Biol 211 (2) Chapter 34 Lophotrochozoans

Total Page:16

File Type:pdf, Size:1020Kb

Biol 211 (2) Chapter 34 Lophotrochozoans Supplemental Instruction Biology 211 (2) Week 5 Chapter 34: Lophotochozoans 1. What is the lophophore function? Trochophore function? 1. Lophophore: Feeding, respiration; Trochophore: Movement, feeding! Platyhelminthes (Flatworms) Ceolom type Aceolomate Symmetry Bilateral Reproduction Sexual; Hermaphroditic; Sometimes asexual Feeding System Gastrovascular cavity! Incomplete Digestive System Gastrula (Yes or No) Yes Tissue (Yes or No) Yes Protostomes or Deuterostomes Protostomes Lophophore/Trochophore No Triploblasty or Diploblasty Triploblastic Segmented (Yes/No) No Ecosystem Marine, freshwater, damp habitats One Free-living Class Turbellaria (Planarians) Three Parasitic Class Monogenea, Trematoda (Flukes), Cestoda (Tapeworms) 1. Platyhelminthes intake prey through the mouth by a muscular protractible_________. 1. Pharynx 2. What is a major difference between free-living and parasitic Platyhelminthes? 1. Reproductive effort is higher in the body plan of the parasitic Platyhelminthes, while digestive efforts are higher in the free-living. 3. Name at least four characteristics of parasitic Platyhelminthes. Supplemental Instruction 4. Do tapeworms have a digestive tract? 1. No, absorb nutrients that are pre-digested by host Annalida Ceolom type Ceolomate Symmetry Bilateral Reproduction Sexual; Hermaphroditic; sometimes asexual Feeding System Complete Digestive System Gastrula (Yes or No) Yes Tissue (Yes or No) Yes Protostomes or Deuterostomes Protostomes Lophophore/Trochophore Yes Triploblasty or Diploblasty Triploblastic Segmented (Yes/No) Yes Ecosystem Marine, freshwater, damp habitats Three Groups Polychaeta (mostly marine), Oligochaeta (Earthworms), Hirudinea (Leeches) 1. What are two advantages of segmentation? 1. Repetition of components provides backup (able to grow back when part is cut off) 2. Permits specialization 2. What is the function of parapodia in Polychaetes? 1. Parapodia function in both movement and gas exchange 3. What are some reasons that earthworms are ecologically important? 1. Digest organic matter; tunnels left behind earthworms help aerate the soil Mollusca Ceolom type Ceolomate Symmetry Bilateral Reproduction Sexual; Some Hermaphroditic; some asexual Feeding System Complete digestive System Gastrula (Yes or No) Yes Tissue (Yes or No) Yes Protostomes or Deuterostomes Protostomes Lophophore/Trochophore Yes Triploblasty or Diploblasty Triploblastic Supplemental Instruction Mollusca Segmented (Yes/No) No Ecosystem Most marine, some freshwater and terrestrial Two Classes with Radula (Examples) Gastropoda (Snails/slugs), Cephalopoda (Squids, Octopi) One Class w/o Radula (Examples) Bivalvia (Clams, Mussels) 1. For the Molluscan body plan, what five parts doe they all have? 1. Foot, mantle, shell, visceral mass, gill 2. Does the phylum Mollusca have an open or closed circulatory system? 1. Depends on the energy needs of the clade. If they need a lot of energy, then closed. 3. What is a radula? 1. Used for feeding to cut or scrape food 4. Many species of freshwater mussels have a larval stage called ______ that need a host. 1. Glochidium.
