African Sorghum-Based Fermented Foods: Past, Current and Future Prospects

Total Page:16

File Type:pdf, Size:1020Kb

African Sorghum-Based Fermented Foods: Past, Current and Future Prospects nutrients Review African Sorghum-Based Fermented Foods: Past, Current and Future Prospects Oluwafemi Ayodeji Adebo Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg (Doornfontein Campus), P.O. Box 17011 Johannesburg, Gauteng 2028, South Africa; [email protected]; Tel.: +27-11-559-6261 Received: 28 February 2020; Accepted: 14 April 2020; Published: 16 April 2020 Abstract: Sorghum (Sorghum bicolor) is a well-known drought and climate resistant crop with vast food use for the inhabitants of Africa and other developing countries. The importance of this crop is well reflected in its embedded benefits and use as a staple food, with fermentation playing a significant role in transforming this crop into an edible form. Although the majority of these fermented food products evolve from ethnic groups and rural communities, industrialization and the application of improved food processing techniques have led to the commercial success and viability of derived products. While some of these sorghum-based fermented food products still continue to bask in this success, much more still needs to be done to further explore evolving techniques, technologies and processes. The addition of other affordable nutrient sources in sorghum-based fermented foods is equally important, as this will effectively augment the intake of a nutritionally balanced product. Keywords: sorghum; fermentation; lactic acid bacteria; fermented products; food security; 4th industrial revolution (4IR) 1. Introduction In terms of production quantity, sorghum is the fifth most important cereal crop in the world after rice, wheat, maize and barley, and the most grown cereal in Sub-Saharan Africa, after maize [1–3]. It remains one of the most versatile cereal crops on the continent, serving as a staple and main meal for millions of people [1,3,4]. It is an important source of calories, variety of nutrients and beneficial food components [5–7]. With the increasing world population, decrease in water supply and the effects of climate change, this drought resistant food crop is vital for human utilization and will be an important crop for the future. Amongst all the available food processing techniques, fermentation is an age-long process, known to improve nutritional qualities, palatability and consumer appeal [8–11]. Derived fermented food products continue to constitute an important part of our daily diet and are estimated to provide about a third of world food supplies [12]. These foods are known to confer beneficial effects, including therapeutic and functional properties, in addition to possessing antimicrobial, antioxidant, probiotic and cholesterol-lowering attributes, and are a source of some other important bioactive compounds [11,13–17]. Accordingly, fermented sorghum-based foods have a long history and strong cultural ties to the African people in particular. Although sorghum is the third most produced cereal grain in Africa after maize and rice, it has not been fully utilized for industrial processing as compared to other major cereals. Rapid urbanization, an increasing population, the cost of other imported cereal commodities and the demand for high quality functional foods have nonetheless driven the rise in the consumption of sorghum-based food products. Further to this, the demand for gluten-free foods for people with celiac disease and other intolerances to wheatpositions sorghum as a suitable substrate for these types of diet. There is also an upsurge Nutrients 2020, 12, 1111; doi:10.3390/nu12041111 www.mdpi.com/journal/nutrients Nutrients 2020, 12, 1111 2 of 25 and renewedNutrients 2020 interest, 12, x FOR in PEER the REVIEW use of alternative, climate-smart and traditional grains, like2 