S I Section 4

Total Page:16

File Type:pdf, Size:1020Kb

S I Section 4 3/31/2011 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Porifera Ecdysozoa Deuterostomia Lophotrochozoa Cnidaria and Ctenophora Cnidaria and Protostomia SSiection 4 Radiata Bilateria Professor Donald McFarlane Parazoa Eumetazoa Lecture 13 Invertebrates: Parazoa, Radiata, and Lophotrochozoa Ancestral colonial choanoflagellate 2 Traditional classification based on Parazoa – Phylum Porifera body plans Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Parazoa 4 main morphological and developmental Sponges features used Loosely organized and lack Porifera Ecdysozoa Cnidaria and Ctenophora tissues euterostomia photrochozoa D 1. o Presence or absence of different tissue L Multicellular with several types of types Protostomia cells 2. Type of body symmetry Radiata Bilateria 8,000 species, mostly marine Parazoa Eumetazoa 3. Presence or absence of a true body No apparent symmetry cavity Ancestral colonial Adults sessile, larvae free- choanoflagellate 4. Patterns of embryonic development swimming 3 4 1 3/31/2011 Water drawn through pores (ostia) into spongocoel Flows out through osculum Reproduce Choanocytes line spongocoel Sexually Most hermapppgggphrodites producing eggs and sperm Trap and eat small particles and plankton Gametes are derived from amoebocytes or Mesohyl between choanocytes and choanocytes epithelial cells Asexually Amoebocytes absorb food from choanocytes, Small fragment or bud may detach and form a new digest it, and carry to other cells sponge Spicules (skeletal fibers) or spongin 5 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Radiata – Phylums Cnidaria Water Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. and Ctenophora Radiata (b) Typical vase Radial symmetry shape of sponges Porifera Ecdysozoa Choanocyte Mostly marine Deuterostomia Lophotrochozoa Epithelial cell and Ctenophora Osculum a Flage llum OlOnly 2 em bryon ic germ Collar Cnidari Nucleus layers Amoebocyte Protostomia Water Diploblastic Spicule Radiata Bilateria Spongocoel Ectoderm and Ostium endoderm Parazoa Eumetazoa Mesoglea connects Mesohyl layers Spicule (c) Cross section of sponge morphology 7 8 2 3/31/2011 Phylum Cnidaria 2 different body forms First clade with true tissues Sessile polyp – tubular body with tentacles Gastrovascular cavity for extracellular surrounding opening (mouth and anus) digestion Motile medusa – umbrella-shaped body with a mouth on the un ders ide surroun de d by Allows ingestion of larger food particles tentacles Advance over sponge’s intracellular digestion Cnidocytes contain nemotocysts True nerve cells arranged in nerve net Hairlike trigger – cnidocil No central control organ Some sticky while other sting Simple muscles and nerves Not true muscles (not of mesoderm origin) 9 10 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Mouth/ Tentacle anus Bell Epidermis Phylum Ctenophora (from ectoderm) Mesoglea Comb jellies Gastrodermis Less than 100 species- all marine and look (from endoderm) like jellyfish Gastrovascular Eig ht rows of cili a on sur face bea t for cavity propulsion 2 long tentacles without stinging cells Colloblasts secrete sticky substance Mouth/ Tentacle First complete gut – mouth and anus anus Hermaphroditic (a) Polyp (b) Medusa 11 Bioluminescent 12 3 3/31/2011 Lophotrochozoa Flatworms, rotifers, lophophorates, mollusks and annelids Traditionally, bilaterally symmetrical animals split into those with no coelom (platyhelminthes), pseudocoleomate (nematodes and rotifers) and remaining coelomate phlya Molecular data suggests a different grouping with the deuterostomates separate and the protostomates divided into the Lophotrochozoa (Platyhelminthes, Rotifera, Lophophorata, Mollusca and Annelida) and the Ecdysozoa 13 14 Phylum Platyhelminthes Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Lophotrochozoa Flatworms Lack a specialized Rotifera Porifera Annelida Mollusca respiratory or circulatory Ecdysozoa euterostomia