Sample Chapter

Total Page:16

File Type:pdf, Size:1020Kb

Sample Chapter A ABSORPTION Cross-references Agrophysics: Physics Applied to Agriculture The process by which one substance, such as solid or liq- uid, takes up another substance, such as liquid or gas, through minute pores or spaces between its molecules. ADAPTABLE TILLAGE Clay minerals can take water and ions by absorption. See Tillage, Impacts on Soil and Environment ABSORPTIVITY ADHESION Absorbed part of incoming radiation/total incoming radiation. The attraction between different substances, acting at sur- faces of contact between the substances e.g., water and solid, water films and organo-mineral surfaces, soil and ACOUSTIC EMISSION the metal cutting surface. The phenomenon of transient elastic-wave generation due to a rapid release of strain energy caused by a structural ADSORPTION alteration in a solid material. Also known as stress-wave emission. A phenomenon occurring at the boundary between phases, where cohesive and adhesive forces cause the con- Bibliography centration or density of a substance to be greater or smaller McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, than in the interior of the separate phases. Copyright © 2003 by The McGraw-Hill Companies, Inc. Bibliography Introduction to Environmental Soil Physics (First Edition). 2003. ACOUSTIC TOMOGRAPHY Elsevier Inc. Daniel Hillel (ed.) http://www.sciencedirect.com/ science/book/9780123486554 A form of tomography in which information is collected from beams of acoustic radiation that have passed through Cross-references an object (e.g., soil). One can speak of thermo-acoustic Adsorption Energy and Surface Heterogeneity in Soils tomography when the heating is realized by means of Adsorption Energy of Water on Biological Materials microwaves, and of photo-acoustic tomography when Solute Transport in Soils optical heating is used. Surface Properties and Related Phenomena in Soils and Plants Jan Gliński, Józef Horabik & Jerzy Lipiec (eds.), Encyclopedia of Agrophysics, DOI 10.1007/978-90-481-3585-1, # Springer Science+Business Media B.V. 2011 2 ADSORPTION COMPLEX Energetically heterogeneous surfaces can be next clas- ADSORPTION COMPLEX sified into several groups, among which we can distin- guish patchwise and random surfaces. In the case of Collection of organic and inorganic substances in soil that random surfaces e ðx; yÞ varies quite randomly with are capable of adsorbing (absorbing) ions or molecules. ad x; y; for patchwise surfaces eadðx; yÞ¼constant for x; y within consecutive regions Di. Both random and Cross-references patchwise surfaces are two limiting cases of surface topog- Adsorption Energy and Surface Heterogeneity in Soils raphy that is defined by spatial correlations between the Surface Properties and Related Phenomena in Soils and Plants points xi; yi with given values of the energy ead;i. We can distinguish correlations between pairs of sites, triples of sites, and so on (Bulnes et al., 2001). The variation of the energy of adsorption results from ADSORPTION ENERGY AND SURFACE several factors: the presence of different atoms or groups HETEROGENEITY IN SOILS of atoms on the surface; geometrical irregularities includ- ing the presence of pores of different shape and dimen- Zofia Sokołowska1, Stefan Sokołowski2 sions, and so on. Of course, geometrical and energetic 1Institute of Agrophysics, Polish Academy of Sciences, nonuniformities are correlated and the former is one of Lublin, Poland principal sources of energetic heterogeneity. Moreover, 2Department for the Modeling of Physico-Chemical a given adsorbent may be a quite complex mixture of sev- Processes, MCS University, Lublin, Poland eral interacting chemical species. Both energetic and geo- metric heterogeneities have a great impact on the Generalities adsorption process. The potential energy of interaction of a single adsorbate molecule with a solid adsorbent can be described by the Description of adsorption on energetically function UðRÞ, where fRg is a set of coordinates neces- heterogeneous surfaces sary to define the position of the adsorbate molecule. Accurate modeling adsorption on geometrically Assuming that the adsorbate molecule is a sphere of diam- nonuniform surfaces is difficult and only in some cases it eter s, its position is given by the Cartesian coordinates of ; ; is possible to construct an adequate model for a solid. its center, R ¼ r ¼ðx y zÞ. For molecules composed of When it is possible, then computer simulations can be several atoms, one needs to specify a multidimensional employed. However, the structure of great majority of vector fRg that determines the coordinates of all the atoms environmental adsorbents, and soils in particular (see Clay (or groups of atoms) building a given molecule. Formally, Minerals and Organo-Mineral Associates; Organic according to the classical statistical thermodynamics Matter, Effects on Soil Physical Properties and Processes; UðRÞ is the sum of the interactions of Na interaction cen- Parent Material and Soil Physical Properties; Soil ters located within a given adsorbate molecule, with Ns