Recommended publications
  • Review Sheet for Lecture 15: Life in the Benthic Realm
    Lecture 15: Life in the Benthic Realm Terminology Planktonic, nektonic, benthic, epifaunal, infaunal, sessile, mobile, bathyal, abyssal, abyssopelagic, hadopelagic, supratidal, intertidal, subtidal, spicules, spongin, radial symmetry, encruster, epidermal cell, porocyte, sclerocyte, amoebocyte, mesohyl, choanocyte, polyp, medusa, colonial, solitary, aragonite, octocoral, gorgonin, cnidocyst, nematocyst, zooxanthellae, hematypic, coral bleaching, lophophore, zoid, zooecium, zooaria, polymorphism, pedicle, helically coiled shell, radially coiled shell, exoskeleton, endoskeleton Dates: none Review Questions: Be familiar with the life and feeding modes of all of the invertebrate groups we discussed and their major morphologies, behaviors, life strategies etc. Why are so many sessile invertebrates radially symmetric? Explain the three different wall types found in sponges, what’s the point? Discuss the different roles of the different sponge cells How do hematypic corals contribute to the creation of different nearshore environments and conditions? Describe the community created by an innkeeper worm How does the skeleton of a brachiopod differ from that of a clam? How do the shells of clams, snails, and nautiloids differ? Classification: Phylum Porifera Class Demospongiae (soft sponges) Class Calcarea (calcareous sponges) Class Hexactinellida (glass sponges) Phylum Cnidaria Class Anthozoa -stony corals -sea fans -soft corals -sea anemones -sea pens Phylum Annelida (worms) -bristleworms -innkeeper worm -lugworms -spaghetti worm -feather duster -catworm Phylum Bryozoa (moss-animals) Phylum Mollusca -Class Bivalvia (clams) -Class Gastropoda (snails and slugs) -Class Cephalopoda (squid, octopus, nautiloid) -Class Scaphopoda (tusk shells) -Class Polyplacophora (chitons) .
    [Show full text]
  • Age Influences Resistance to Infestation by Freshwater Pearl Mussel (Margaritifera Margaritifera)Glochidia
    Parasitology Research (2019) 118:1519–1532 https://doi.org/10.1007/s00436-019-06300-2 IMMUNOLOGY AND HOST-PARASITE INTERACTIONS - ORIGINAL PAPER Host (Salmo trutta) age influences resistance to infestation by freshwater pearl mussel (Margaritifera margaritifera)glochidia Janhavi Marwaha1 & Hans Aase2 & Juergen Geist3 & Bernhard C. Stoeckle3 & Ralph Kuehn4,5 & Per Johan Jakobsen1 Received: 30 October 2018 /Accepted: 20 March 2019 /Published online: 1 April 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The freshwater pearl mussel (Margaritifera margaritifera) is an endangered bivalve with an obligate parasitic stage on salmonids. Host suitability studies have shown that glochidial growth and load vary significantly between host strains as well as among individuals of a suitable strain. Variation in host suitability has been linked to environmental conditions, host age and/or size, genetic composition of the host and parasite, or a combination of these factors. In our study, we wanted to investigate if brown trout (Salmo trutta) displayed an age-dependent response to glochidial infestation. We hypothesised that 1+ naive brown trout hosts tolerate glochidial infestation better than 0+ hosts. In order to test our hypothesis, we infested 0+ and 1+ hatchery reared brown trout with glochidia from closely related mothers and kept them under common garden conditions. This allowed us to observe a pure age dependent host response to infestation, as we eliminated the confounding effect of genotype-specific host interactions. We analysed the interaction between glochidial load and host condition, weight and length, and observed a signif- icant age-dependent relationship. Glochidial load was negatively correlated to host condition in 0+ fish hosts and positively correlated in 1+ hosts.
    [Show full text]
  • Invertebrates Invertebrates: • Are Animals Without Backbones • Represent 95% of the Animal Kingdom Animal Diversity Morphological Vs