d Ctenophora atyhelminthes Lophophorata n D system to transport gases Pl Respire by diffusion Cnidaria a Lophotrochozoa Among first animals with active predatory lifestyle Protostomia Radiata Bilateria First with 3 embryonic germ layers – triploblastic Bilaterally symmetrical Parazoa Eumetazoa Mesoderm key innovation – led to more with a head sophisticated organs Acoelomate – lacking fluid-filled cavity 15 16 4 3/31/2011 Digestive system incomplete 4 classes Distinct excretory system with Turbellaria – Free-living, Planaria protonephridia and flame cells Monogenea – Fish flukes Light sensitive eyespots or ocelli Cestoda – Tapeworms, parasitic Cerebral ganglia receive input 2 separate host species in life cycle Retain nerve net with beginning of more Trematoda – Flukes, parasitic centralized nervous system More complex life cycle with multiple hosts Sexual or asexual reproduction Chinese liver fluke, Clonorchis sinensis Most hermaphroditic but do not self fertilize Blood flukes, Schistosoma spp., most common parasitic trematode infecting humans 17 18 Lophophorata Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Lophotrochozoa 3 closely related phyla Phoronida, Bryozoa, Rotifera Porifera Annelida Mollusca Ecdysozoa phophorata Brachiopoda uterostomia d Ctenophora tyhelminthes o e n L D All possess a Pla lophophore – ciliary Cnidaria a Lophotrochozoa feeding device that also Protostomia functions in respiration Radiata Bilateria True coelom Parazoa Eumetazoa 19 20 5 3/31/2011 Phylum Mollusca Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Lophotrochozoa Over 100,000 species Soft body with, in many species, Rotifera Porifera Annelida protective external shell Mollusca Ecdysozoa Lophophorata Deuterostomia Body has 3 par ts and Ctenophora Platyhelminthes Foot, visceral mass and mantle Lophotrochozoa Cnidaria Coelom confined to small area Protostomia around heart Radiata Bilateria Parazoa Eumetazoa Open circulatory system Metanephridia Radula – unique tongue-like organ 21 22 Most shells complex 3 layered and secreted by mantle Separate sexes although some hermaphroditic External fertilization – some internal ((ykey to snails colonizing land) Trocophore larvae develops into veliger with rudimentary foot, shell and mantle 8 classes with 4 common Polyplacophorans, gastropods, bivalves and cephalopods 23 24 6 3/31/2011 Polyplacophorans – chitons Gastropods – snails, slugs and Phylum Annelida nudibranchs Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Largest class, shells can be reduced or lost, Rings are distinct Lophotrochozoa most marine or freshwater but some colonized land segments separated by a septum Rotifera Porifera elminthes Annelida Mollusca erostomia cdysozoa hophorata Ctenophora t h Bivalves – clams, mussels, oysters E Lop Deu Cephalopods – octopuses, squids, Segmentation has Platy nautiluses advantages and Cnidaria Lophotrochozoa Most morphologically complex, fast-swimming 1. Repetition of components Protostomia marine predators, closed circulatory system provides backup Radiata Bilateria Beaklike jaw, only nautilus has external shell, 2. Coelom acts as hydrostatic Parazoa Eumetazoa some have foot modified into muscular siphon skeleton for propulsion 3. Permits specialization 25 26 Digestive system complete and unsegmented Double transport Sexual reproduction involves 2 individuals system (sometimes separate sexes, others Circulatory system and hermaphroditic) with internal fertilization coelomic fluid Asexual reproduction by fission carries nutrients, wastes and 15,000 species respiratory gases All annelids except leeches have setae on each segment 27 28 7 3/31/2011 2 classes Polychaeta – marine worms Most species rich, many long setae Clittelata Subclass Oligochaeta – terrestrial and freshwater worms (earthworms) Role in conditioning soil through castings Subclass Hirudinea – leeches Primarily freshwater, hirudin (anticoagulant), may be used in reattachment surgeries, generally external parasites 29 30 8.