Phases) is extremely complex due to diversified mineral, interaction centers located within a solid, X X organic, and ionic composition. Therefore, the application of approximate approaches is necessary. The most widely UðRÞ¼ uðr Þ; (1) ij used methods are based on the so-called integral adsorp- i2Ns j2Na tion isotherm equation. ; where rij is the distance between the interacting centers. Of Suppose we know the function ylð p eÞ that describes course, when quantum-mechanical treatment is employed, the isotherm (surface coverage) on a uniform surface with UðRÞ is the difference of ground state energies between the adsorption energy e. Then, the isotherm on the molecule at the position fRg and the ground state of a heterogeneous surface can be approximated as a separated molecule. Z emax For a selected adsorbate molecule, say a spherical mol- yð pÞ¼Nm ylð p; eÞwðeÞde; (2) ecule, the potential UðrÞ can be used to characterize the emin surface. For a given set of coordinates x; y in the plane par- allel (or tangential) to the solid the minimum of the func- where p is the pressure, yðp; eÞ is the global (measured) tion UðrÞ with respect to the third coordinate, z, is often adsorption isotherm, N is the monolayer capacity, and called “the adsorption energy,” e .Ife is independent m ad ad w e is the energy distribution function that yields of x; y, the corresponding surface is energetically uniform ð Þ a fraction of the surface characterized by the adsorption (or homogeneous). For crystalline surfaces e (and, of ad energy e. The latter function satisfies the normalization course, UðrÞ) is a periodic function of x; y. However, there condition exists a variety of surfaces that are neither uniform nor ; Z crystalline. In those cases, eadðx yÞ may vary in a quite emax complicated manner with x; y and we call such surfaces de ¼ 1; (3) energetically heterogeneous. emin ADSORPTION ENERGY AND SURFACE HETEROGENEITY IN SOILS 3 where ½emin; emax are the lower and upper integration meaningful results are to be obtained, special care and limits. In many cases, these limits are assumed to be the quality of experimental data are required (Jaroniec ½e0; ?Þ, where e0 is the liquefaction energy of the adsor- and Bräuer, 1986) The easiest way to obtain an approxi- bate. Equation 2 states that the total adsorption is just mate solution of Equation 2 goes through the so-called a weighted average of the isotherms on model, homoge- condensation approximation, according to which neous surfaces, characterized by different values of e. (Rudziński and Everett, 1992) However, it means that the adsorption on each homoge- wðeÞ¼À@y½ pðeÞ=@e: (5) neous surface occurs independently of the adsorption on other surfaces. The last assumption is satisfied only for The condensation approximation replaces the local a patchwise topography, or when the interactions between adsorption isotherm by a step function, i.e., every pressure adsorbed particles are negligibly small. Despite of the is associated with the value of the adsorption energy, above quoted limitations, Equation 2 has been widely p=p0 ¼ expðe=kTÞ, that corresponds to one half of the used to describe adsorption on heterogeneous surfaces. coverage of a given homotattic patch. The basic difficulty Note that a quite similar approach is usually used to in this method is associated with an appropriate numerical describe adsorption by porous solids. In the latter case, differentiation of the total adsorption isotherm, y½pðeÞ. the weight function is just the pore size distribution One of the methods that has been widely used for that pur- function. pose relies on the approximation of the experimental data If the local adsorption isotherm and the energy distribu- by the so-called exponential adsorption isotherm (Jaroniec tion function are given by analytical expressions, Equation 2 and Bräuer, 1986) can be integrated to yield an equation for the total adsorption "# isotherm. For example, if the local isotherm is just given by XN = n ; the Langmuir equation, ylðp; eÞ¼pKðeÞ=½1 þ pKðeÞ, yð pÞ¼exp Bn ðÞkTlnðp pmÞ (6) n 1 where KðeÞ¼K0 exp½e=kT, k is the Boltzmann constant, ¼ T is the temperature, and K0 is a constant, then one can g show that the Temkin isotherm, yðpÞ¼lnð1 þ KpÞ , corre- where fBng are the coefficients and the pressure pm sponds to a constant energy distribution function; the is associated with the minimum adsorption energy via Freundlich isotherm is associated with an exponential emin ¼ kTlnðpmÞ. The distribution function resulting from distribution and the Langmuir–Freundlich isotherm, Equations 5 and 6 is yð pÞ¼Cpg=½1 þ Cpg – with a quasi-Gaussian distribu- "#"# tion (Xia et al., 2006). In the above C; K and g are constants. XN XN nÀ1 n : Numerous analytical expressions for the total adsorption wðeÞ¼ nBnðe À emÞ exp Bnðe À emÞ isotherms obtained from Equation 2 can be found in the n¼1 n¼1 monographs of Rudziński and Everett (1992)andJaroniec (7) and Madey (1988). The above method of derivation of isotherm equations Approximation of the experimental data using Equa- can be also extended to the case of a multilayer adsorption.
