A Sorghum Propinquum BAC Library, Suitable for Cloning Genes Associated with Loss-Of-Function Mutations During Crop Domestication

Total Page:16

File Type:pdf, Size:1020Kb

A Sorghum Propinquum BAC Library, Suitable for Cloning Genes Associated with Loss-Of-Function Mutations During Crop Domestication Molecular Breeding 5: 511–520, 1999. 511 © 1999 Kluwer Academic Publishers. Printed in the Netherlands. A Sorghum propinquum BAC library, suitable for cloning genes associated with loss-of-function mutations during crop domestication Yann-Rong Lin1, Linghua Zhu1, Shuxin Ren1, Jinshui Yang2, Keith F. Schertz3 & Andrew H. Paterson1;4;∗ 1Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA; 2Institute of Genetics, Fudan University, Shanghai, 200433, P.R. China; 3USDA-ARS, College Station, TX 77843-2474, USA; 4Department of Crop and Soil Science, University of Georgia, Athens GA 30602, USA (∗author for correspondence, send correspondence to address #4; fax 002-1-706-583-0162; e-mail [email protected]) Received 23 July 1998; accepted in revised form 23 March 1999 Key words: BAC, positional cloning, Sorghum propinquum Abstract AlargeinsertSorghum propinquum BAC library has been constructed to analyze the physical organization of the sorghum genome and to facilitate positional cloning of sorghum genes and QTLs associated with the early stages of grain crop domestication. This library was established from 12 different ligations using high-molecular-weight DNA generated from either one cycle or two cycles of size selection. This library consists of 38 016 BAC clones with an estimated average insert size of 126 kb and coverage of 6.6 genome equivalents. The 6.6 genome-equivalent BAC library of S. propinquum provides a 99.7% probability of finding one or more BACs that contain genes of interest. Twenty mapped DNA probes, ten homologous and ten heterologous, were used to screen the library, and 121 positive clones were identified, 6.05 per locus or 6.37 per probe. Abbreviations: BAC, bacterial artificial chromosome; QTL, quantitative trait locus Introduction Dominant and additive alleles have advantages over recessive alleles for positional cloning. Test- Genetic mapping of crosses between cultivated plants ing of candidate DNA sequences for mutant com- and their wild relatives has shown that at many loci, plementation requires that the candidate sequence be crop domestication has been associated with selec- genetically dominant or additive to the native se- tion for recessive mutant alleles in the cultivated type. quence. Further, some loss-of function mutations may For example, studies of fruit mass (size) and Brix be deletions that substantially truncate or eliminate (soluble solids concentration) of tomato (Lycopersi- transcripts. This would preclude the use of many meth- con esculentum,2n D 24) have shown that the ods for identifying candidate transcripts. Thus, BAC majority of QTLs with either dominant and/or ad- libraries of wild species that harbor dominant and ditive effects were contributed by wild species [55]. additive alleles for many traits offer unique advan- Six traits related to domestication were analyzed in tages for map-based cloning (positional cloning). This the F2 of Sorghum bicolor BTx623(a cultivar) × S. propinquum BAC library provides a valuable com- Sorghum propinquum (a wild relative of S. bicolor), plement to an established S. bicolor BAC library [52] and S. propinquum possessed most of the dominant for cloning of genes associated with domestication and alleles (Table 1) [39] at five traits (grain shattering, many other traits. plant height, flowering time, tiller number, rhizoma- Sorghum is a suitable species for positional cloning tousness). because of its relatively small genome size and high- density RFLP map. The haploid genome size of 512 Table 1. Mode of gene action of S. propinquum alleles for six recombination (S. Choi and R. Wing, unpublished traits related to domestication. data); and linearized BAC DNA using the Cre-lox sys- Trait Number of Mode of gene actiona tem has been used successfully to generate transgenic genes/QTLs D A R O animals [35]. BAC clones are also suitable for FISH (fluorescence in situ hybridization) analysis which en- Shattering 1 1 0 0 0 ables direct gene localization on chromosomes [29, Plant height 6 4 1 1 1 45, 52]. Flowering 3 2 0 0 0 Tiller number 4 1 2 0 0 We describe the construction and characterization Rhizomatousness 8 2 4 1 1 of a BAC library of S. propinquum. S. propinquum Seed size 9 2 1 0 0 has been utilized in RFLP linkage mapping and QTL Sum 31 12 8 2 2 analysis of many important traits related to sorghum domestication and productivity [16, 31, 38, 40]. Fur- aD, dominant; A, additive; R, recessive; O, overdominant. ther, S. propinquum appears to have been the ancestor that conferred many ‘weediness’ traits to johnsongrass (S. halepense), so offers opportunities to pursue new D