Recommended publications
  • Review Sheet for Lecture 15: Life in the Benthic Realm
    Lecture 15: Life in the Benthic Realm Terminology Planktonic, nektonic, benthic, epifaunal, infaunal, sessile, mobile, bathyal, abyssal, abyssopelagic, hadopelagic, supratidal, intertidal, subtidal, spicules, spongin, radial symmetry, encruster, epidermal cell, porocyte, sclerocyte, amoebocyte, mesohyl, choanocyte, polyp, medusa, colonial, solitary, aragonite, octocoral, gorgonin, cnidocyst, nematocyst, zooxanthellae, hematypic, coral bleaching, lophophore, zoid, zooecium, zooaria, polymorphism, pedicle, helically coiled shell, radially coiled shell, exoskeleton, endoskeleton Dates: none Review Questions: Be familiar with the life and feeding modes of all of the invertebrate groups we discussed and their major morphologies, behaviors, life strategies etc. Why are so many sessile invertebrates radially symmetric? Explain the three different wall types found in sponges, what’s the point? Discuss the different roles of the different sponge cells How do hematypic corals contribute to the creation of different nearshore environments and conditions? Describe the community created by an innkeeper worm How does the skeleton of a brachiopod differ from that of a clam? How do the shells of clams, snails, and nautiloids differ? Classification: Phylum Porifera Class Demospongiae (soft sponges) Class Calcarea (calcareous sponges) Class Hexactinellida (glass sponges) Phylum Cnidaria Class Anthozoa -stony corals -sea fans -soft corals -sea anemones -sea pens Phylum Annelida (worms) -bristleworms -innkeeper worm -lugworms -spaghetti worm -feather duster -catworm Phylum Bryozoa (moss-animals) Phylum Mollusca -Class Bivalvia (clams) -Class Gastropoda (snails and slugs) -Class Cephalopoda (squid, octopus, nautiloid) -Class Scaphopoda (tusk shells) -Class Polyplacophora (chitons) .
    [Show full text]
  • Xenacoelomorpha's Significance for Understanding Bilaterian Evolution
    Available online at www.sciencedirect.com ScienceDirect Xenacoelomorpha’s significance for understanding bilaterian evolution Andreas Hejnol and Kevin Pang The Xenacoelomorpha, with its phylogenetic position as sister biology models are the fruitfly Drosophila melanogaster and group of the Nephrozoa (Protostomia + Deuterostomia), plays the nematode Caenorhabditis elegans, in which basic prin- a key-role in understanding the evolution of bilaterian cell types ciples of developmental processes have been studied in and organ systems. Current studies of the morphological and great detail. It might be because the field of evolutionary developmental diversity of this group allow us to trace the developmental biology — EvoDevo — has its origin in evolution of different organ systems within the group and to developmental biology and not evolutionary biology that reconstruct characters of the most recent common ancestor of species under investigation are often called ‘model spe- Xenacoelomorpha. The disparity of the clade shows that there cies’. Criteria for selected representative species are cannot be a single xenacoelomorph ‘model’ species and primarily the ease of access to collected material and strategic sampling is essential for understanding the evolution their ability to be cultivated in the lab [1]. In some cases, of major traits. With this strategy, fundamental insights into the a supposedly larger number of ancestral characters or a evolution of molecular mechanisms and their role in shaping dominant role in ecosystems have played an additional animal organ systems can be expected in the near future. role in selecting model species. These arguments were Address used to attract sufficient funding for genome sequencing Sars International Centre for Marine Molecular Biology, University of and developmental studies that are cost-intensive inves- Bergen, Thormøhlensgate 55, 5008 Bergen, Norway tigations.