Recommended publications
  • D:Int Agrophysics -1Balashov Alashov.Vp
    Int.Agrophys.,2011,25,1-5 IINNNTTTEEERRRNNNAAATTTIIIOOONNNAAALL AAgggrrroooppphhhyyysssiiicccss www.international-agrophysics.org Impactofshort-andlong-termagriculturaluseofchernozemonitsqualityindicators E.Balashov*andN.Buchkina AgrophysicalResearchInstituteRAAS,14GrazhdanskyProspekt,St.Petersburg195220,Russia ReceivedMay11,2010;acceptedJune21,2010 A b s t r a c t. The impact of 5, 45, and 75 year agricultural use During the last two decades, particular attention of of a clayey loam Haplic Chernozem on its selected quality indica- scientists has been focused on two directions of multi- tors was determined. Contents of soil organic matter and microbial disciplinary studies of selected quality indicators of soils. biomass carbon were equal to 43.1±2.2 g C kg-1 soil and 480.0± 67.6 mg C kg-1 soil in the fallow land. Soil organic matter content in The first direction of the research was to quantify the thermo- the agricultural soils ranged from 30.2±1.8 (75 year plot) to dynamic characteristics of soil solid phase. The results of 47.5±2.1 g C kg-1 soil (5 year plot), while microbial biomass carbon thosestudiesshowedsignificantdifferencesin: content varied from 340.2±5.9 (75 year plot) to 371.2±10.2 mg C – water vapour and nitrogen adsorption energy of different -1 kg soil (5 year plot). Among the three agricultural treatments, soil clay minerals, soil types (Józefaciuk and Bowanko, only the 75 year one resulted in a significant decline in total 2002), soil organic matter content (Soko³owska et al., amounts of water-stable aggregates (70.8±8.2%) and clay content (26.9±1.0%), compared to those parameters in the fallow land 1993)andsoiltillage(Józefaciuk etal.,2001); (90.1±9.4% and 30.5±1.2%, respectively).
    [Show full text]
  • Applied Physics
    Physics 1. What is Physics 2. Nature Science 3. Science 4. Scientific Method 5. Branches of Science 6. Branches of Physics Einstein Newton 7. Branches of Applied Physics Bardeen Feynmann 2016-03-05 What is Physics • Meaning of Physics (from Ancient Greek: φυσική (phusikḗ )) is knowledge of nature (from φύσις phúsis "nature"). • Physics is the natural science that involves the study of matter and its motion through space and time, along with related concepts such as energy and force. More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves. • Physics is one of the oldest academic disciplines, perhaps the oldest through its inclusion of astronomy. Over the last two millennia, physics was a part of natural philosophy along with chemistry, certain branches of mathematics, and biology, but during the scientific revolution in the 17th century, the natural sciences emerged as unique research programs in their own right. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry, and the boundaries of physics are not rigidly defined. • New ideas in physics often explain the fundamental mechanisms of other sciences, while opening new avenues of research in areas such as mathematics and philosophy. 2016-03-05 What is Physics • Physics also makes significant contributions through advances in new technologies that arise from theoretical breakthroughs. • For example, advances in the understanding of electromagnetism or nuclear physics led directly to the development of new products that have dramatically transformed modern-day society, such as television, computers, domestic appliances, and nuclear weapons; advances in thermodynamics led to the development of industrialization, and advances in mechanics inspired the development of calculus.