sorghum, of 25 in modern food products [18]. Particularly important is the vital role that sorghum plays as one of the mainceliac sources disease and of food other and intolerances energy, similarlyto wheatpositions to other sorghum cereals. as This a suitable review substrate describes for sorghum-basedthese types fermentedof diet. foods, There highlightingis also an upsurge notable and traditionally renewed interest processed in the products use of alternative, that have climate become-smart a commercial and success.traditional Prospects grains, for like the sorghum, future and in possibilitiesmodern food ofproducts areas that [18]. should Particularly be explored important are is alsothe vital emphasized. role that sorghum plays as one of the main sources of food and energy, similarly to other cereals. This 2. Overviewreview describes on Sorghum sorghum-based fermented foods, highlighting notable traditionally processed products that have become a commercial success. Prospects for the future and possibilities of areas Judgingthat should from be explored the 2017 are availablealso emphasized. data from FAOSTAT, Africa is the largest contributor to world sorghum production, with a production quantity of approximately 29.7 million tonnes [1]. Sorghum2. Overview grains on are Sorghum a widely adaptable species and mostly cultivated in tropical, subtropical and temperateJudging regions from [19]. the As 2017 a drought available tolerant data from and FAOSTAT, a climate-smart Africa cropis the underlargest the contributor prevailing to world realities of climatesorghum change, production its utilization, with a is production spread across quanti diversety of approximately industries, including29.7 million for tonnes animal [1]. feed,Sorghum biofuels, forage,grains ethanol are a productionwidely adaptable and fodder species preservation and mostly cultivated [20,21]. Itin remains tropical, onesubtropical of the mostand temperate versatile food cropsregions in Africa. [19]. As a drought tolerant and a climate-smart crop under the prevailing realities of climate change, its utilization is spread across diverse industries, including for animal feed, biofuels, forage, Sorghum belongs to the Andropogoneae tribe and Poaceae family and is a known C4 crop ethanol production and fodder preservation [20,21]. It remains one of the most versatile food crops (i.e., it uses the C carbon fixation pathway to increase its photosynthetic efficiency), particularly in Africa. 4 adapted to hot, drought-prone and semi-arid tropical environments with less rainfall. It is said Sorghum belongs to the Andropogoneae tribe and Poaceae family and is a known C4 crop (i.e., it to have originated from the Northeast quadrant of Africa [22]. Millet, barley, teff and wheat are uses the C4 carbon fixation pathway to increase its photosynthetic efficiency), particularly adapted to also membershot, drought of-prone the Poaceae and semifamily-arid tropical [23] and environments are likewise with known less rainfall. for their It is said ecological to have originated dominance in manyfrom ecosystems, the Northeast as well quadrant as their of capacityAfrica [22] to. growMillet, in barley, low rainfall teff and and wheat harsh are environmentalalso members of extremes the conditionsPoaceae [family24]. As [23] indicated and are likewise by Ratnavathi known for and their Komala ecological [25], dominance over 20 sorghum in many speciesecosystems are, knownas and thesewell as include: their capacitySorghum to grow almum, in low Sorghum rainfall and amplum, harsh environmental Sorghum angustum, extremes Sorghum conditions arundinaceum, [24]. As Sorghumindicated bicolor, bySorghum Ratnavathi brachypodum, and Komala Sorghum[25], overbulbosum, 20 sorghum Sorghum species burmahicum,are known and Sorghum these include ecarinatum,: SorghumSorghum exstans, almum, Sorghum Sorghum grande,amplum, SorghumSorghum