sorghum is ca. 760 Mb (1C 0.8 pg) [4], second dimensions in agricultural research [40]. A 2.7× BAC smallest only to rice among major crops in the Poaceae library has already been made for the S. bicolor family, and the chromosome number of both Sorghum mapping parent that was crossed to S. propinquum D bicolor and S. propinquum is 2n 20 [24]. At least for RFLP [16] and QTL mapping [31, 38, 40]. A six sorghum linkage maps have been established by S. propinquum library is a valuable complement. RFLP and other DNA markers [8, 9, 16, 28, 41, 42, 50, 53]. More than 2100 RFLP loci have been mapped × on the interspecific F2 population of S. bicolor Materials and methods S. propinquum [ 16, Paterson et al., unpublished data). This high density of DNA markers, about 0.7 cM or an S. propinquum BAC library construction average of 350 kb between DNA markers, is suitable for fine mapping of gene(s) and QTLs, and physical Megabase DNA isolation for ligation mapping. Vegetative clones of the S. propinquum mapping par- Positional cloning has been successfully used to ent (unnamed accession) were grown in the green- clone several important genes in plants [3, 13, 33, 46]. house. Young leaves were cut into small pieces, One essential factor for positional cloning is a large wrapped in foil, and stored at −80 ◦C. To isolate insert DNA library to expedite ‘chromosome walk- megabase DNA, the nuclei preparation methods of ing’. Although YAC vectors [10] can carry inserts over Zhao et al. [58] and Zhang et al. [57) were adopted 900 kb [18, 20, 26], they are associated with problems with modifications. Young leaf tissue was put in liq- such as chimerism, insert rearrangement, clonal in- uid nitrogen and ground into powder. The powder stability, and difficulty of manipulation. BAC vectors was homogenized with 1× HB buffer (10 mM Tris, [25, 45], which are Escherichia coli F factor-based 80 mM KCl, 10 mM EDTA, 1 mM spermine, 1 mM systems, are easier to manipulate and do not have spermidine; 0.5 M sucrose, pH 9.4–9.5), 0.15% 2- the chimerism problem because they have only one mercaptoethanol and 0.5% Triton. The isolated nuclei or two copies per cell. Xa21, a rice disease resistance were embedded in agarose plugs with SCE buffer gene, is the first example of positional cloning using a (1 M sorbitol, 0.1 M sodium citrate, 60 mM EDTA, BAC library [46]. By anchoring ‘BAC islands’ to high- pH 7.0) and lysed with lysis buffer (1% sodium lauryl density RFLP maps, and aligning BACs using high sarcosine, 0.5 M EDTA pH 9.3–9.4, 1 mg/ml Pro- throughput fingerprinting [32], sequence-ready contig teinase K), at 50 ◦C for 48 h. Lysis buffer was changed maps might be generated for the complex genomes of once during lysis. Before restriction enzyme digestion, many well-mapped crops. Modified BAC vectors are the agarose plugs were washed with 0.1 mM PMSF suitable for mutant complementation testing and gene (phenylmethylsulfonyl fluoridein, Sigma, USA) for expression. For example, binary-BAC (BIBAC) vec- 1 h on ice to inactivate Proteinase K. The PMSF so- tors can be used directly for plant transformation via lution was then replaced with fresh T10E10 (10 mM Agrobacterium tumefaciens [27]; pBACwich vectors Tris-HCl, 10 mM EDTA pH 8.0) by adding fresh can be used for plant transformation by site-specific T10E10 every 20 min for 1 h. DNA agarose plugs were 513 equilibrated with restriction enzyme buffer by adding Ligation and transformation fresh buffer every 30 min for 1 h. Size-selected HindIII DNA fragments were ligated About 60 mg of S. propinquum nuclei-containing into dephosphorylated pBeloBAC11 vector at a ratio agarose plugs, which contained about 1.2 µgofDNA of 15 ng vector to 60 ng insert, in a total volume of in each plug, were sliced into small pieces and equili- 60 µl. Ligations were performed in 1× ligase buffer brated with three different amounts of HindIII (18, 24, with 200 units of T4 DNA ligase (NEB, USA) and or 30 units) plus digestion buffer (New England Bio- incubated at 16 ◦C for at least 16 h. To remove salt labs, USA) on ice for 5 h, to ensure that HindIII could from ligation buffer, ligation mix was placed on a drop diffuse into sliced plugs to achieve an even digestion. dialysis filter (Catalog number VSWP 02500, Milli- ◦ Partial digestions were incubated at 37 Cfor5min. pore, USA) and floated on 0.5× TE for 30 min to 1 h. Partially digested DNA was separated by PFGE in a Ligation mix (3 µl) was used to transform 25 µlof 1% SeaPlaque agarose gel (FMC, USA) in 1× TAE E. coli ElectroMAX DH10B cells (Gibco-BRL, USA) ◦ buffer at 14 C using HEXCHEF 6000 and the MJ by electroporation using the Gene Pulser II (BioRad, Research Programmable Power Inverter (USA). Lig- USA) at the following optimized conditions: capaci- ations 1–9 were prepared from DNA subjected to one tance 25 µF, resistance 100 , and a voltage gradient cycle of size selection with either 5 s or 8 s pulse time.