    [Show full text]
  • Outline of Physical Science
    Outline of physical science “Physical Science” redirects here. It is not to be confused • Astronomy – study of celestial objects (such as stars, with Physics. galaxies, planets, moons, asteroids, comets and neb- ulae), the physics, chemistry, and evolution of such Physical science is a branch of natural science that stud- objects, and phenomena that originate outside the atmosphere of Earth, including supernovae explo- ies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a “physical sions, gamma ray bursts, and cosmic microwave background radiation. science”, together called the “physical sciences”. How- ever, the term “physical” creates an unintended, some- • Branches of astronomy what arbitrary distinction, since many branches of physi- cal science also study biological phenomena and branches • Chemistry – studies the composition, structure, of chemistry such as organic chemistry. properties and change of matter.[8][9] In this realm, chemistry deals with such topics as the properties of individual atoms, the manner in which atoms form 1 What is physical science? chemical bonds in the formation of compounds, the interactions of substances through intermolecular forces to give matter its general properties, and the Physical science can be described as all of the following: interactions between substances through chemical reactions to form different substances. • A branch of science (a systematic enterprise that builds and organizes knowledge in the form of • Branches of chemistry testable explanations and predictions about the • universe).[1][2][3] Earth science – all-embracing term referring to the fields of science dealing with planet Earth. Earth • A branch of natural science – natural science science is the study of how the natural environ- is a major branch of science that tries to ex- ment (ecosphere or Earth system) works and how it plain and predict nature’s phenomena, based evolved to its current state.
    [Show full text]
  • Overview of Current Research and Education Activity of the Institute of Agrophysics
    9 Research and Teaching of Physics in the Context of University Education Nitra, June 5 and 6, 2007 OVERVIEW OF CURRENT RESEARCH AND EDUCATION ACTIVITY OF THE INSTITUTE OF AGROPHYSICS Jozef Horabik Institute of Agrophysics, Polish Academy of Sciences Lublin, Poland Physics, with its research tools and mathematical methods of description and interpretation, found applications in many branches of science that developed to interdisciplinary fields as biophysics, astrophysics, geophysics, and most recently - agrophysics. Agrophysics as a branch of science applying physics to the investigations of properties of materials and the processes involved in the production and processing of agricultural products, especially in relationships between soil, plant, atmosphere and soil, plant, machine, agricultural products. Particular attention is given to sustainable plant and animal production, modern agricultural technologies, and quality of raw materials and food products. The scientific activity of the Institute concentrates on studies of physical properties and processes important for proper management of soil environment and development of sustainable agriculture and food production. It covers also elaboration and improvement of specific methods of physical measurements, computer modeling and monitoring. Monitoring equipped with appropriate measuring systems constitutes a basic tool in study of the environment. The Institute develops agrophysical metrology that takes care on elaboration, optimization and standardization of agrophysical measuring methods. Modeling and computer simulation concerns environmental and technological processes as: mass and energy exchange in soil-plant-atmosphere system and agricultural products, regulation of physical, physicochemical, hydrophysical, thermophysical and biological properties of soil and plant structures, optimal fertilization systems, physical characteristics of granular materials (soils, grains, flour) as well as physical aspects of agricultural products processing.