    [Show full text]
  • The NEURONS and NEURAL SYSTEM: a 21St CENTURY PARADIGM
    The NEURONS and NEURAL SYSTEM: a 21st CENTURY PARADIGM This material is excerpted from the full β-version of the text. The final printed version will be more concise due to further editing and economical constraints. A Table of Contents and an index are located at the end of this paper. A few citations have yet to be defined and are indicated by “xxx.” James T. Fulton Neural Concepts [email protected] July 19, 2015 Copyright 2011 James T. Fulton 2 Neurons & the Nervous System 4 The Architectures of Neural Systems1 [xxx review cogn computation paper and incorporate into this chapter ] [xxx expand section 4.4.4 as a key area of importance ] [xxx Text and semantics needs a lot of work ] Don’t believe everything you think. Anonymous bumper sticker You must not fool yourself, and you are the easiest person to fool Richard Feynman I am never content until I have constructed a model of what I am studying. If I succeed in making one, I understand; otherwise, I do not. William Thomson (Lord Kelvin) It is the models that tell us whether we understand a process and where the uncertainties remain. Bridgeman, 2000 4.1 Background [xxx chapter is a hodge-podge at this time 29 Aug 11 ] The animal kingdom shares a common neurological architecture that is ramified in a specific species in accordance with its station in the phylogenic tree and the ecological domain. This ramification includes not only replication of existing features but further augmentation of the system using new and/or modified features.
    [Show full text]
  • Invertebrates Invertebrates: • Are Animals Without Backbones • Represent 95% of the Animal Kingdom Animal Diversity Morphological Vs
    Invertebrates Invertebrates: • Are animals without backbones • Represent 95% of the animal kingdom Animal Diversity Morphological vs. Molecular Character Phylogeny? A tree is a hypothesis supported or not supported by evidence. Groupings change as new evidence become available. Sponges - Porifera Natural Bath Sponges – over-collected, now uncommon Sponges • Perhaps oldest animal phylum (Ctenphora possibly older) • may represent several old phyla, some now extinct ----------------Ctenophora? Sponges - Porifera • Mostly marine • Sessile animals • Lack true tissues; • Have only a few cell types, cells kind of independent • Most have no symmetry • Body resembles a sac perforated with holes, system of canals. • Strengthened by fibers of spongin, spicules Sponges have a variety of shapes Sponges Pores Choanocyte Amoebocyte (feeding cell) Skeletal Water fiber flow Central cavity Flagella Choanocyte in contact with an amoebocyte Sponges - Porifera • Sessile filter feeder • No mouth • Sac-like body, perforated by pores. • Interior lined by flagellated cells (choanocytes). Flagellated collar cells generate a current, draw water through the walls of the sponge where food is collected. • Amoeboid cells move around in the mesophyll and distribute food. Sponges - Porifera Grantia x.s. Sponge Reproduction Asexual reproduction • Fragmentation or by budding. • Sponges are capable of regeneration, growth of a whole from a small part. Sexual reproduction • Hermaphrodites, produce both eggs and sperm • Eggs and sperm released into the central cavity • Produces
    [Show full text]
  • "Phoronida". In: Encyclopedia of Life Science
    Phoronida Introductory article Christian C Emig, Centre d’Oce´anologie de Marseille CNRS, Marseille, France Article Contents . Basic Design The Phoronida, divided into two genera and 10 species, is a small marine group, which . Diversity and Lifestyles belongs to the phylum Lophophorata. Fossil History and Phylogeny Basic Design complexity of the lophophore from an oval to a helicoidal, The Phoronida is an exclusively marine group with a sessile through a horseshoe and spiral shape. This is related to an vermiform body enclosed in a tube (Figure 1) The body is increase in the number of tentacles, which is proportional composed of three distinct parts (prosome, mesosome and to the general body size. metasome), each containing its own coelomic cavity. The The metasome (or trunk) is slender and cylindrical, with prosome forms the epistome, a fold overhanging the mouth a bulb-like posterior end (or ampulla) that anchors the dorsally. The mesosome bears the lophophore, with the body in the rear end of the tube. It is separated from the rest mouth lying between its two rows of tentacles. The of the body by the diaphragm, a thick transverse septum lophophore is a terminal, bilaterally symmetrical, tentacle located behind the lophophore. crown, each tentacle having complex arrays of cilia for The digestive tract is U-shaped, bringing the anus close filter-feeding. Lophophore shape is a fairly constant to the mouth. The descending branch is divided into a short feature within each species, and there is an increasing oesophagus, followed by a long prestomach, then a stomach surrounded by a blood plexus.
    [Show full text]
  • Carbonic Anhydrases: an Ancient Tool in Calcareous Sponge Biomineralization
    fgene-12-624533 March 30, 2021 Time: 13:30 # 1 BRIEF RESEARCH REPORT published: 07 April 2021 doi: 10.3389/fgene.2021.624533 Carbonic Anhydrases: An Ancient Tool in Calcareous Sponge Biomineralization Oliver Voigt1*, Benedetta Fradusco1, Carolin Gut1, Charalampos Kevrekidis1, Sergio Vargas1 and Gert Wörheide1,2,3 1 Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany, 2 GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany, 3 SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany Enzymes of the a-carbonic anhydrase gene family (CAs) are essential for the deposition of calcium carbonate biominerals. In calcareous sponges (phylum Porifera, class Calcarea), specific CAs are involved in the formation of calcite spicules, a unique trait and synapomorphy of this class. However, detailed studies on the CA repertoire of calcareous sponges exist for only two species of one of the two Calcarea subclasses, the Calcaronea. The CA repertoire of the second subclass, the Calcinea, has not been investigated so far, leaving a considerable gap in our knowledge about this Edited by: Melanie Debiais-Thibaud, gene family in Calcarea. Here, using transcriptomic analysis, phylogenetics, and in situ Université de Montpellier, France hybridization, we study the CA repertoire of four additional species of calcareous Reviewed by: sponges, including three from the previously unsampled subclass Calcinea. Our data Helena Cetkovi´ c,´ Rudjer Boskovic Institute, Croatia indicate that the last common ancestor of Calcarea had four ancestral CAs with defined Ana Riesgo, subcellular localizations and functions (mitochondrial/cytosolic, membrane-bound, and Natural History Museum, secreted non-catalytic). The evolution of membrane-bound and secreted CAs involved United Kingdom gene duplications and losses, whereas mitochondrial/cytosolic and non-catalytic CAs *Correspondence: Oliver Voigt are evidently orthologous genes.
    [Show full text]
  • Practical Paleoecology GEO 342
    Practical Paleoecology GEO 342 Compiled By: Dr. Osama Attia Compiled By Dr. Osama Attia 1 Phylum Brachiopoda Brachiopods or lamp shells Name: Name means "arm" (brachio) + "foot" (pod). Main characteristics: - Bivalved (two shells), each with bilateral symmetry. - The plane of symmetry passes through the center of each shell or valve. - The two valves differ in size and shape in most. Sometimes the larger valve will have an opening near the hinge line through which the pedicle extended in life. - Soft parts include a lophophore consisting of coiled tentacles with cilia. The lophophore circulates water between the two valves, distributing oxygen and flushing out carbon dioxide. Water movements caused by the lophophore also transport food particles toward the mouth. Geologic range: Lower Cambrian to Recent. Very abundant during the Paleozoic. A few species (belonging to only three families) remain today. Mode of life: Inhabitants of shallow marine environments; they generally live attached in a fixed position on the seafloor. Inarticulate brachiopods are known to live in burrows in the sediment. Brachiopods are filter feeders. Compiled By Dr. Osama Attia 2 Living positions of brachiopods. A = Articulate brachiopod attached to the seafloor by its pedicle. B = Interior of brachiopod valve showing lophophore. C = Inarticulate brachiopod, Lingula, which lives within a tube or burrow in seafloor sediment. A. CLASS INARTICULATA – The Inarticulate Brachiopods Primitive brachiopods with phosphatic or chitinous valves; no hinge. Spoon-shaped valves held together with muscles and soft parts. Lingula is a well known inarticulate brachiopod. Geologic range: Lower Cambrian to Recent Compiled By Dr. Osama Attia 3 Fossil inarticulate brachiopod from the Cambrian.
