Applied Physics

Total Page:16

File Type:pdf, Size:1020Kb

Applied Physics Physics 1. What is Physics 2. Nature Science 3. Science 4. Scientific Method 5. Branches of Science 6. Branches of Physics Einstein Newton 7. Branches of Applied Physics Bardeen Feynmann 2016-03-05 What is Physics • Meaning of Physics (from Ancient Greek: φυσική (phusikḗ )) is knowledge of nature (from φύσις phúsis "nature"). • Physics is the natural science that involves the study of matter and its motion through space and time, along with related concepts such as energy and force. More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves. • Physics is one of the oldest academic disciplines, perhaps the oldest through its inclusion of astronomy. Over the last two millennia, physics was a part of natural philosophy along with chemistry, certain branches of mathematics, and biology, but during the scientific revolution in the 17th century, the natural sciences emerged as unique research programs in their own right. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry, and the boundaries of physics are not rigidly defined. • New ideas in physics often explain the fundamental mechanisms of other sciences, while opening new avenues of research in areas such as mathematics and philosophy. 2016-03-05 What is Physics • Physics also makes significant contributions through advances in new technologies that arise from theoretical breakthroughs. • For example, advances in the understanding of electromagnetism or nuclear physics led directly to the development of new products that have dramatically transformed modern-day society, such as television, computers, domestic appliances, and nuclear weapons; advances in thermodynamics led to the development of industrialization, and advances in mechanics inspired the development of calculus. 2016-03-05 Natural Science • Natural science is a branch of science concerned with the description, prediction, and understanding of natural phenomena, based on observational and empirical evidence. Validity, accuracy, and social mechanisms ensuring quality control, such as peer review and repeatability of findings, are amongst the criteria and methods used for this purpose. • Natural science can be broken into two main branches: life science (or biological science) and physical science. Physical science is further broken down into branches, including physics, astronomy, chemistry, and earth science. All of these branches of natural science are divided into many further specialized branches (also known as fields), and each of these is known as a "natural science". 2016-03-05 Natural Science • In Western society's analytic tradition, the empirical and especially natural sciences use tools from formal sciences, such as mathematics and logic, converting information about nature into measurements which can be explained as clear statements about the "laws of nature". The social sciences also use such methods, but rely more on qualitative research, so that they are sometimes called "soft science", whereas natural sciences, insofar as emphasizing quantifiable data produced, tested, and confirmed through the scientific method are sometimes called "hard science". • Modern natural science succeeded more classical approaches to natural philosophy, usually traced to ancient Greece. Galileo, Descartes, Francis Bacon, and Newton debated the benefits of using approaches which were more mathematical and more experimental in a methodical way. Still, philosophical perspectives, conjectures, and presuppositions, often overlooked, remain requisite in natural science. Systematic data collection, including discovery science, succeed natural history, which emerged in the 16th century by describing and classifying plants, animals, minerals, and so on. Yet today, natural history suggests observational descriptions aimed at popular 2016-03-05 audiences. Science • Science is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe. In an older and closely related meaning, "science" also refers to this body of knowledge itself, of the type that can be rationally explained and reliably applied. Ever since classical antiquity, science as a type of knowledge has been closely linked to philosophy. • In the West during the early modern period the words "science" and "philosophy of nature" were sometimes used interchangeably, and until the 19th century natural philosophy (which is today called "natural science") was considered a branch of philosophy. 2016-03-05 Science • In modern usage "science" most often refers to a way of pursuing knowledge, not only the knowledge itself. In the 17th and 18th centuries scientists increasingly sought to formulate knowledge in terms of laws of nature. Over the course of the 19th century, the word "science" became increasingly associated with the scientific method itself, as a disciplined way to study the natural world, including physics, chemistry, geology and biology. It is in the 19th century also that the term scientist began to be applied to those who sought knowledge and understanding of nature. • Modern science is typically subdivided into the natural sciences which study the material world, the social sciences which study people and societies, and the formal sciences like mathematics. The formal sciences are often excluded as they do not depend on empirical observations. Disciplines which use science like engineering and medicine may also be considered to be applied sciences. 