    [Show full text]
  • International Agrophysics
    International Agrophysics ICOS eddy covariance flux-station site setup --Manuscript Draft-- Manuscript Number: Full Title: ICOS eddy covariance flux-station site setup Short Title: ICOS eddy covariance flux-station site setup Article Type: original research paper Section/Category: GHG Balance Keywords: ICOS, tower set up, protocol, greenhouse gas, eddy covariance technique Corresponding Author: Corinna Rebmann, Ph.D. Helmholtz-Zentrum fur Umweltforschung UFZ Leipzig, GERMANY Corresponding Author Secondary Information: Corresponding Author's Institution: Helmholtz-Zentrum fur Umweltforschung UFZ Corresponding Author's Secondary Institution: First Author: Corinna Rebmann, Ph.D. First Author Secondary Information: Order of Authors: Corinna Rebmann, Ph.D. Marc Aubinet, Prof. Hans Peter Schmid, Prof. Nicola Arriga, Ph.D. Mika Aurela, Ph.D. George Burba, Ph.D. Robert Clement, Ph.D. Anne De Ligne, Ph.D. Gerardo Fratini, Ph.D. Bert Gielen, Ph.D. John Grace, Prof. Alexander Graf, Ph.D. Patrick Gross Sami Haapanala Mathias Herbst, Ph.D. Lukas Hörtnagl, Ph.D. Andreas Ibrom, Ph.D. Lilian Joly, Ph.D. Natascha Natascha Kljun, Prof. Olaf Kolle Andrew Kowalski, Prof. Anders Lindroth, Prof. Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation Denis Loustau, Prof. Ivan Mammarella, Ph.D. Matthias Mauder, Ph.D. Lutz Merbold, Ph.D. Stefan Metzger, Ph.D. Meelis Mölder, Ph.D. Leonardo Montagnani, Ph.D. Dario Papale, Ph.D. Marian Pavelka, Ph.D. Matthias Peichl, Dh.D. Marilyn Roland, Ph.D. Penélope Serrano Ortiz, Ph.D. Lukas Siebicke, Ph.D. Rainer Steinbrecher, Ph.D. Juha-Pekka Tuovinen, Ph.D. Timo Vesala, Prof. Georg Wohlfahrt, Prof. Daniela Franz Order of Authors Secondary Information: Manuscript Region of Origin: GERMANY Abstract: At ecosystem stations of the Integrated Carbon Observation System (ICOS), the principal technique for measurements of ecosystem-atmosphere fluxes of greenhouse gases is the eddy-covariance (EC) method.
    [Show full text]
  • Sample Chapter
    M MACHINE VISION Avery similar system is used for grading apples, as seen in Figures 1 and 2. Fragments of nut shell can be detected when pecan nuts See Visible and Thermal Images for Fruit Detection are shelled, once again by detection of the color. Kernels fall through the inspection area at a speed of around one meter per second. In an early system, light that was MACHINE VISION IN AGRICULTURE reflected from the kernel was split between two photocells that detected the intensity of different wavelengths. The John Billingsley ratio enabled color to discriminate between nut and shell. University of Southern Queensland, Toowoomba, QLD, More recent versions incorporate laser scanning. As the Australia nut falls further, a jet of air is switched to deflect any detected shell into a separate bin. Definition Machine vision: Visual data that can be processed by Detection of weeds a computer, including monochrome, color and infra red Color discrimination can also be used in the field to dis- imaging, line or spot perception of brightness and color, criminate between plants and weeds for the application time-varying optical signals. of selective spraying (Åstrand and Baerveldt, 2002; Zhang Agriculture: Horticulture, arboriculture and other cropping et al., 2008). It is possible for the color channels of the cam- methods, harvesting, post production inspection and era to include infra-red wavelengths, something that can be processing, livestock breeding, preparation and slaughter. achieved by removing the infra-red blocking filter from a simple webcam. Figure 3 is a low-resolution frame-grab Introduction showing one stage in the detection of a grass-like weed, The combination of low-cost computing power and applica- “panic,” during trials in sugar cane.
    [Show full text]
  • Outline of Natural Science
    Outline of natural science The following outline is provided as an overview of and study biological phenomena (organic chemistry, for topical guide to natural science: example). Natural science – a major branch of science that tries to explain, and predict, nature’s phenomena based on 2.1.1 Physics empirical evidence. In natural science, hypothesis must be verified scientifically to be regarded as scientific the- • • Physics – physical science that studies matter ory. Validity, accuracy, and social mechanisms ensur- and its motion through space-time, and related ing quality control, such as peer review and repeatabil- concepts such as energy and force ity of findings, are amongst the criteria and methods used • Acoustics – study of mechanical waves in for this purpose. Natural science can be broken into 2 solids, liquids, and gases (such as vibra- main branches: life science, and physical science. Each tion and sound) of these branches, and all of their sub-branches, are re- • ferred to as natural sciences. Agrophysics – study of physics applied to agroecosystems • Soil physics – study of soil physical 1 What type of thing is natural sci- properties and processes. • Astrophysics – study of the physical as- ence? pects of celestial objects • Astronomy – studies the universe beyond Natural science can be described as all of the following: Earth, including its formation and de- velopment, and the evolution, physics, • Branch of science – systematic enterprise that builds chemistry, meteorology, and motion of and organizes knowledge in the form of testable ex- celestial objects (such as galaxies, plan- planations and predictions about the universe.[1][2][3] ets, etc.) and phenomena that originate outside the atmosphere of Earth (such as • Major category of academic disciplines – an aca- the cosmic background radiation).