Recommended publications
  • Leveraging the Rice Genome Sequence for Monocot Comparative and Translational Genomics
    Theor Appl Genet (2007) 115:237–243 DOI 10.1007/s00122-007-0559-4 ORIGINAL PAPER Leveraging the rice genome sequence for monocot comparative and translational genomics H. C. Lohithaswa · F. A. Feltus · H. P. Singh · C. D. Bacon · C. D. Bailey · A. H. Paterson Received: 12 September 2006 / Accepted: 14 April 2007 / Published online: 24 May 2007 © Springer-Verlag 2007 Abstract Common genome anchor points across many Pennisetum (33.3%), Sorghum (47.9%), Zea (33.3%), Triti- taxa greatly facilitate translational and comparative genom- cum (30.2%), and representatives of the palm family ics and will improve our understanding of the Tree of Life. (32.3%) suggest that subsets of these primers will provide To add to the repertoire of genomic tools applicable to the DNA markers suitable for comparative and translational study of monocotyledonous plants in general, we aligned genomics in orphan crops, as well as for applications in Allium and Musa ESTs to Oryza BAC sequences and iden- conservation biology, ecology, invasion biology, popula- tiWed candidate Allium-Oryza and Musa-Oryza conserved tion biology, systematic biology, and related Welds. intron-scanning primers (CISPs). A random sampling of 96 CISP primer pairs, representing loci from 11 of the 12 chro- mosomes in rice, were tested on seven members of the Introduction order Poales and on representatives of the Arecales, Aspar- agales, and Zingiberales monocot orders. The single-copy The angiosperm class Liliopsida (monocots) is thought to ampliWcation success rates of Allium (31.3%), Cynodon have derived from a common ancestral form as determined (31.4%), Hordeum (30.2%), Musa (37.5%), Oryza (61.5%), by morphological and molecular analyses (Chase 1995; Judd et al.
    [Show full text]
  • Sorghum Biology
    Sorghum Biology Extract with Executive and Extended Summary, non-active content list and literature list related to the book manuscript Klaus Ammann, [email protected], Version April 20, 2010 and July 2011 Fig. 1 Oklahoma Farm Bureau, Galleries Grain Sorghum http://www.okfarmbureau.org/press_pass/galleries/grainSorghum/Sorghum2.jpg Fig. 2 Schools in West Africa: Students threshing and winnowing sorghum earlier harvested from the school farm. http://wassumbee.blogspot.com/2006/01/schools-in-west-africa-1.html Fig. 3 Lysine Biosynthesis in Sorghum bicolor: GenomeNet Database Service, from KEGG: Kyoto Encyclopedia of Genes and Genomes http://www.genome.jp/dbget-bin/get_pathway?org_name=esbi&mapno=00300 Active contents list for the executive summary of Sorghum Biology Sorghum Biology .................................................................................................................. 1 Extract with Executive Summary, non-active content list and literature list related to the book manuscript .......................................................................................... 1 Active contents list for the executive summary of Sorghum Biology ......................... 3 1. Preface ............................................................................................................................... 5 2a. Executive Summary ....................................................................................................... 7 2a.1. General Remarks ..................................................................................................................................................................................