angustum, halepense, Sorghum Sorghum arundinaceum, interjectum, Sor Sorghumghum bicolor, intrans, Sorghum brachypodum, Sorghum bulbosum, Sorghum burmahicum, Sorghum ecarinatum, Sorghum exstans, Sorghum laxiflorum, Sorghum leiocladum, Sorghum macrospermum, Sorghum matarankense, Sorghum nitidum, Sorghum grande, Sorghum halepense, Sorghum interjectum, Sorghum intrans, Sorghum laxiflorum, Sorghum Sorghum plumosum, Sorghum propinquum, Sorghum purpureosericeum, Sorghum stipoideum, leiocladum, Sorghum macrospermum, Sorghum matarankense, Sorghum nitidum, Sorghum plumosum, SorghumSorghum timorense, propinquum, Sorghum Sorghum trichocladum, purpureosericeum, Sorghum versicolor, Sorghum Sorghumstipoideum, verticiliflorum Sorghum timorense,and Sorghum Sorghum vulgare var. technicumtrichocladum,. Notable Sorghum among versicolor, these Sorghum is S. bicolor verticiliflorum, known and for Sorghum its food vulgare use. var. technicum. Notable Sorghumamong these grains is S. arebicolor single, known seeded, for its with food their use. pericarp surrounding and tight adherence to the seed coat [6,26Sorghum]. Its grass grains varies are between single seeded 0 and, with 6 m their in height, pericarp with surrounding deep, spreading and tight roots adher andence a solidto the stem. Sorghumseed coat kernels [6,26] are. Its usually grass varies flattened between spheres 0 and measuring 6 m in height, about with 4, deep, 2.5 and spreading 3.5 mm roots in length, and a solid thickness and width,stem. Sorghum respectively, kernels with are usually an average flattened weight spheres of about measuring 25 mg about [26]. 4, Sorghum 2.5 and 3.5 grains mm in can length, typically be white,thickness pale and orange, width, tan, respectively, red, dark with brown an average and brownish-red weight of about [5,26 25,27 mg], but[26]. theSorghum major grains commercially can typically be white, pale orange, tan, red, dark
Recommended publications
  • Dietary Intake, Physical Activity and Risk for Chronic Diseases of Lifestyle Among Employees at a South African Open-Cast Diamond Mine
    DIETARY INTAKE, PHYSICAL ACTIVITY AND RISK FOR CHRONIC DISEASES OF LIFESTYLE AMONG EMPLOYEES AT A SOUTH AFRICAN OPEN-CAST DIAMOND MINE Thesis presented to the Department of Human Nutrition of the Stellenbosch University in partial fulfilment of the requirements for the degree Master of Nutrition by Karen Stadler Study Leader: Prof. D Labadarios (Head: Department of Human Nutrition, Stellenbosch University) Co-study Leader: Prof MG Herselman (Associate Professor: Department of Human Nutrition, Stellenbosch University) Co-study Leader: Ms N Fredericks (Dietician, Tygerberg Hospital) Statistician: Prof DG Nel (Director: Center for Statistical Consultation, Stellenbosch University) Confidentiality: B April 2006 ii DECLARATION OF AUTHENTICITY Hereby I, Karen Stadler, declare that this thesis is my own original work and that all sources have been accurately reported and acknowledged, and that this document has not previously, in its entirety or in part been submitted at any university in order to obtain an academic qualification. Karen Stadler Date: 21 February 2006 iii ABSTRACT INTRODUCTION: The study investigated dietary intake, physical activity and risk for chronic diseases of lifestyle (CDL) among employees at a South African open-cast diamond mine. OBJECTIVES: The aim of the study was to determine the habits and barriers to a healthy lifestyle in order to determine the need for workplace interventions at De Beers Venetia Mine (DB-VM) to decrease the risk for CDL and optimise employee wellness. DESIGN: An analytical, cross-sectional, observational study. SAMPLING: A representative proportional stratified sample of 88 permanent employees at DB-VM was randomly selected to participate in the study. The sample was stratified according to work-shift configuration and occupational category.