    Invertebrates Invertebrates: • Are animals without backbones • Represent 95% of the animal kingdom Animal Diversity Morphological vs. Molecular Character Phylogeny? A tree is a hypothesis supported or not supported by evidence. Groupings change as new evidence become available. Sponges - Porifera Natural Bath Sponges – over-collected, now uncommon Sponges • Perhaps oldest animal phylum (Ctenphora possibly older) • may represent several old phyla, some now extinct ----------------Ctenophora? Sponges - Porifera • Mostly marine • Sessile animals • Lack true tissues; • Have only a few cell types, cells kind of independent • Most have no symmetry • Body resembles a sac perforated with holes, system of canals. • Strengthened by fibers of spongin, spicules Sponges have a variety of shapes Sponges Pores Choanocyte Amoebocyte (feeding cell) Skeletal Water fiber flow Central cavity Flagella Choanocyte in contact with an amoebocyte Sponges - Porifera • Sessile filter feeder • No mouth • Sac-like body, perforated by pores. • Interior lined by flagellated cells (choanocytes). Flagellated collar cells generate a current, draw water through the walls of the sponge where food is collected. • Amoeboid cells move around in the mesophyll and distribute food. Sponges - Porifera Grantia x.s. Sponge Reproduction Asexual reproduction • Fragmentation or by budding. • Sponges are capable of regeneration, growth of a whole from a small part. Sexual reproduction • Hermaphrodites, produce both eggs and sperm • Eggs and sperm released into the central cavity • Produces
    [Show full text]
  • S I Section 4
    3/31/2011 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Porifera Ecdysozoa Deuterostomia Lophotrochozoa Cnidaria and Ctenophora Cnidaria and Protostomia SSiection 4 Radiata Bilateria Professor Donald McFarlane Parazoa Eumetazoa Lecture 13 Invertebrates: Parazoa, Radiata, and Lophotrochozoa Ancestral colonial choanoflagellate 2 Traditional classification based on Parazoa – Phylum Porifera body plans Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Parazoa 4 main morphological and developmental Sponges features used Loosely organized and lack Porifera Ecdysozoa Cnidaria and Ctenophora tissues euterostomia photrochozoa D 1. o Presence or absence of different tissue L Multicellular with several types of types Protostomia cells 2. Type of body symmetry Radiata Bilateria 8,000 species, mostly marine Parazoa Eumetazoa 3. Presence or absence of a true body No apparent symmetry cavity Ancestral colonial Adults sessile, larvae free- choanoflagellate 4. Patterns of embryonic development swimming 3 4 1 3/31/2011 Water drawn through pores (ostia) into spongocoel Flows out through osculum Reproduce Choanocytes line spongocoel Sexually Most hermapppgggphrodites producing eggs and sperm Trap and eat small particles and plankton Gametes are derived from amoebocytes or Mesohyl between choanocytes and choanocytes epithelial cells Asexually Amoebocytes absorb food from choanocytes, Small fragment or bud may detach and form a new digest it, and carry
    [Show full text]
  • Practical Paleoecology GEO 342
    Practical Paleoecology GEO 342 Compiled By: Dr. Osama Attia Compiled By Dr. Osama Attia 1 Phylum Brachiopoda Brachiopods or lamp shells Name: Name means "arm" (brachio) + "foot" (pod). Main characteristics: - Bivalved (two shells), each with bilateral symmetry. - The plane of symmetry passes through the center of each shell or valve. - The two valves differ in size and shape in most. Sometimes the larger valve will have an opening near the hinge line through which the pedicle extended in life. - Soft parts include a lophophore consisting of coiled tentacles with cilia. The lophophore circulates water between the two valves, distributing oxygen and flushing out carbon dioxide. Water movements caused by the lophophore also transport food particles toward the mouth. Geologic range: Lower Cambrian to Recent. Very abundant during the Paleozoic. A few species (belonging to only three families) remain today. Mode of life: Inhabitants of shallow marine environments; they generally live attached in a fixed position on the seafloor. Inarticulate brachiopods are known to live in burrows in the sediment. Brachiopods are filter feeders. Compiled By Dr. Osama Attia 2 Living positions of brachiopods. A = Articulate brachiopod attached to the seafloor by its pedicle. B = Interior of brachiopod valve showing lophophore. C = Inarticulate brachiopod, Lingula, which lives within a tube or burrow in seafloor sediment. A. CLASS INARTICULATA – The Inarticulate Brachiopods Primitive brachiopods with phosphatic or chitinous valves; no hinge. Spoon-shaped valves held together with muscles and soft parts. Lingula is a well known inarticulate brachiopod. Geologic range: Lower Cambrian to Recent Compiled By Dr. Osama Attia 3 Fossil inarticulate brachiopod from the Cambrian.