    [Show full text]
  • Genotyping by Sequencing of 393 Sorghum Bicolor Btx623 × IS3620C Recombinant Inbred Lines
    bioRxiv preprint doi: https://doi.org/10.1101/308478; this version posted April 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Genotyping by sequencing of 393 Sorghum bicolor BTx623 × IS3620C recombinant inbred lines 2 improves sensitivity and resolution of QTL detection 3 4 WenQian Kong *, Changsoo Kim *, Dong Zhang*, Hui Guo*, Xu Tan*, Huizhe Jin*, Chengbo 5 Zhou*, Lan-shuan Shuang *, Valorie Goff *, Uzay Sezen *, Gary Pierce *, Rosana Compton *, 6 Cornelia Lemke *, Jon Robertson *, Lisa Rainville *, Susan Auckland *, Andrew H. Paterson * 7 *Plant Genome Mapping Laboratory, University of Georgia, Athens GA 30605 8 1 bioRxiv preprint doi: https://doi.org/10.1101/308478; this version posted April 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 9 Running Title: GBS of Sorghum bicolor RIL 10 11 Keywords: quantitative trait loci, genetic mapping, plant architecture, flowering, Paleo- 12 duplication 13 14 Corresponding author: Andrew H. Paterson 15 Address: 111 Riverbend Road, RM 228, Athens GA, 30605 16 Email: [email protected] 17 Phone: 1-706-583-0162 18 2 bioRxiv preprint doi: https://doi.org/10.1101/308478; this version posted April 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 We describe a genetic map with a total of 381 bins of 616 genotyping by sequencing 21 (GBS)-based SNP markers in a F6-F8 recombinant inbred line (RIL) population of 393 22 individuals derived from crossing S.
    [Show full text]
  • Detection and Identification of Seed-Borne- Fungi Of
    Sudan University of Science and Technology College of Graduate Studies Detection and Identification of seed-borne- fungi of Some sorghum varieties under different storage Condition in Sudan ﻛﺷف وﺗﻌرﯾف اﻟﻔطرﯾﺎت اﻟﻣﺣﻣوﻟﺔ ﻋﻠﻲ ﺑذور ﺑﻌض أﺻﻧﺎف اﻟذرة ﺗﺣت ظروف ﺗﺧزﯾن ﻣﺧﺗﻠﻔﺔ ﻓﻲ اﻟﺳودان A thesis submitted in partial fulfillment of the requirements for the M.Sc. Degree in Plant Protection By: Ashraf Mohi Eldien Mohammed Dawod Sudan University of Science and Technology Department of Plant Protection B.Sc. Agric. (Honors), 2003. Supervisor: Dr. Ibrahim Saeed Mohamed Department of Plant Protection College of Agricultural Studies -Shambat Sudan University of Science and Technology 2016 اﻵﯾﺔ ﻗﺎل ﺗﻌﺎﻟﻲ: ﺑﺴﻢ اﻟﻠﮫ اﻟﺮﺣﻤﻦ اﻟﺮﺣﯿﻢ وَﻗَﺎلَ اﻟْﻤَﻠِﻚُ إِﻧِّﻲ أَر َى ٰ ﺳَﺒْﻊَ ﺑَﻘَﺮ َاتٍ ﺳِﻤَﺎنٍ ﻳَﺄْﻛُﻠُﻬُﻦﱠ ﺳَﺒْﻊٌ ﻋِﺠَﺎف ٌ وَﺳَﺒْﻊَ ﺳُﻨْﺒَُتٍ ﺧُﻀ ْﺮٍ وَأُﺧَﺮ َ ﻳ َﺎ ﻳَﺎﺑِﺴَﺎتٍ ◌ۖأَﻳﱡﻬ َﺎ اﻟْﻤ ََُ أَﻓْﺘُﻮﻧِﻲ ﻓِﻲ ر ُؤْﻳَﺎيَ إِن ْ ﻛُﻨْﺘُﻢ ْ ﻟِﻠﺮﱡؤْﻳَﺎ ﺗَﻌْﺒُﺮ ُون َ ﻗ َ ﺎﻟُﻮا[43] أ َﺿ ْﻐ َ ﺎث ُ أ َﺣ ْ َم ٍ ◌ۖ و َﻣ َﺎ ﻧَﺤ ْﻦ ُ ﺑِﺘَﺄْوِﻳﻞِ اَْﺣ َْمِ ﺑِﻌَﺎﻟِﻤِﻴﻦ َ و َﻗَﺎلَ [44] اﻟﱠﺬِي ﻧَﺠ َﺎ ﻣِﻨْﻬ ُﻤ َﺎ و َادﱠﻛَﺮ َ ﺑ َﻌ ْﺪَ أُﻣﱠﺔٍ أَﻧَﺎ أُﻧَﺒ ِّﺌُﻜُﻢ ْ ﺑِﺘَﺄْوِﻳﻠِﻪِ ﻓَﺄَر ْﺳِﻠُﻮنِ [45] ﻳُﻮﺳُﻒ ُ أَﻳﱡﻬَﺎ اﻟﺼ ّ ِﺪِّﻳﻖُ أَﻓْﺘِﻨَﺎ ﻓِﻲ ﺳَﺒْﻊِ ﺑَﻘَﺮ َاتٍ ﺳِﻤَﺎنٍ ﻳَﺄْﻛُﻠُﻬُﻦﱠ ﺳَﺒْﻊٌ ﻋِﺠَﺎف ٌ وَﺳَﺒْﻊِ ﺳُﻨْﺒَُتٍ ﺧُﻀ ْﺮٍ وَأُﺧَﺮ َ ﻳَﺎﺑِﺴَﺎتٍ ﻟَﻌَﻠِّﻲ أَر ْﺟِﻊُ إِﻟَﻰ اﻟﻨﱠﺎس ِ ﻟَﻌَﻠﱠﻬُﻢ ْ ﻳَﻌْﻠَﻤ ﻗَﺎلَُﻮن َ ﺗَﺰْر [46]َﻋُﻮن َ ﺳَﺒْﻊَ ﺳِﻨِﻴﻦ َ دَأَﺑ ًﺎ ﻓَﻤَﺎ ﺣ َﺼ َﺪْﺗُﻢ ْ ﻓَﺬَر ُوهُ ﻓِﻲ ﺳ ُﻨْﺒ ُﻠِﻪِ إِﱠ ﻗَﻠِﻴً ﻣِﻤﱠﺎ ﺗَﺄْﻛُﻠُ ﻮن َ [47] ﺛ ُﻢ ﱠ ﻳَﺄْﺗِﻲ ﻣِﻦ ْ ﺑَﻌْﺪِ ذَٰﻟِﻚَ ﺳَﺒ ْﻊ ٌ ﺷِﺪَادٌ ﻳَﺄْﻛُﻠْﻦ َﻗَﺪﱠﻣ ﻣ َﺎْﺘُﻢ ْ ﻟَﻬ ُﻦﱠ إِﱠ ﻗَﻠِﻴً ﻣ ِ ﻤ ﱠﺎ ﺗ ُﺤ ْ ﺼ ِ ﻨ ﺛُﻢﱠ ُﻮن ﻳ َ َﺄْﺗِﻲ [48]ﻣِﻦ ْ ﺑ َﻌ ْﺪِ ذَٰﻟِﻚَ ﻋَﺎم ٌ ﻓِﻴﻪِ ﻳ ُﻐَ ﺎث ُ اﻟﻨﱠﺎس ُ و َ ﻓِﻴﻪ ِ ﻳ َﻌ ْ ﺼ ِ ﺮ ُ ون َ [49] ﺻﺪق اﻟﻠﮫ اﻟﻌﻈﯿﻢ ﺳﻮرة ﯾﻮﺳﻒ(49-43) I Dedication To My: Family, Teachers And every Friends.
    [Show full text]
  • Research Article Comparative Chloroplast Genomes of Sorghum Species: Sequence Divergence and Phylogenetic Relationships
    Hindawi BioMed Research International Volume 2019, Article ID 5046958, 11 pages https://doi.org/10.1155/2019/5046958 Research Article Comparative Chloroplast Genomes of Sorghum Species: Sequence Divergence and Phylogenetic Relationships Yun Song ,1 Yan Chen,1 Jizhou Lv,2 Jin Xu,1 Shuifang Zhu,1 and MingFu Li 1 1 Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China 2Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China Correspondence should be addressed to Yun Song; [email protected] and MingFu Li; [email protected] Received 21 November 2018; Revised 22 January 2019; Accepted 26 February 2019; Published 19 March 2019 Academic Editor: Gerald J. Wyckof Copyright © 2019 Yun Song et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Sorghum comprises 31 species that exhibit considerable morphological and ecological diversity. Te phylogenetic relationships among Sorghum species still remain unresolved due to lower information on the traditional DNA markers, which provides a limited resolution for identifying Sorghum species. In this study, we sequenced the complete chloroplast genomes of Sorghum sudanense and S. propinquum and analyzed the published chloroplast genomes of S. bicolor and S. timorense to retrieve valuable chloroplast molecular resources for Sorghum. Te chloroplast genomes ranged in length from 140,629 to 140,755 bp, and their gene contents, gene orders, and GC contents were similar to those for other Poaceae species but were slightly diferent in the number of SSRs.