2016-03-05 Scientific Method • The scientific method is a body of techniques for investigating phenomena, acquiring new knowledge, or correcting and integrating previous knowledge. To be termed scientific, a method of inquiry is commonly based on empirical or measurable evidence subject to specific principles of reasoning. • The Oxford English Dictionary defines the scientific method as "a method or procedure that has characterized natural science since the 17th century, consisting in systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses.“ • The purpose of an experiment is to determine whether observations agree with or conflict with the predictions derived from a hypothesis. Experiments can take place in a college lab, on a kitchen table, at CERN, at the bottom of an ocean, on Mars, and so on. There are difficulties in a formulaic statement of method, however. Though the scientific method is often presented as a fixed sequence of steps, it represents rather a set of general principles. Not all steps take place in every scientific inquiry, and are not always in the same order. 2016-03-05 Scientific Method • The scientific method seeks to explain the events of nature in a reproducible way. An explanatory thought experiment or hypothesis is put forward, as explanation, using principles such as "Occam's Razor" (1.필요하지 않은 경우에까지 많은 것을 가정하면 안 된다. 2.보다 적은 수의 논리로 설명이 가능한 경우, 많은 수의 논리를 세 우지 말라.) and are generally expected to seek consilience—fitting well with other accepted facts related to the phenomena. • This new explanation is used to make falsifiable predictions that are testable by experiment or observation. The predictions are to be posted before a confirming experiment or observation is sought, as proof that no tampering has occurred. Disproof of a prediction is evidence of progress. This is done partly through observation of natural phenomena, but also through experimentation, that tries to simulate natural events under controlled conditions, as appropriate to the discipline (in the observational sciences, such as astronomy or geology, a predicted observation might take the place of a controlled experiment). Experimentation is especially important in science to help establish causal relationships (to avoid the correlation fallacy). 2016-03-05 Scientific Method 2016-03-05 Branches of Science • Scientific fields are commonly divided into two major groups: natural sciences, which study natural phenomena (including biological life), and social sciences, which study human behavior and societies. These groupings are empirical sciences, which means the knowledge must be based on observable phenomena and capable of being tested for its validity by other researchers working under the same conditions.[39] There are also related disciplines that are grouped into interdisciplinary applied sciences, such as engineering and medicine. Within these categories are specialized scientific fields that can include parts of other scientific disciplines but often possess their own nomenclature and expertise. 2016-03-05 Branches of Science • Mathematics, which is classified as a formal science, has both similarities and differences with the empirical sciences (the natural and social sciences). It is similar to empirical sciences in that it involves an objective, careful and systematic study of an area of knowledge; it is different because of its method of verifying its knowledge, using a priori rather than empirical methods. The formal sciences, which also include statistics and logic, are vital to the empirical sciences. Major advances in formal science have often led to major advances in the empirical sciences. The formal sciences are essential in the formation of hypotheses, theories, and laws, both in discovering and describing how things work (natural sciences) and how people think and act (social sciences). • Apart from its broad meaning, the word "Science" sometimes may specifically refer to fundamental
Recommended publications
  • D:Int Agrophysics -1Balashov Alashov.Vp
    Int.Agrophys.,2011,25,1-5 IINNNTTTEEERRRNNNAAATTTIIIOOONNNAAALL AAgggrrroooppphhhyyysssiiicccss www.international-agrophysics.org Impactofshort-andlong-termagriculturaluseofchernozemonitsqualityindicators E.Balashov*andN.Buchkina AgrophysicalResearchInstituteRAAS,14GrazhdanskyProspekt,St.Petersburg195220,Russia ReceivedMay11,2010;acceptedJune21,2010 A b s t r a c t. The impact of 5, 45, and 75 year agricultural use During the last two decades, particular attention of of a clayey loam Haplic Chernozem on its selected quality indica- scientists has been focused on two directions of multi- tors was determined. Contents of soil organic matter and microbial disciplinary studies of selected quality indicators of soils. biomass carbon were equal to 43.1±2.2 g C kg-1 soil and 480.0± 67.6 mg C kg-1 soil in the fallow land. Soil organic matter content in The first direction of the research was to quantify the thermo- the agricultural soils ranged from 30.2±1.8 (75 year plot) to dynamic characteristics of soil solid phase. The results of 47.5±2.1 g C kg-1 soil (5 year plot), while microbial biomass carbon thosestudiesshowedsignificantdifferencesin: content varied from 340.2±5.9 (75 year plot) to 371.2±10.2 mg C – water vapour and nitrogen adsorption energy of different -1 kg soil (5 year plot). Among the three agricultural treatments, soil clay minerals, soil types (Józefaciuk and Bowanko, only the 75 year one resulted in a significant decline in total 2002), soil organic matter content (Soko³owska et al., amounts of water-stable aggregates (70.8±8.2%) and clay content (26.9±1.0%), compared to those parameters in the fallow land 1993)andsoiltillage(Józefaciuk etal.,2001); (90.1±9.4% and 30.5±1.2%, respectively).