    [Show full text]
  • Preliminary Pages
    ! ! UNIVERSITY OF CALIFORNIA ! RIVERSIDE! ! ! ! ! Tiny Revolutions: ! Lessons From a Marriage, a Funeral,! and a Trip Around the World! ! ! ! A Thesis submitted in partial satisfaction ! of the requirements! for the degree of ! ! Master of !Fine Arts ! in!! Creative Writing ! and Writing for the! Performing Arts! by!! Margaret! Downs! ! June !2014! ! ! ! ! ! ! ! Thesis Committee: ! ! Professor Emily Rapp, Co-Chairperson! ! Professor Andrew Winer, Co-Chairperson! ! Professor David L. Ulin ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Copyright by ! Margaret Downs! 2014! ! ! The Thesis of Margaret Downs is approved:! ! !!_____________________________________________________! !!! !!_____________________________________________________! ! Committee Co-Chairperson!! !!_____________________________________________________! Committee Co-Chairperson!!! ! ! ! University of California, Riverside!! ! !Acknowledgements ! ! Thank you, coffee and online banking and MacBook Air.! Thank you, professors, for cracking me open and putting me back together again: Elizabeth Crane, Jill Alexander Essbaum, Mary Otis, Emily Rapp, Rob Roberge, Deanne Stillman, David L. Ulin, and Mary Yukari Waters. ! Thank you, Spotify and meditation, sushi and friendship, Rancho Las Palmas and hot running water, Agam Patel and UCR, rejection and grief and that really great tea I always steal at the breakfast buffet. ! Thank you, Joshua Mohr and Paul Tremblay and Mark Haskell Smith and all the other writers who have been exactly where I am and are willing to help. ! And thank you, Tod Goldberg, for never being satisfied with what I write. !Dedication! ! ! For Misty. Because I promised my first book would be for you. ! For my hygges. Because your friendship inspires me and motivates me. ! For Jason. Because every day you give me the world.! For Everest. Because. !Table of Contents! ! ! !You are braver than you think !! ! ! ! ! ! 5! !When you feel defeated, stop to catch your breath !! ! ! 26! !Push yourself until you can’t turn back !! ! ! ! ! 40! !You’re not lost.
    [Show full text]
  • Student Number: 201477310
    COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujcontent.uj.ac.za/vital/access/manager/Index?site_name=Research%20Output (Accessed: Date). Metabolomics, Physicochemical Properties and Mycotoxin Reduction of Whole Grain Ting (a Southern African fermented food) Produced via Natural and Lactic acid bacteria (LAB) fermentation A Thesis submitted to the Faculty of Science, University of Johannesburg, South Africa In partial fulfilment of the requirement for the award of a Doctoral Degree in Food Technology By OLUWAFEMI AYODEJI ADEBO STUDENT NUMBER: 201477310 Supervisor : Dr. E. Kayitesi Co-supervisor: Prof. P. B. Njobeh October 2018 EXECUTIVE SUMMARY Drought and challenges related to climate change are some of the issues facing sub-Saharan Africa countries, with dire consequences on agriculture and food security. Due to this prevailing situation, drought and climate resistant crops like sorghum (Sorghum bicolor (L) Moench) can adequately contribute to food security. The versatility and importance of sorghum is well reflected in its use as a major food source for millions of people in sub-Saharan Africa.
    [Show full text]
  • The Case of Zulu Women in Durban, South Africa
    Food Decisions and Cultural Perceptions of Overweight and Obesity: the Case of Zulu Women in Durban, South Africa Winifred Ogana Submitted in fulfillment of the academic requirements for the degree of Doctor of Philosophy in Anthropology, University of KwaZulu-Natal, Durban Supervisor: Associate Professor Vivian Ojong December 2014 DECLARATION I declare, to the best of my knowledge, the following statements to be true and correct: • This work has not been previously accepted in substance for any degree and is not being currently submitted in candidature for any degree. • This thesis is being submitted for the fulfillment of the requirements for the degree of Doctor of Philosophy in Anthropology. • This thesis is the result of my own independent investigation, except where otherwise stated. • Other sources are acknowledged by providing explicit references. A reference section is appended. __________________ ____________________ Winifred Ogana Date DEDICATION I would like to pay tribute to my late father, Hezekiah Julius Ogana, who encouraged not just his sons but daughters as well, to aim high in their academic pursuit. Likewise I would also like to acknowledge my mother, who supported all her children in innumerable ways in this venture. Similarly I’d like to thank my siblings Dan, Davy and Betty who helped me in different ways along the long walk to my academic goals. A special dedication goes to my niece Pamela and her supportive husband Eugene. She represents the successful category of women who conquered obesity and its attendant complications through her weight loss efforts. By changing both her diet and lifestyle dramatically, she managed to shed countless kilos within record time.