    [Show full text]
  • Xerces Society's
    Conserving the Gems of Our Waters Best Management Practices for Protecting Native Western Freshwater Mussels During Aquatic and Riparian Restoration, Construction, and Land Management Projects and Activities Emilie Blevins, Laura McMullen, Sarina Jepsen, Michele Blackburn, Aimée Code, and Scott Homan Black CONSERVING THE GEMS OF OUR WATERS Best Management Practices for Protecting Native Western Freshwater Mussels During Aquatic and Riparian Restoration, Construction, and Land Management Projects and Activities Emilie Blevins Laura McMullen Sarina Jepsen Michele Blackburn Aimée Code Scott Hoffman Black The Xerces Society for Invertebrate Conservation www.xerces.org The Xerces® Society for Invertebrate Conservation is a nonprot organization that protects wildlife through the conservation of invertebrates and their habitat. Established in 1971, the Society is at the forefront of invertebrate protection, harnessing the knowledge of scientists and the enthusiasm of citizens to implement conservation programs worldwide. The Society uses advocacy, education, and applied research to promote invertebrate conservation. The Xerces Society for Invertebrate Conservation 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.xerces.org Regional oces from coast to coast. The Xerces Society is an equal opportunity employer and provider. Xerces® is a trademark registered in the U.S. Patent and Trademark Oce © 2018 by The Xerces Society for Invertebrate Conservation Primary Authors and Contributors The Xerces Society for Invertebrate Conservation: Emilie Blevins, Laura McMullen, Sarina Jepsen, Michele Blackburn, Aimée Code, and Scott Homan Black. Acknowledgements Funding for this report was provided by the Oregon Watershed Enhancement Board, The Nature Conservancy and Portland General Electric Salmon Habitat Fund, the Charlotte Martin Foundation, Meyer Memorial Trust, and Xerces Society members and supporters.
    [Show full text]
  • Animal Diversity Part 2
    Textbook resources • pp. 517-522 • pp. 527-8 Animal Diversity • p. 530 part 2 • pp. 531-2 Clicker question In protostomes A. The blastopore becomes the mouth. B. The blastopore becomes the anus. C. Development involves indeterminate cleavage. D. B and C Fig. 25.2 Phylogeny to know (1). Symmetry Critical innovations to insert: Oral bilateral symmetry ecdysis mouth develops after anus multicellularity Aboral tissues 1 Animal diversity, part 2 Parazoa Diversity 2 I. Parazoa • Porifera: Sponges II. Cnidaria & Ctenophora • Tissues • Symmetry I. Outline the • Germ Layers III. Lophotrochozoa unique • Embryonic characteristics Development of sponges IV. Ecdysozoa • Body Cavities • Segmentation Parazoa Parazoa • Porifera: Sponges • Porifera: Sponges – Multicellular without – Hermaphrodites tissues – Sexual and asexual reproduction – Choanocytes (collar cells) use flagella to move water and nutrients into pores – Intracellular digestion Fig. 25.11 Animal diversity, part 2 Clicker Question Diversity 2 I. Parazoa In diploblastic animals, the inner lining of the digestive cavity or tract is derived from II. Cnidaria & Ctenophora A. Endoderm. II. Outline the B. Ectoderm. unique III. Lophotrochozoa C. Mesoderm. characteristics D. Coelom. of cnidarians and IV. Ecdysozoa ctenophores 2 Coral Box jelly Cnidaria and Ctenophora • Cnidarians – Coral; sea anemone; jellyfish; hydra; box jellies • Ctenophores – Comb jellies Sea anemone Jellyfish Hydra Comb jelly Cnidaria and Ctenophora Fig. 25.12 Coral Box jelly Cnidaria and Ctenophora • Tissues Fig. 25.12 –
    [Show full text]
  • Effect of Ph, Iron and Aluminum on Survival of Early Life History Stages of the Endangered Freshwater Pearl Mussel, Margaritifera Margaritifera J
    This article was downloaded by: [T&F Internal Users], [Carol Wakefield] On: 26 October 2011, At: 04:20 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Toxicological & Environmental Chemistry Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gtec20 Effect of pH, iron and aluminum on survival of early life history stages of the endangered freshwater pearl mussel, Margaritifera margaritifera J. Taskinen a , P. Berg a , M. Saarinen-Valta a , S. Välilä a , E. Mäenpää b , K. Myllynen b & J. Pakkala b a Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland b South Ostrobothnian Centre for Economic Development, Transport and Environment, PO Box 77, FI-67101, Kokkola, Finland Available online: 16 Aug 2011 To cite this article: J. Taskinen, P. Berg, M. Saarinen-Valta, S. Välilä, E. Mäenpää, K. Myllynen & J. Pakkala (2011): Effect of pH, iron and aluminum on survival of early life history stages of the endangered freshwater pearl mussel, Margaritifera margaritifera , Toxicological & Environmental Chemistry, 93:9, 1764-1777 To link to this article: http://dx.doi.org/10.1080/02772248.2011.610798 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and- conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date.