    [Show full text]
  • Equilibrium Thermodynamics
    Equilibrium Thermodynamics Instructor: - Clare Yu (e-mail [email protected], phone: 824-6216) - office hours: Wed from 2:30 pm to 3:30 pm in Rowland Hall 210E Textbooks: - primary: Herbert Callen “Thermodynamics and an Introduction to Thermostatistics” - secondary: Frederick Reif “Statistical and Thermal Physics” - secondary: Kittel and Kroemer “Thermal Physics” - secondary: Enrico Fermi “Thermodynamics” Grading: - weekly homework: 25% - discussion problems: 10% - midterm exam: 30% - final exam: 35% Equilibrium Thermodynamics Material Covered: Equilibrium thermodynamics, phase transitions, critical phenomena (~ 10 first chapters of Callen’s textbook) Homework: - Homework assignments posted on course website Exams: - One midterm, 80 minutes, Tuesday, May 8 - Final, 2 hours, Tuesday, June 12, 10:30 am - 12:20 pm - All exams are in this room 210M RH Course website is at http://eiffel.ps.uci.edu/cyu/p115B/class.html The Subject of Thermodynamics Thermodynamics describes average properties of macroscopic matter in equilibrium. - Macroscopic matter: large objects that consist of many atoms and molecules. - Average properties: properties (such as volume, pressure, temperature etc) that do not depend on the detailed positions and velocities of atoms and molecules of macroscopic matter. Such quantities are called thermodynamic coordinates, variables or parameters. - Equilibrium: state of a macroscopic system in which all average properties do not change with time. (System is not driven by external driving force.) Why Study Thermodynamics ? - Thermodynamics predicts that the average macroscopic properties of a system in equilibrium are not independent from each other. Therefore, if we measure a subset of these properties, we can calculate the rest of them using thermodynamic relations. - Thermodynamics not only gives the exact description of the state of equilibrium but also provides an approximate description (to a very high degree of precision!) of relatively slow processes.
    [Show full text]
  • Relativity in Classical Physics
    PHYSICS IV COURSE TOPICS 1 - The Birth of Modern Physics 2 - Special Theory of Relativity 3 - The Experimental Basis of Quantum Physics 4 - Structure of the Atom 5 - Wave Properties of Matter 6 - Quantum Mechanics The Birth of Modern Physics Lecture 1 • The word physics is derived from the Latin word physica, which means «natural thing». • Physics is a branch of science that deals with the properties of matter and energy and the relationship between them. • The scope of physics is very wide and vast. It deals with not only the tinniest particles of atoms, but also natural phenomenon like the galaxy, the milky way, solar and lunar eclipses, and more. Branches of Physics • Classical physics • Modern physics • Nuclear physics This branch is mainly • Atomic physics • Geophysics concerned with the • Biophysics theory of relativity • Mechanics and • Acoustics quantum mechanics. • Optics • Thermodynamics • Astrophysics • The term modern physics generally refers to the study of those facts and theories developed in this century starting around 1900, that concern the ultimate structure and interactions of matter, space and time. • The three main branches of classical physics such as mechanics, heat and electromagnetism – were developed over a period of approximately two centuries prior to 1900. • Newton’s mechanics dealt succesfully with the motions of bodies of macroscopic size moving with low speeds. • This provided a foundation for many of the engineering accomplishments of the 18th and 19th centuries. • Between 1837 – 1901, there were many remarkable achievements occured in physics. • For example, the description and predictions of electromagnetism by Maxwell. Partly responsible for the rapid telecommunications of today.