    [Show full text]
  • REVIEW PAPER Agrophysics – Physics in Agriculture And
    Agrophysics physics in agriculture and environment 67 SOIL SCIENCE ANNUAL DOI: 10.2478/ssa-2013-0012 Vol. 64 No 2/2013: 6780 REVIEW PAPER JAN GLIÑSKI*, JÓZEF HORABIK, JERZY LIPIEC Institute of Agrophysics, Polish Academy of Sciences, Dowiadczalna 4, 20-290 Lublin, Poland Agrophysics physics in agriculture and environment Abstract: Agrophysics is one of the branches of natural sciences dealing with the application of physics in agriculture and environment. It plays an important role in the limitation of hazards to agricultural objects (soils, plants, agricultural products and foods) and to the environment. Soil physical degradation, gas production in soils and emission to the atmosphere, physical properties of plant materials influencing their technological and nutritional values and crop losses are examples of such hazards. Agrophysical knowledge can be helpful in evaluating and improving the quality of soils and agricultural products as well as the technological processes. Key words: agrophysics, soils, agriculture, environment, physical methods INTRODUCTION senin, 1986) and food physics (Sahin and Sumnu, 2006) and fills the gap between such disciplines as Agrophysics is defined as a science that studies agrochemistry, agrobiology, agroecology and agroc- physical processes and properties affecting plant pro- limatology. Agrophysical research plays a significant duction. The fundaments of agrophysical investiga- cognitive and practical role, especially in agronomy, tions are mass (water, air, nutrients) and energy (li- agricultural engineering, horticulture, food and nu- ght, heat) transport in the soil-plant-atmosphere and trition technology, and environmental management soil-plant-machine-agricultural products-foods con- (Fr¹czek and lipek, 2009). Application of agrophy- tinuums and way of their regulation to reach biomass sical research allows mitigating chemical and physi- of high quantity and quality with the sustainability to cal degradation of soils, decreasing greenhouse ga- the environment.
    [Show full text]
  • Editorial: at the Crossroads: Lessons and Challenges in Computational Social Science
    EDITORIAL published: 29 August 2016 doi: 10.3389/fphy.2016.00037 Editorial: At the Crossroads: Lessons and Challenges in Computational Social Science Javier Borge-Holthoefer 1, 2, 3*, Yamir Moreno 3, 4, 5 and Taha Yasseri 6, 7 1 Complex Systems Group (CoSIN3), Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya, Barcelona, Spain, 2 Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar, 3 Institute of Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Zaragoza, Spain, 4 Department of Theoretical Physics, Faculty of Sciences, Universidad de Zaragoza, Zaragoza, Spain, 5 Institute for Scientific Interchange, Torino, Italy, 6 Oxford Internet Institute, University of Oxford, Oxford, UK, 7 Alan Turing Institute, London, UK Keywords: computational social science, simulation, models, big data, complex systems The Editorial on the Research Topic At the Crossroads: Lessons and Challenges in Computational Social Science The interest of physicists in economic and social questions is not new: during the last decades, we have witnessed the emergence of what is formally called nowadays sociophysics [1] and econophysics [2] that can be grouped into the common term “Interdisciplinary Physics” along with biophysics, medical physics, agrophysics, etc. With tools borrowed from statistical physics and complexity science, among others, these areas of study have already made important contributions to our understanding of how humans organize and interact in our modern society. Large scale data
    [Show full text]
  • Physics 1 Physics
    Physics 1 Physics This article is about the field of science. For other uses, see Physics (disambiguation). Various examples of physical phenomena Part of a series on Science • Outline • Portal • Category • v • t [1] • e Physics (from Ancient Greek: φυσική (ἐπιστήμη) phusikḗ (epistḗmē) “knowledge of nature”, from φύσις phúsis "nature"[2]) is the natural science that involves the study of matter[3] and its motion through space and time, along with related concepts such as energy and force.[4] More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.[5][6] Physics is one of the oldest academic disciplines, perhaps the oldest through its inclusion of astronomy. Over the last two millennia, physics was a part of natural philosophy along with chemistry, certain branches of mathematics, and biology, but during the Scientific Revolution in the 17th century, the natural sciences emerged as unique research programs in their own right.[7] Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry, and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms of other sciences while opening new avenues of research in areas such as mathematics and philosophy. Physics also makes significant contributions through advances in new technologies that arise from theoretical breakthroughs. For example, advances in the understanding of electromagnetism or nuclear physics led directly to the development of new products which have dramatically transformed modern-day society, such as television, computers, domestic appliances, and nuclear weapons; advances in thermodynamics led to the development of Physics 2 industrialization; and advances in mechanics inspired the development of calculus.