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • <I>Ustilago-Sporisorium-Macalpinomyces</I>
    Persoonia 29, 2012: 55–62 www.ingentaconnect.com/content/nhn/pimj REVIEW ARTICLE http://dx.doi.org/10.3767/003158512X660283 A review of the Ustilago-Sporisorium-Macalpinomyces complex A.R. McTaggart1,2,3,5, R.G. Shivas1,2, A.D.W. Geering1,2,5, K. Vánky4, T. Scharaschkin1,3 Key words Abstract The fungal genera Ustilago, Sporisorium and Macalpinomyces represent an unresolved complex. Taxa within the complex often possess characters that occur in more than one genus, creating uncertainty for species smut fungi placement. Previous studies have indicated that the genera cannot be separated based on morphology alone. systematics Here we chronologically review the history of the Ustilago-Sporisorium-Macalpinomyces complex, argue for its Ustilaginaceae resolution and suggest methods to accomplish a stable taxonomy. A combined molecular and morphological ap- proach is required to identify synapomorphic characters that underpin a new classification. Ustilago, Sporisorium and Macalpinomyces require explicit re-description and new genera, based on monophyletic groups, are needed to accommodate taxa that no longer fit the emended descriptions. A resolved classification will end the taxonomic confusion that surrounds generic placement of these smut fungi. Article info Received: 18 May 2012; Accepted: 3 October 2012; Published: 27 November 2012. INTRODUCTION TAXONOMIC HISTORY Three genera of smut fungi (Ustilaginomycotina), Ustilago, Ustilago Spo ri sorium and Macalpinomyces, contain about 540 described Ustilago, derived from the Latin ustilare (to burn), was named species (Vánky 2011b). These three genera belong to the by Persoon (1801) for the blackened appearance of the inflores- family Ustilaginaceae, which mostly infect grasses (Begerow cence in infected plants, as seen in the type species U.
    [Show full text]
  • Physico-Chemical and Sensory Properties of “Agidi” from Pearl-Millet (Pennisetum Glaucum) and Bambara Groundnut (Vigna Subterranean) Flour Blends
    African Journal of Food Science Vol. 4(10), pp. 662-667, October 2010 Available online http://www.academicjournals.org/ajfs ISSN 1996-0794 ©2010 Academic Journals Full Length Research Paper Physico-chemical and sensory properties of “Agidi” from pearl-millet (Pennisetum glaucum) and bambara groundnut (Vigna subterranean) flour blends U. M. Zakari, A. Hassan and E. S. Abbo* Department of Food Technology, Kaduna Polytechnic, Kaduna, Nigeria. Accepted 8 September, 2010 Agidi was produced from different formulations of pearl millet ogi and Bambara groundnut flours. Six agidi products were produced at the laboratory scale with one as the control. The recipe formulations for the products were 100:0, 95:5, 90:10, 85:15, 80:20 and 75:25 pearl millet to bambara groundnut flours, respectively. The six formulated products were subjected to proximate, physico chemical and sensory analysis. The results showed that the protein contents increased with increased addition of bambara groundnut flour. The protein contents ranged from 2.44 to 7.0% on dry weight basis. The fat contents ranged from 1.25 to 3.1%. Carbohydrate content ranged from 71.2 to 77.7%. The physico- chemical parameters also varied. The pH ranged from 4.13 to 4.40 while titratable acidity ranged from 0.02 to 0.03. The bulk density increased from 0.32 to 0.44 g/ml as the proportion of bambara flour increased. The sensory panelists rated the products highly for all the parameters investigated. Product B with the proportion of 90:5 pearl millet to bambara flour was most acceptable to the panelists.