    [Show full text]
  • Naturalisedenvweedlist2007 .Pdf
    file: naturalised schedule master list Oct 2007.doc Steve Goosem October2007 Naturalised Plant List - Wet Tropics Bioregion (refer page 13 for records 2002-2007) FAMILY SPECIES COMMON NAME Year LIFE FORM LIFE Pacific ROC WTMA World IWPW Qld first CYCLE Class category category worst Class recorded 100 Malvaceae Abelmoschus manihot aibika 1976 shrub perennial Mimosaceae Acacia concinna soap pod 1972 shrub perennial 1 Mimosaceae Acacia farnesiana cassie flower 1973 tree perennial D M Mimosaceae Acacia nilotica prickly acacia 2000 shrub perennial 3 H 2 Mimosaceae Acaciella angustissima white ball acacia 1996 shrub perennial Mimosaceae Acaciella glauca redwood 1 Euphorbiaceae Acalypha wilkesiana Fijian fire plant 1969 shrub perennial Asteraceae Acanthospermum hispidum starburr 1964 forb annual Polygonaceae Acetosella vulgaris sorrel 1958 forb perennial Fabaceae Aeschynomene americana var. American jointvetch 1983 forb annual americana Fabaceae Aeschynomene indica budda pea 1981 forb annual Fabaceae Aeschynomene micranthos 1992 forb Fabaceae Aeschynomene villosa hairy jointvetch 1934 forb Asteraceae Ageratina riparia mistflower 1996 shrub, forb perennial 4 2 H Asteraceae Ageratina riparia mist flower 1996 forb perennial Asteraceae Ageratum conyzoides bluetop, billygoat weed 1964 forb annual Asteraceae Ageratum houstonianum dark bluetop 1993 forb annual Araceae Aglaonema commutatum Philippine evergreen 2000 forb perennial Apocynaceae Allamanda blanchetii purple allamanda 2000 vine perennial Apocynaceae Allamanda cathartica yellow allamanda 1990
    [Show full text]
  • African Sorghum-Based Fermented Foods: Past, Current and Future Prospects
    nutrients Review African Sorghum-Based Fermented Foods: Past, Current and Future Prospects Oluwafemi Ayodeji Adebo Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg (Doornfontein Campus), P.O. Box 17011 Johannesburg, Gauteng 2028, South Africa; [email protected]; Tel.: +27-11-559-6261 Received: 28 February 2020; Accepted: 14 April 2020; Published: 16 April 2020 Abstract: Sorghum (Sorghum bicolor) is a well-known drought and climate resistant crop with vast food use for the inhabitants of Africa and other developing countries. The importance of this crop is well reflected in its embedded benefits and use as a staple food, with fermentation playing a significant role in transforming this crop into an edible form. Although the majority of these fermented food products evolve from ethnic groups and rural communities, industrialization and the application of improved food processing techniques have led to the commercial success and viability of derived products. While some of these sorghum-based fermented food products still continue to bask in this success, much more still needs to be done to further explore evolving techniques, technologies and processes. The addition of other affordable nutrient sources in sorghum-based fermented foods is equally important, as this will effectively augment the intake of a nutritionally balanced product. Keywords: sorghum; fermentation; lactic acid bacteria; fermented products; food security; 4th industrial revolution (4IR) 1. Introduction In terms of production quantity, sorghum is the fifth most important cereal crop in the world after rice, wheat, maize and barley, and the most grown cereal in Sub-Saharan Africa, after maize [1–3].