    [Show full text]
  • Animal Diversity Part 2
    Textbook resources • pp. 517-522 • pp. 527-8 Animal Diversity • p. 530 part 2 • pp. 531-2 Clicker question In protostomes A. The blastopore becomes the mouth. B. The blastopore becomes the anus. C. Development involves indeterminate cleavage. D. B and C Fig. 25.2 Phylogeny to know (1). Symmetry Critical innovations to insert: Oral bilateral symmetry ecdysis mouth develops after anus multicellularity Aboral tissues 1 Animal diversity, part 2 Parazoa Diversity 2 I. Parazoa • Porifera: Sponges II. Cnidaria & Ctenophora • Tissues • Symmetry I. Outline the • Germ Layers III. Lophotrochozoa unique • Embryonic characteristics Development of sponges IV. Ecdysozoa • Body Cavities • Segmentation Parazoa Parazoa • Porifera: Sponges • Porifera: Sponges – Multicellular without – Hermaphrodites tissues – Sexual and asexual reproduction – Choanocytes (collar cells) use flagella to move water and nutrients into pores – Intracellular digestion Fig. 25.11 Animal diversity, part 2 Clicker Question Diversity 2 I. Parazoa In diploblastic animals, the inner lining of the digestive cavity or tract is derived from II. Cnidaria & Ctenophora A. Endoderm. II. Outline the B. Ectoderm. unique III. Lophotrochozoa C. Mesoderm. characteristics D. Coelom. of cnidarians and IV. Ecdysozoa ctenophores 2 Coral Box jelly Cnidaria and Ctenophora • Cnidarians – Coral; sea anemone; jellyfish; hydra; box jellies • Ctenophores – Comb jellies Sea anemone Jellyfish Hydra Comb jelly Cnidaria and Ctenophora Fig. 25.12 Coral Box jelly Cnidaria and Ctenophora • Tissues Fig. 25.12 –
    [Show full text]
  • BIOL 2290 - 3 EVOLUTION of ANIMAL BODY PLANS (3,0,3) Winter 2020
    BIOL 2290 - 3 EVOLUTION OF ANIMAL BODY PLANS (3,0,3) Winter 2020 Instructor: Dr. Louis Gosselin Office: Research Centre RC203 Email: [email protected] Course website: www.faculty.tru.ca/lgosselin/biol2290/ Meeting times Lectures: Mon 8:30 - 9:45 [AE 162] Wed 8:30 - 9:45 [AE 162] Laboratories - 3 hours per week [S 378] Calendar description This course explores the spectacular diversity of animal body plans, and examines the sequence of events that lead to this diversity. Lectures and laboratories emphasize the inherent link between body form, function and phylogeny. The course also highlights the diverse roles that animals play in natural ecosystems as well as their implications for humans, and examines how knowledge of animal morphology, development, and molecular biology allows us to reconstruct the phylogenetic tree of the Animalia. Educational objectives Upon successful completion of this course, students will be able to identify the major evolutionary events that lead to the current diversity of animal body plans, and the selective pressures that favoured each type of body plan. They will be able to recognize the functional significance of animal body design, relating morphology with specific lifestyles. Students will be able to describe the major functions that animals play in natural ecosystems and the significance of different animals for humans. In addition, students successfully completing the laboratory component of the course will be skilled in dissection techniques, identification, and in the basic design, execution and analysis of a scientific experiment with animals. Prerequisites BIOL1110, BIOL1210 Required texts Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate Zoology.
    [Show full text]
  • FISH310: Biology of Shellfishes
    FISH310: Biology of Shellfishes Lecture Slides #3 Phylogeny and Taxonomy sorting organisms How do we classify animals? Taxonomy: naming Systematics: working out relationships among organisms Classification • All classification schemes are, in part, artificial to impose order (need to start some where using some information) – Cell number: • Acellular, One cell (_________), or More than one cell (metazoa) – Metazoa: multicellular, usu 2N, develop from blastula – Body Symmetry – Developmental Pattern (Embryology) – Evolutionary Relationship Animal Kingdom Eumetazoa: true animals Corals Anemones Parazoa: no tissues Body Symmetry • Radial symmetry • Phyla Cnidaria and Ctenophora • Known as Radiata • Any cut through center ! 2 ~ “mirror” pieces • Bilateral symmetry • Other phyla • Bilateria • Cut longitudinally to achieve mirror halves • Dorsal and ventral sides • Anterior and posterior ends • Cephalization and central nervous system • Left and right sides • Asymmetry uncommon (Porifera) Form and Life Style • The symmetry of an animal generally fits its lifestyle • Sessile or planktonic organisms often have radial symmetry • Highest survival when meet the environment equally well from all sides • Actively moving animals have bilateral symmetry • Head end is usually first to encounter food, danger, and other stimuli Developmental Pattern • Metazoa divided into two groups based on number of germ layers formed during embryogenesis – differs between radiata and bilateria • Diploblastic • Triploblastic Developmental Pattern.. • Radiata are diploblastic: two germ layers • Ectoderm, becomes the outer covering and, in some phyla, the central nervous system • Endoderm lines the developing digestive tube, or archenteron, becomes the lining of the digestive tract and organs derived from it, such as the liver and lungs of vertebrates Diploblastic http://faculty.mccfl.edu/rizkf/OCE1001/Images/cnidaria1.jpg Developmental Pattern….