    [Show full text]
  • Tunicata 4 Alberto Stolfi and Federico D
    Tunicata 4 Alberto Stolfi and Federico D. Brown Chapter vignette artwork by Brigitte Baldrian. © Brigitte Baldrian and Andreas Wanninger. A. Stolfi Department of Biology , Center for Developmental Genetics, New York University , New York , NY , USA F. D. Brown (*) EvoDevo Laboratory, Departamento de Zoologia , Instituto de Biociências, Universidade de São Paulo , São Paulo , SP , Brazil Evolutionary Developmental Biology Laboratory, Department of Biological Sciences , Universidad de los Andes , Bogotá , Colombia Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM) , Escuela Superior Politécnica del Litoral (ESPOL) , San Pedro , Santa Elena , Ecuador e-mail: [email protected] A. Wanninger (ed.), Evolutionary Developmental Biology of Invertebrates 6: Deuterostomia 135 DOI 10.1007/978-3-7091-1856-6_4, © Springer-Verlag Wien 2015 [email protected] 136 A. Stolfi and F.D. Brown Above all , perhaps , I am indebted to a decidedly the phylogenetic relationships between the three vegetative , often beautiful , and generally obscure classes and many orders and families have yet to group of marine animals , both for their intrinsic interest and for the enjoyment I have had in search- be satisfactorily settled. Appendicularia, ing for them . N. J. Berrill (1955) Thaliacea, and Ascidiacea remain broadly used in textbooks and scientifi c literature as the three classes of tunicates; however, recent molecular INTRODUCTION phylogenies have provided support for the mono- phyly of only Appendicularia and Thaliacea, but Tunicates are a group of marine fi lter-feeding not of Ascidiacea (Swalla et al. 2000 ; animals1 that have been traditionally divided into Tsagkogeorga et al. 2009 ; Wada 1998 ). A para- three classes: (1) Appendicularia, also known as phyletic Ascidiacea calls for a reevaluation of larvaceans because their free-swimming and tunicate relationships.
    [Show full text]
  • Kansas Freshwater Mussels ■ ■ ■ ■ ■
    APOCKET GUIDE TO Kansas Freshwater Mussels ■ ■ ■ ■ ■ By Edwin J. Miller, Karen J. Couch and Jim Mason Funded by Westar Energy Green Team and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center Table of Contents Introduction • 2 Buttons and Pearls • 4 Freshwater Mussel Reproduction • 7 Reproduction of the Ouachita Kidneyshell • 8 Reproduction of the Plain Pocketbook • 10 Parts of a Mussel Shell • 12 Internal Anatomy of a Freshwater Mussel • 13 Subfamily Anodontinae • 14 ■ Elktoe • 15 ■ Flat Floater • 16 ■ Cylindrical Papershell • 17 ■ Rock Pocketbook • 18 ■ White Heelsplitter • 19 ■ Flutedshell • 20 ■ Floater • 21 ■ Creeper • 22 ■ Paper Pondshell • 23 Rock Pocketbook Subfamily Ambleminae • 24 Cover Photo: Western Fanshell ■ Threeridge • 25 ■ Purple Wartyback • 26 © Edwin Miller ■ Spike • 27 ■ Wabash Pigtoe • 28 ■ Washboard • 29 ■ Round Pigtoe • 30 ■ Rabbitsfoot • 31 ■ Monkeyface • 32 ■ Wartyback • 33 ■ Pimpleback • 34 ■ Mapleleaf • 35 Purple Wartyback ■ Pistolgrip • 36 ■ Pondhorn • 37 Subfamily Lampsilinae • 38 ■ Mucket • 39 ■ Western Fanshell • 40 ■ Butterfly • 41 ■ Plain Pocketbook • 42 ■ Neosho Mucket • 43 ■ Fatmucket • 44 ■ Yellow Sandshell • 45 ■ Fragile Papershell • 46 ■ Pondmussel • 47 ■ Threehorn Wartyback • 48 ■ Pink Heelsplitter • 49 ■ Pink Papershell • 50 Bleufer ■ Bleufer • 51 ■ Ouachita Kidneyshell • 52 ■ Lilliput • 53 ■ Fawnsfoot • 54 ■ Deertoe • 55 ■ Ellipse • 56 Extirpated Species ■ Spectaclecase • 57 ■ Slippershell • 58 ■ Snuffbox • 59 ■ Creek Heelsplitter • 60 ■ Black Sandshell • 61 ■ Hickorynut • 62 ■ Winged Mapleleaf • 63 ■ Pyramid Pigtoe • 64 Exotic Invasive Mussels ■ Asiatic Clam • 65 ■ Zebra Mussel • 66 Glossary • 67 References & Acknowledgements • 68 Pocket Guides • 69 1 Introduction Freshwater mussels (Mollusca: Unionacea) are a fascinating group of animals that reside in our streams and lakes. They are front- line indicators of environmental quality and have ecological ties with fish to complete their life cycle and colonize new habitats.