    [Show full text]
  • Pasture Condition Guide for the Ord River Catchment
    Bulletin 4769 Department of June 2009 Agriculture and Food ISSN 1833-7236 Pasture condition guide for the Ord River Catchment Department of Agriculture and Food Pasture condition guide for the Ord River Catchment K. Ryan, E. Tierney & P. Novelly Copyright © Western Australian Agriculture Authority, 2009 Acknowledgements Photographs by S. Eyres and the Department of Agriculture and Food, Western Australia (DAFWA) Photographic Unit The information in this publication has been developed in consultation with experienced rangelands field staff providing services to the East Kimberley pastoral leases and with reference to Range Condition Guides for the West Kimberley Area, WA (Payne, Kubicki and Wilcox 1974) and Lands of the Ord–Victoria Area, WA and NT (Stewart et al. 1970). The authors would like to thank all those who provided valuable feedback on the design and content of this guide, including Andrew Craig, David Hadden and Matthew Fletcher (DAFWA Kununurra), Simon Eyres (DAFWA Photographic Unit), Alan Payne (retired DAFWA rangelands advisor), and members of the Halls Creek—East Kimberley Land Conservation District. This project was funded by Rangelands NRM WA using National Action Plan for Salinity and Water Quality funding. Rangelands NRM WA regards this project as a strategic investment which will contribute to an improved understanding and awareness of pasture condition in the Ord Catchment, leading to improved land management in that area. Rangelands NRM WA contracted the Department of Agriculture and Food WA to undertake the project. Funding for the National Action Plan for Salinity and Water Quality was provided by the Australian and Western Australian Governments. Disclaimer The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it.
    [Show full text]
  • Towards Sustainable Sorghum Production, Utilization, and Commercialization in West and Central Africa
    Towards Sustainable Sorghum Production, Utilization, and Commercialization in West and Central Africa Vers une production, utilisation et commercialisation durables du sorgho en Afrique occidentale et centrale WCASRN/ROCARS West and Central Africa Sorghum Research Network Réseau ouest et centre africain de recherche sur le sorgho ICRISAT, BP 320 Bamako, Mali ICRISAT International Crops Research Institute for the Semi-Arid Tropics West and Central Africa Sorghum Research Network Institut international de recherche sur les cultures des zones tropicales semi-arides Réseau ouest et centre africain de recherche sur le sorgho Patancheru 502 324, Andhra Pradesh, India/Inde International Crops Research Institute for the Semi-Arid Tropics Institut international de recherche sur les cultures des zones tropicales semi-arides ISBN 92–9066–433–9 CPE 131 263–2001 Citation: Akintayo, I. and Sedgo, J. (ed.). 2001. Towards sustainable sorghum production, utilization, and About ROCARS commercialization in West and Central Africa: proceedings of a Technical Workshop of the West and Central Africa Sorghum Research Network, 19-22 April 1999, Lome, Togo. Bamako, BP 320, Mali: West and Sorghum is one of the most important cereal crops in the semi-arid countries of West and Central Central Africa Sorghum Research Network; and Patancheru 502 324, Andhra Pradesh, India: International Africa (WCA). The first Regional Sorghum Research Network was created in 1984 and became Crops Research Institute for the Semi-Arid Tropics. 000 pages. ISBN 92-9066-4330-9. Order code CPE operational in 1986 for a 5-year term, with financial support from the United States Agency for 131. International Development (USAID) through the Semi-Arid Food Grain Research and Development (SAFGRAD).
    [Show full text]
  • Economic Implication of Industrialization of a Popular Weaning Food “Ogi” Production in Nigeria: a Review
    Vol. 9(10), pp. 495-503, October, 2015 DOI: 10.5897/AJFS2014.1196 Article Number: CEC9AA755628 ISSN 1996-0794 African Journal of Food Science Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJFS Review Economic implication of industrialization of a popular weaning food “ogi” production in Nigeria: A review Bolaji, O. T.1, Adepoju, P. A.1 and Olalusi, A. P.2* 1Department of Food Technology, Lagos State Polytechnic , Ikorodu Lagos, Lagos State, Nigeria. 2Department of Agricultural Engineering, Federal University of Technology, Akure, Ondo State, Nigeria. Received 13 August, 2014; Accepted 16 September, 2015 Socio-economic relevance of fermented food in developing countries is evident. However, the production of this category of food is still achieved under primitive conditions. Ogi a fermented product from maize, sorghum or millet is usually transformed into gruel or porridge when heated. About a quarter of Nigeria population is said to consume Ogi on a weekly bases. This coupled with increasing industrialization and urbanisation in the country may however dictate the need for large-scale production of Ogi. The proposal for industrialisation of this process will lead to a deliberate and calculated combination of chemical or mechanical steps to aid the manufacture of this product. However, the growth of small-scale or large industries for this product may be confronted with some limiting factors prevalent in most third world countries. Ogi production have some similarities in unit operations when compared with corn starch production, therefore the same technologies may be adopted with appropriate modification in the production of Ogi and this will provide employment to a number of people.
