for covert nology. From the late 1990s CCR units were commercially military actions. available in Europe, and increasingly more divers, and The first electronic closed circuit rebreather, among them scientific divers, have been trained to use known as the Electrolung, was marketed in 1969. them. Even if many benefits exist for using CCR for all diving However, it was not until the late 1990s when elec- depth ranges, it is in the deep diving zone ranging from tronic CCR started to be sold into the mainstream 50 m to 100 m of sea water where the main advantages to scuba diving markets, with the introduction of the using this equipment exist. Using rebreathers does carry BUDDY-INSPIRATION (now renamed the Ambient additional risks, and these must be mitigated to ensure safe Pressure Diving’s Inspiration CCR range). Modern usage. A standard for CCR scientific diving has existed for CCRs for the European market are made by a small many years in the USA, and the levels of expertise within the number of manufacturers, and their design and European scientific diving community are now sufficient for construction must follow the European Normative a European standard to be established.
    [Show full text]