    [Show full text]
  • Nemertean and Phoronid Genomes Reveal Lophotrochozoan Evolution and the Origin of Bilaterian Heads
    Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads Author Yi-Jyun Luo, Miyuki Kanda, Ryo Koyanagi, Kanako Hisata, Tadashi Akiyama, Hirotaka Sakamoto, Tatsuya Sakamoto, Noriyuki Satoh journal or Nature Ecology & Evolution publication title volume 2 page range 141-151 year 2017-12-04 Publisher Springer Nature Macmillan Publishers Limited Rights (C) 2017 Macmillan Publishers Limited, part of Springer Nature. Author's flag publisher URL http://id.nii.ac.jp/1394/00000281/ doi: info:doi/10.1038/s41559-017-0389-y Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/) ARTICLES https://doi.org/10.1038/s41559-017-0389-y Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads Yi-Jyun Luo 1,4*, Miyuki Kanda2, Ryo Koyanagi2, Kanako Hisata1, Tadashi Akiyama3, Hirotaka Sakamoto3, Tatsuya Sakamoto3 and Noriyuki Satoh 1* Nemerteans (ribbon worms) and phoronids (horseshoe worms) are closely related lophotrochozoans—a group of animals including leeches, snails and other invertebrates. Lophotrochozoans represent a superphylum that is crucial to our understand- ing of bilaterian evolution. However, given the inconsistency of molecular and morphological data for these groups, their ori- gins have been unclear. Here, we present draft genomes of the nemertean Notospermus geniculatus and the phoronid Phoronis australis, together with transcriptomes along the adult bodies. Our genome-based phylogenetic analyses place Nemertea sis- ter to the group containing Phoronida and Brachiopoda. We show that lophotrochozoans share many gene families with deu- terostomes, suggesting that these two groups retain a core bilaterian gene repertoire that ecdysozoans (for example, flies and nematodes) and platyzoans (for example, flatworms and rotifers) do not.
    [Show full text]
  • • Every Major Animal Phylum That Exists on Earth Today, As Well As A
    • Every major animal phylum that exists on Earth today, as well as a few more that have since become ex:nct, appeared within less than 10 million years during the early Cambrian evolu:onary radiaon, also called the Cambrian explosion. • Phylum Pro:sta includes a diverse group of eukaryo:c microorganisms which are mostly unicellular. They are not necessarily primi:ve, although some are. Only some have a skeleton that can be preserved as a fossil. • Foraminifera and radiolaria are the most important examples. Coccolithophores, diatoms, and dinoflagellates are also examples. • Foraminifera are marine organisms that may be either planktonic, living in the water column where they float at various levels, or benthic, living on or within the seafloor sediment. • They form relavely large (0.1 mm to 5 cm) porous internal skeletons called tests through which project strands of living cytoplasm. The single- to mul:-chambered tests may be composed of organic maer, agglu:nated sand grains or sponge spicules, or calcium carbonate. • Benthic foraminifera • Planktonic foraminifera (Cambrian to Recent). (Jurassic to Recent). Oligocene Eocene • Radiolaria are planktonic marine organisms that tend to live in relavely cold water. • Their tests, oNen delicate and elaborate, are made of silica and presently accumulate on the floors of the parts of oceans that are deeper than those where foraminiferal tests are accumulang. • Radiolaria (Cambrian to • Radiolaria (Cambrian to Recent). Recent). Paleocene Radiolaria • Coccolithophores (Triassic to Recent) are extremely small marine planktonic photosynthe:c unicellular algae that are enclosed by plates of low-Mg calcite called coccoliths. Cretaceous White Cliffs of Dover, England • Diatoms (Jurassic to Recent) are small freshwater and marine planktonic photosynthe:c unicellular algae that are enclosed by a cell wall made of silica called a frustule.
    [Show full text]