    [Show full text]
  • Outline of Physical Science
    Outline of physical science “Physical Science” redirects here. It is not to be confused • Astronomy – study of celestial objects (such as stars, with Physics. galaxies, planets, moons, asteroids, comets and neb- ulae), the physics, chemistry, and evolution of such Physical science is a branch of natural science that stud- objects, and phenomena that originate outside the atmosphere of Earth, including supernovae explo- ies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a “physical sions, gamma ray bursts, and cosmic microwave background radiation. science”, together called the “physical sciences”. How- ever, the term “physical” creates an unintended, some- • Branches of astronomy what arbitrary distinction, since many branches of physi- cal science also study biological phenomena and branches • Chemistry – studies the composition, structure, of chemistry such as organic chemistry. properties and change of matter.[8][9] In this realm, chemistry deals with such topics as the properties of individual atoms, the manner in which atoms form 1 What is physical science? chemical bonds in the formation of compounds, the interactions of substances through intermolecular forces to give matter its general properties, and the Physical science can be described as all of the following: interactions between substances through chemical reactions to form different substances. • A branch of science (a systematic enterprise that builds and organizes knowledge in the form of • Branches of chemistry testable explanations and predictions about the • universe).[1][2][3] Earth science – all-embracing term referring to the fields of science dealing with planet Earth. Earth • A branch of natural science – natural science science is the study of how the natural environ- is a major branch of science that tries to ex- ment (ecosphere or Earth system) works and how it plain and predict nature’s phenomena, based evolved to its current state.
    [Show full text]
  • Statistical Thermodynamics - Fall 2009
    1 Statistical Thermodynamics - Fall 2009 Professor Dmitry Garanin Thermodynamics September 9, 2012 I. PREFACE The course of Statistical Thermodynamics consist of two parts: Thermodynamics and Statistical Physics. These both branches of physics deal with systems of a large number of particles (atoms, molecules, etc.) at equilibrium. 3 19 One cm of an ideal gas under normal conditions contains NL =2.69 10 atoms, the so-called Loschmidt number. Although one may describe the motion of the atoms with the help of× Newton’s equations, direct solution of such a large number of differential equations is impossible. On the other hand, one does not need the too detailed information about the motion of the individual particles, the microscopic behavior of the system. One is rather interested in the macroscopic quantities, such as the pressure P . Pressure in gases is due to the bombardment of the walls of the container by the flying atoms of the contained gas. It does not exist if there are only a few gas molecules. Macroscopic quantities such as pressure arise only in systems of a large number of particles. Both thermodynamics and statistical physics study macroscopic quantities and relations between them. Some macroscopics quantities, such as temperature and entropy, are non-mechanical. Equilibruim, or thermodynamic equilibrium, is the state of the system that is achieved after some time after time-dependent forces acting on the system have been switched off. One can say that the system approaches the equilibrium, if undisturbed. Again, thermodynamic equilibrium arises solely in macroscopic systems. There is no thermodynamic equilibrium in a system of a few particles that are moving according to the Newton’s law.
    [Show full text]
  • PHYSICS Is the Study of Energy and Consists of Five Main Branches Each Studies a Different Form of Energy
    S R E W S N A PHYSICS is the study of energy and consists of five main branches each studies a different form of energy: . Mechanics (The study of forces or work; work is a form of energy) . Thermodynamics (The study of heat; heat is a form of energy) . Acoustics (The study of sound; sound is a form of energy) . Optics (The study of light; light is a form of energy) . Electricity and magnetism (Both are forms of energy) Just as there are different forms of money (the nickel, the dime, the quarter, the "five-dollar" bill, the check, etc.), there are different forms of energy (heat, sound, light, electricity, etc.). Each different form is a different branch of physics. And, just as one form of money can be converted into a different form of money, likewise one form of energy can be converted into a different form of energy. Even matter is just a form of energy (E = mc2). The device used to convert one form of energy into another form of energy is called a TRANSDUCER. Some popular transducers include: . The light bulb (which converts electrical energy into light energy) . The electric motor (which converts electrical energy into mechanical energy) . The electric heater (which converts electrical energy into heat energy) . The generator (which converts mechanical energy into electrical energy) . The speaker (which converts electrical energy into sound energy) . The microphone (which converts sound energy into electrical energy) . The photocell (which converts light energy into electrical energy) The efficiency of a transducer tells us how well it converts one type of energy into another type of energy.