    [Show full text]
  • Ogi-Baba) Storage Characteristics
    Advance Journal of Food Science and Technology 2(1): 72-78, 2010 ISSN: 2042-4876 © Maxwell Scientific Organization, 2009 Submitted Date: October 10, 2009 Accepted Date: December 26, 2009 Published Date: January 10, 2010 An Investigation into Sorghum Based Ogi (Ogi-Baba) Storage Characteristics 1M.O. Afolayan, 2M. Afolayan and 3J.N. Abuah 1Department of Mechanical Engineering, Faculty of Engineering, 2Department of Animal Science, Faculty of Agriculture, 3Department of Agricultural Engineering,Faculty of Engineering, Ahmadu Bello University, Zaria Abstract: The storage characteristics of uncooked Ogi-baba (Sorghum based cereal breakfast) after drying for some time at an elevated temperature of 130ºC was the main objective of this experimental work. The experiment also aimed at checking the influence of accelerated drying on the quality and storage life span of the product. The performance was accessed using some organoleptic (odour, colour and fungi invasion count) characteristics at a weekly interval for four weeks by 10 human subjects – confirmed medically fit in their use of olfactory and visual organs. The experimental samples were opened to the atmosphere while the control is sealed immediately the dried product was cooled to room temperature. The 60 min heating was found to have the most stable colour and odour and this property is even more stablized when the product is sealed (as in the control sample). On the other hand, the 60min sample is most loaded with fungi as the experiment progresses but no fungi intestation when sealed, the 20 and 40 min samples (even when sealed) had fungi investation. Key words: Cereal, elevated heating, ogi-baba, organoleptic, pap and porridge INTRODUCTION supplying energy and nutrients.
    [Show full text]
  • Manufacturing Cost Analysis of Automated Pap Making
    IJESRT: 9(2), February, 2020 ISSN: 2277-9655 I International Journal of Engineering Sciences & Research X Technology (A Peer Reviewed Online Journal) Impact Factor: 5.164 IJESRT Chief Editor Executive Editor Dr. J.B. Helonde Mr. Somil Mayur Shah Website: www.ijesrt.com Mail: [email protected] O ISSN: 2277-9655 [Chime, et al., 9(2): February, 2020] Impact Factor: 5.164 IC™ Value: 3.00 CODEN: IJESS7 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY MANUFACTURING COST ANALYSIS OF AUTOMATED PAP MAKING MACHINE DESIGN INNOVATION Rufus Ogbuka Chime Mechanical Engineering Department, Institute of Management and Technology (IMT) Enugu Nigeria DOI: 10.5281/zenodo.3692953 ABSTRACT Manufacturing Cost Analysis improves the client's understanding of key cost drivers and process differentiators associated with a specific product line and assesses how they vary by technology, process, competitor and geography, Reliable information into specific manufacturing processes and technologies, cost structures, operating expenses, revenues and profitability is often unobtainable from published source data, or can only be estimated based on outdated industry sentiment and assumptions . Innovation is considered an important driver of long--‐term productivity and economic growth. It is argued that countries that generate innovation, create new technologies and encourage adoption of these new technologies grow faster than those that do not. The Automated pap making machine is conceived based on the need for Nigeria to have locally feed consumption. Pap which is commonly consumed both adults and children still been processed using Manuel and crude method, Agidi and akamu are household food commonly eaten in all region of the country. It is principally processed by women and children and Manuel method used has limited potential of this staple food and adversely affected the income of the crop of person involved in its production.
    [Show full text]