    [Show full text]
  • Role of Agrophysics in Sustainable Agriculture Rôle De L'agrophysique Pour L'agriculture Durable
    Scientific registration n° : 517 Symposium n° : 20 Presentation : poster Role of agrophysics in sustainable agriculture Rôle de l'agrophysique pour l'agriculture durable GLINSKI Jan Institute of Agrophysics, Polish Academy of Sciences, Doœwiadczalna 4, P.O.BOX 201, 20- 290 Lublin 27, Poland An example of application of physics in the development of knowledge in other branches of natural sciences are: astrophysics, physics of atmosphere, environmental physics and geophysics. The development of environmental physics is very important for mankind due to its relevance to a direct description, modelling and prediction of human environment. Agrophysics is an integral part of environmental physics and it deals with the processes in agricultural used lands [1]. Such areas cover only 9.7 % of global Earth surface, however, they are under intensive human ingeration, e.g., monoculture crops, water management and high level of chemical and mechanical treatment. Agrophysics is also occupied in investigating of physical and physicochemical processes connected with mass and energy exchange in soil- plant- atmosphere system and the processes related to gathering, transport and storage of agricultural plant materials[2,4,8,11,13,14]. In agrophysics, like in other natural sciences, the fundamental method of description of investigated objects and physical phenomena and processes taking place in them is modelling. Knowledge of physical properties of the soil-plant-atmosphere system and their time and space variability allows physical model development for simulation and prognosis of evolution of environmental conditions in time [10]. Developed models make possible to prognoses the human environment change due to global climate change and human activity (land use, food production, etc.).
    [Show full text]
  • D:Int Agrophysicsint Agrophysics 24-25(4) -4Notesanaya
    Int. Agrophys., 2011, 25, 395-398 IINNNTTTEEERRRNNNAAATTTIIIOOONNNAAALL AAgggrrroooppphhhyyysssiiicccss www.international-agrophysics.org Note Analysis of soil capability versus land use change by using CORINE land cover and MicroLEIS M. Anaya-Romero1*, R. Pino2, J.M. Moreira3, M. Muñoz-Rojas1, and D. de la Rosa1 1Institute of Natural Resources and Agrobiology, Spanish National Research Council, Reina Mercedes 10, 41012 Sevilla, Spain 2Department of Statistics and Operational Research, University of Seville, Reina Mercedes s/n, Sevilla, Spain 3DG Sustainable Development and Environmental Information, Regional Government of Andalusia, Ave. Manuel Siurot 50, 41071 Sevilla, Spain Received December 4, 2010; accepted April 15, 2011 A b s t r a c t. Land use and land cover changes in agricultural 24 European countries. Land cover reflects the biophysical lands between 1956 and 2007 in Seville province (SW Spain) were state of the real landscape (including the effects of human analyzed in this research. The agricultural land use change was activity on the biophysical unit). For this reason LC data are compared to land capability with the aim to analyze dysfunctions increasingly used for derivation of different landscape attri- related to agricultural capacity of the area. Furthermore, factors affecting agroecological land use in the province were examined in butes such as its changes, diversity, forecasting, etc. and for the light of their implications for agroforestry sustainability. There modelling of land different properties (Feranec et al., 2010). are significant differences in the extent and rate of agricultural land Sustainable management of natural resources requires use change at regional level. Present circumstances in the province an exhaustive knowledge of the physical environmental are favourable for a reversal of agroforestry uses, nevertheless components with particular focus on the relations between urbanization process is the major pressure in the agricultural re- these elements and the different plant communities.
    [Show full text]