    [Show full text]
  • History of History of Physics
    Acta Baltica Historiae Historyet Philosophiae of History Scientiarum of Physics Vol. 4, No. 2 (Autumn 2016) DOI : 10.11590/abhps.2016.2.01 History of History of Physics Stanislav Južnič Dunajska 83, Ljubljana 1000, Slovenia E-mail: [email protected] Abstract: The twelve decades of modern academic history of physics have provided enough material for the study of the history of history of physics, the focus of which is the development of the opinions and methods of historians of physics. The achievements of historians of physics are compared with the achievements of their objects of research, the physicists. Some correlations are expected. The group of historians-researchers and the group of their objects interacted. In several cases, the same person started out as a researcher and later moved on to the field of researcher of research achievements. There are also some competence-related quarrels between the two groups, the historians and the physicists. The new science called history of history of physics could be useful in a special case study of Jesuits. Jesuit professors formed a special group of physicists and historians studying the physicists, who were very influential in their time. Jesuits, except the very best of them such as Rudjer Bošković, Athanasius Kircher, or Christopher Clavius, were later omitted from historical surveys by their Enlightenment opponents. In the second half of the 19th century, Jesuit historians produced a considerable amount of useful biographies and bibliographies of their fellows. This makes them an interesting research subject for the history of history of physics as one of the best researched scientific-oriented networks worldwide, especially the Jesuits who were active in China.
    [Show full text]
  • How Should Energy Be Defined Throughout Schooling? Manuel Bächtold
    How should energy be defined throughout schooling? Manuel Bächtold To cite this version: Manuel Bächtold. How should energy be defined throughout schooling?. Research in Science Educa- tion, Springer Verlag, 2017, 48 (2), pp.345-367. 10.1007/s11165-016-9571-5. hal-01521131 HAL Id: hal-01521131 https://hal.archives-ouvertes.fr/hal-01521131 Submitted on 11 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. to appear in Research in Science Education How should energy be defined throughout schooling? Manuel Bächtold LIRDEF (EA 3749), Universités Montpellier et UPVM Abstract: The question of how to teach energy has been renewed by recent studies focusing on the learning and teaching progressions for this concept. In this context, one question has been, for the most part, overlooked: how should energy be defined throughout schooling. This paper addresses this question in three steps. We first identify and discuss two main approaches in physics concerning the definition of energy, one claiming there is no satisfactory definition and taking conservation as a fundamental property, the other based on Rankine’s definition of energy as the capacity of a system to produce changes.
    [Show full text]
  • Branches of Physics and Their Definition and Examples Notch
    Branches Of Physics And Their Definition And Examples Parental and soaking Wait imputes his retailer stammers serializes evanescently. Burl countersink her Leicester unblamably, she clings it oafishly. Distensible and feature-length Ugo often dramatizing some stance colourably or robotized endurably. Warping of branches of matter in celestial bodies biological chemistry or otherwise used in scientific processes and all, to solving problems for which to another Laws and in other branches of physics their definition examples validated without experiment to gravity? Breast including its branches of physics their definition and examples makes use of space warps, including veins and develops new research developments in almost everything is a part of. Devices that physics and their and examples domain and general interactions of motion of purpose and broader laws of the principles. Work in all other branches of physics their definition and examples changed my name. Helped human knowledge of physics their definition examples various branches is the life! Damsel flies and of definition and examples when they are a branch of matter in a science. Creating evermore beautiful complex phenomena of branches of and definition and examples hopefully really enjoys, prediction of newborns upto the physical qualities which the totality. Important for the level of physics their definition examples primitive man through development of environmental group of very unique and butter flies and the nature. Thing or manipulate the branches of physics their definition and examples putting in totality of breast including the natural science. Effects on the nature of physics and their and examples space, cosmology and domesticating animals name each other hand, that deal with the system abstract of support judgment meaning pixma second handbook store near me stars turn off all applications safenet Modern physics branches of their definition examples medical treatment of.