    [Show full text]
  • GENETIC ANALYSIS of PLANT ARCHITECTURE in SORGHUM by WENQIAN KONG (Under the Direction of Andrew H. Paterson) ABSTRACT Plant
    GENETIC ANALYSIS OF PLANT ARCHITECTURE IN SORGHUM by WENQIAN KONG (Under the Direction of Andrew H. Paterson) ABSTRACT Plant architecture is the three-dimensional organization of the plant body. Above- ground architecture is determined by the size, shape and positions of leaves, stems and flowers; and underground architecture by roots and rhizomes. We conduct quantitative trait locus (QTL) mapping in a recombinant inbred line (RIL) population derived from two morphologically distinct parents, S. bicolor and S. propinquum , to identify genomic regions responsible for vegetative branching pattern and rhizomatousness, respectively, and to facilitate comparisons between these two traits and among their respective components. We show overlapping genetic control of above-ground and below-ground plant architecture, validate quantitative trait loci (QTLs) previously reported in an F2 population of the same cross, and discover additional QTLs. Understanding the genetic determinants of plant architecture sheds new light on genetic manipulation of plants for a variety of purposes, and advances progress towards identification of underlying genes that may contribute to plant growth regulation. INDEX WORDS: Vegetative branching; Rhizomes; Quantitative trait loci GENETIC ANALYSIS OF PLANT ARCHITECTURE IN SORGHUM by WENQIAN KONG B.S., Yangzhou University, China, 2010 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2013 © 2013 Wenqian Kong All Rights Reserved GENETIC ANALYSIS OF PLANT ARCHITECTURE IN SORGHUM by WENQIAN KONG Major Professor: Andrew H. Paterson Committee: Peng-Wah Chee John M. Burke Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia May 2013 ACKNOWLEDGMENTS I would like to express my deep gratitude to my advisor, Dr.
    [Show full text]
  • B Chromosomes in Genus Sorghum (Poaceae)
    plants Review B Chromosomes in Genus Sorghum (Poaceae) Martina Bednáˇrová, Miroslava Karafiátová, Eva Hˇribová and Jan Bartoš * Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitel ˚u31, 779 00 Olomouc, Czech Republic; [email protected] (M.B.); karafi[email protected] (M.K.); [email protected] (E.H.) * Correspondence: [email protected] Abstract: B chromosomes (Bs) are supernumerary dispensable genomic elements that have been reported in several thousand eukaryotic species. Since their discovery, Bs have been subjected to countless studies aiming at the clarification of their origin, composition, and influence on the carriers. Despite these efforts, we still have very limited knowledge of the processes that led to the emergence of Bs, the mechanisms of their transmission, and the effects of Bs on the hosts. In the last decade, sophisticated molecular methods, including next-generation sequencing, have provided powerful tool to help answer some of these questions, but not many species have received much attention yet. In this review, we summarize the currently available information about Bs in the genus Sorghum, which has so far been on the periphery of scientific interest. We present an overview of the occurrence and characteristics of Bs in various Sorghum species, discuss the possible mechanisms involved in their maintenance and elimination, and outline hypotheses of the origin of Bs in this genus. Keywords: B chromosomes; supernumerary chromosomes; Sorghum; chromosome elimination; phylogenesis; evolution Citation: Bednáˇrová,M.; Karafiátová, M.; Hˇribová,E.; Bartoš, J. B Chromosomes in Genus Sorghum 1. Introduction (Poaceae).
    [Show full text]
  • Development of Perennial Grain Sorghum
    sustainability Article Development of Perennial Grain Sorghum Stan Cox 1,*, Pheonah Nabukalu 1, Andrew H. Paterson 2, Wenqian Kong 2 and Shakirah Nakasagga 3 1 The Land Institute, Salina, KS 67401, USA; [email protected] 2 Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605 USA; [email protected] (A.H.P.) [email protected] (W.K.) 3 Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA, [email protected] * Correspondence: [email protected] Received: 15 December 2017; Accepted: 6 January 2018; Published: 12 January 2018 Abstract: Perennial germplasm derived from crosses between Sorghum bicolor and either S. halepense or S. propinquum is being developed with the goal of preventing and reversing soil degradation in the world’s grain sorghum-growing regions. Perennial grain sorghum plants produce subterranean stems known as rhizomes that sprout to form the next season’s crop. In Kansas, breeding perennial sorghum involves crossing S. bicolor cultivars or breeding lines to S. halepense or perennial n S. bicolor × S. halepense breeding lines, selecting perennial plants from F2 or subsequent populations, crossing those plants with S. bicolor, and repeating the cycle. A retrospective field trial in Kansas showed that selection and backcrossing during 2002–2009 had improved grain yields and seed weights of breeding lines. Second-season grain yields of sorghum lines regrowing from rhizomes were similar to yields in the first season. Further selection cycles have been completed since 2009. Many rhizomatous lines that cannot survive winters in Kansas are perennial at subtropical or tropical locations in North America and Africa.