    [Show full text]
  • Decoding the Fossil Record of Early Lophophorates
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1284 Decoding the fossil record of early lophophorates Systematics and phylogeny of problematic Cambrian Lophotrochozoa AODHÁN D. BUTLER ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9327-1 UPPSALA urn:nbn:se:uu:diva-261907 2015 Dissertation presented at Uppsala University to be publicly examined in Hambergsalen, Geocentrum, Villavägen 16, Uppsala, Friday, 23 October 2015 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Maggie Cusack (School of Geographical and Earth Sciences, University of Glasgow). Abstract Butler, A. D. 2015. Decoding the fossil record of early lophophorates. Systematics and phylogeny of problematic Cambrian Lophotrochozoa. (De tidigaste fossila lofoforaterna. Problematiska kambriska lofotrochozoers systematik och fylogeni). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1284. 65 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9327-1. The evolutionary origins of animal phyla are intimately linked with the Cambrian explosion, a period of radical ecological and evolutionary innovation that begins approximately 540 Mya and continues for some 20 million years, during which most major animal groups appear. Lophotrochozoa, a major group of protostome animals that includes molluscs, annelids and brachiopods, represent a significant component of the oldest known fossil records of biomineralised animals, as disclosed by the enigmatic ‘small shelly fossil’ faunas of the early Cambrian. Determining the affinities of these scleritome taxa is highly informative for examining Cambrian evolutionary patterns, since many are supposed stem- group Lophotrochozoa. The main focus of this thesis pertained to the stem-group of the Brachiopoda, a highly diverse and important clade of suspension feeding animals in the Palaeozoic era, which are still extant but with only with a fraction of past diversity.
    [Show full text]
  • Animal Evolution: Trichoplax, Trees, and Taxonomic Turmoil
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Dispatch R1003 Dispatches Animal Evolution: Trichoplax, Trees, and Taxonomic Turmoil The genome sequence of Trichoplax adhaerens, the founding member of the into the same major classes (C, E/F enigmatic animal phylum Placozoa, has revealed that a surprising level of and B) as do those described from genetic complexity underlies its extremely simple body plan, indicating either Amphimedon [4]. Consistent with that placozoans are secondarily simple or that there is an undiscovered a more derived position, however, morphologically complex life stage. Trichoplax has a number of Antp superclass Hox genes that are absent David J. Miller1 and Eldon E. Ball2 but no other axial differentiation, from the sponge Amphimedon. resembling an amoeba. Grell [3] who These include the ‘ParaHox’ gene With the recent or imminent release formally described these common but Trox-2 [5] and the extended Hox of the whole genome sequences of inconspicuous marine organisms as family gene Not [6] known from a number of key animal species, this belonging to a new phylum, assumed previous work. Particularly intriguing is an exciting time for the ‘evo-devo’ that their simplicity is primary, and is the discovery in Trichoplax of many community. In the last twelve months, that they therefore must represent genes associated with neuroendocrine whole genome analyses of the a key stage in animal evolution. This function across the Bilateria; in cnidarian Nematostella vectensis, view is still held by several prominent common with Amphimedon [7], many the choanoflagellate Monosiga Trichoplax biologists, but has always elements of the post-synaptic scaffold brevicollis and the cephalochordate been contentious; the view that it is are present, but so too are channel Branchiostoma floridae (commonly derived from a more complex ancestor and receptor proteins not known from known as amphioxus) have been has recently been gaining momentum sponges.
    [Show full text]