    [Show full text]
  • Physics 1 Physics
    Physics 1 Physics This article is about the field of science. For other uses, see Physics (disambiguation). Various examples of physical phenomena Part of a series on Science •• Outline •• Portal •• Category •• v •• t [1] • e Physics (from Ancient Greek: φυσική (ἐπιστήμη) phusikḗ (epistḗmē) “knowledge of nature”, from φύσις phúsis "nature"[2]) is the natural science that involves the study of matter[3] and its motion through space and time, along with related concepts such as energy and force.[4] More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.[5][6] Physics is one of the oldest academic disciplines, perhaps the oldest through its inclusion of astronomy. Over the last two millennia, physics was a part of natural philosophy along with chemistry, certain branches of mathematics, and biology, but during the Scientific Revolution in the 17th century, the natural sciences emerged as unique research programs in their own right.[7] Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry, and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms of other sciences while opening new avenues of research in areas such as mathematics and philosophy. Physics also makes significant contributions through advances in new technologies that arise from theoretical breakthroughs. For example, advances in the understanding of electromagnetism or nuclear physics led directly to the development of new products which have dramatically transformed modern-day society, such as television, computers, domestic appliances, and nuclear weapons; advances in thermodynamics led to the development of Physics 2 industrialization; and advances in mechanics inspired the development of calculus.
    [Show full text]
  • PHYS 324: Modern Physics Fall 2016 Syllabus
    PHYS 324: Modern Physics Fall 2016 Syllabus Instructor Prof. Sebastian Deffner Physics, Rm. 311 deff[email protected] Time and Place MoWeFr 9:00-9:50am Physics, Rm. 107 Office hours tba Textbook Modern Physics for Scientists and Engineers John R. Taylor, Chris D. Zafiratos, and Michael A. Dubson University Science Books, ISBN 978-1-938787-75-1 Scope The breakdown of classical physics, special relativity, quantum mechanics and atomic structure, solid-state, nuclear and elementary-particle physics. Dates • First day of class: August 31, 2016 • Last day of class: December 12, 2016 • First in-class test: September 30, 2016 • Second in-class test: November 04, 2016 • Final exam: December 16, 2016 Course Objectives This course will provide a general overview of the main subjects in modern physics. It will discuss key experiments, introduce the relevant terminology, and develop the main ideas of theoretical understanding. You will solve quantitative problems, but presenting long and rigorous deriva- tions and solving complex problems are left for more specialized courses, especially for quantum mechanics. At the end of the course, you should: • understand the main ideas and consequences of the special theory of relativity, • understand why quantum mechanics is needed to explain the phenomena of the micro-world and review the most important historical steps of its development; • be familiar with the most fundamental principles and applications of quantum mechanics, • understand some basic principles of nuclear physics, radioactivity, and particle physics, • have better understanding of how the different branches of physics fit together into a coherent picture, • improve your analytical ability. Course Format PHYS 324 is a traditional lecture course.
    [Show full text]
  • Overview of Current Research and Education Activity of the Institute of Agrophysics
    9 Research and Teaching of Physics in the Context of University Education Nitra, June 5 and 6, 2007 OVERVIEW OF CURRENT RESEARCH AND EDUCATION ACTIVITY OF THE INSTITUTE OF AGROPHYSICS Jozef Horabik Institute of Agrophysics, Polish Academy of Sciences Lublin, Poland Physics, with its research tools and mathematical methods of description and interpretation, found applications in many branches of science that developed to interdisciplinary fields as biophysics, astrophysics, geophysics, and most recently - agrophysics. Agrophysics as a branch of science applying physics to the investigations of properties of materials and the processes involved in the production and processing of agricultural products, especially in relationships between soil, plant, atmosphere and soil, plant, machine, agricultural products. Particular attention is given to sustainable plant and animal production, modern agricultural technologies, and quality of raw materials and food products. The scientific activity of the Institute concentrates on studies of physical properties and processes important for proper management of soil environment and development of sustainable agriculture and food production. It covers also elaboration and improvement of specific methods of physical measurements, computer modeling and monitoring. Monitoring equipped with appropriate measuring systems constitutes a basic tool in study of the environment. The Institute develops agrophysical metrology that takes care on elaboration, optimization and standardization of agrophysical measuring methods. Modeling and computer simulation concerns environmental and technological processes as: mass and energy exchange in soil-plant-atmosphere system and agricultural products, regulation of physical, physicochemical, hydrophysical, thermophysical and biological properties of soil and plant structures, optimal fertilization systems, physical characteristics of granular materials (soils, grains, flour) as well as physical aspects of agricultural products processing.
    [Show full text]