    [Show full text]
  • Index to Scientific Plant Names
    FLORA OF SINGAPORE, Vol. 7: 503–525 (2019) INDEX TO SCIENTIFIC PLANT NAMES The names of families, genera, species, subspecies and varieties in bold are those treated in this volume. Page numbers in bold denote the main treatment. Bracketed page numbers in bold denote figures. All other accepted names are in normal type. Synonyms (including basionyms, invalid, illegitimate and misapplied names) are in italics. Abildgaardia Vahl 122 Amaranthaceae 226 Abildgaardia fusca Nees 134 Ampelodesma thouarii T.Durand & Schinz ex Abildgaardia monostachya (L.) Vahl 140 B.D.Jacks 397 Abolboda Bonpl. 7, 8 Amphilophis (Trin.) Nash 265 Abolbodaceae 7, 8 Amphilophis glabra (Roxb.) Stapf 266 Acroceras Stapf 239, 255, 256 Amphilophis intermedia (R.Br.) Stapf 266 Acroceras crassiapiculatum (Merr.) Hitchc. 256 Anastrophus compressus (Sw.) Schltdl. ex Nash 263 Acroceras munroanum (Balansa) Henrard 256, Anastrophus platycaulon (Poir.) Nash 263 (257) Andropogoneae 231, 440 Acroceras oryzoides Stapf 255 Andropogoneae – Coicinae Rchb. 285 Acroceras ridleyi (Hack.) Stapf ex Ridl. 258 Andropogon L. subgen. Amphilophis (Trin.) Trin. ex Acroceras sparsum Stapf ex Ridl. 258 Hack. 265 Acroceras tonkinense (Balansa) C.E.Hubb. ex Bor Andropogon L. subgen. Chrysopogon (Trin.) Hack. 255, 256, 258 279 Acroceras zizanioides (Kunth) Dandy 255 Andropogon L. subgen. Dichanthium (Willemet) Actinocephalus (Körn.) Sano 17 Hack. 296 Actinoscirpus (Ohwi) Haines & Lye 39, 45, 149 Andropogon L. subgen. Heteropogon (Pers.) Hack. Actinoscirpus grossus (L.f.) Goetgh. & 353 D.A.Simpson 38, 45, 46, (47) Andropogon L. subgen. Schizachyrium (Nees) Hack. Agrostis compressa (Sw.) Poir. 262 451 Agrostis compressa Willd. 262 Andropogon L. subgen. Sorghum (Moench) Hack. Agrostis diandra Retz. 470 464 Agrostis elongata Lam.
    [Show full text]
  • Sorghum Halepense (1 July - 30 November 2015)
    International Plant Protection Convention Compiled comments - 2006-027: DRAFT ANNEX to ISPM 27– Sorghum halepense (1 July - 30 November 2015) 2006-027: DRAFT ANNEX to ISPM 27– Sorghum halepense Comm Para Comment Comment Explanation Country . type no. no. 1. G Editorial It is recommended that this protocol paragraphs are Clarify Costa Rica numbered for clarity and document management. 2. G Substantive I support the document as it is and I have no comments Georgia, Singapore, New Zealand, Nepal, Mexico, Congo, South Africa, Barbados, Bahrain, Guyana, Belize, Ghana, Burundi 3. G Technical 1. We would like to request the TPDP to include in this See comment Peru diagnostic protocol the uncertainty level of each method described in section 4, if available, in order to know their level of analytical confidence. We would also like the TPDP to consider the possibility to include a comparative table containing all methods with their uncertainty levels. 2. We suggest the TPDP to reflect in this DP that morphological identification of seeds should be complemented by the morphological identification of plants as diagnostic confirmation test. 3. QBOL is a consortium of 20 partners (universities, research institutes and phytosanitary organizations) from all over the world working together and sharing their research expertise in the field of DNA barcoding of Arthropods, Bacteria, Fungi, Nematodes, Phytoplasmas and Viruses. Thereby, we would like to request the TPDP to evaluate the relevance to include this method in protocols. v 4. G Technical 1. We would like to request the TPDP to include in this See comment Argentina diagnostic protocol the uncertainty level of each method described in section 4, if available, in order to know their level of analytical confidence.
    [Show full text]