Phwsical Constants
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Summer 2018 Astron 9 Week 2 FINAL
ORDER OF MAGNITUDE PHYSICS RICHARD ANANTUA, JEFFREY FUNG AND JING LUAN WEEK 2: FUNDAMENTAL INTERACTIONS, NUCLEAR AND ATOMIC PHYSICS REVIEW OF BASICS • Units • Systems include SI and cgs • Dimensional analysis must confirm units on both sides of an equation match • BUCKINGHAM’S PI THEOREM - For a physical equation involving N variables, if there are R independent dimensions, then there are N-R independent dimensionless groups, denoted Π", …, Π%&'. UNITS REVIEW – BASE UNITS • Physical quantities may be expressed using several choices of units • Unit systems express physical quantities in terms of base units or combinations thereof Quantity SI (mks) Gaussian (cgs) Imperial Length Meter (m) Centimeter (cm) Foot (ft) Mass Kilogram (kg) Gram (g) Pound (lb) Time Second (s) Second (s) Second (s) Temperature Kelvin (K) Kelvin (K)* Farenheit (ºF) Luminous intensity Candela (cd) Candela (cd)* Amount Mole (mol) Mole (mol)* Current Ampere (A) * Sometimes not considered a base cgs unit REVIEW – DERIVED UNITS • Units may be derived from others Quantity SI cgs Momentum kg m s-1 g cm s-1 Force Newton N=kg m s-2 dyne dyn=g cm s-2 Energy Joule J=kg m2 s-2 erg=g cm2 s-2 Power Watt J=kg m2 s-3 erg/s=g cm2 s-3 Pressure Pascal Pa=kg m-1 s-2 barye Ba=g cm-1 s-2 • Some unit systems differ in which units are considered fundamental Electrostatic Units SI (mks) Gaussian cgs Charge A s (cm3 g s-2)1/2 Current A (cm3 g s-4)1/2 REVIEW – UNITS • The cgs system for electrostatics is based on the assumptions kE=1, kM =2kE/c2 • EXERCISE: Given the Gaussian cgs unit of force is g cm s-2, what is the electrostatic unit of charge? # 2 ! = ⟹ # = ! & 2 )/+ = g cm/ s1+ )/+ [&]2 REVIEW – BUCKINGHAM’S PI THEOREM • BUCKINGHAM’S PI THEOREM - For a physical equation involving N variables, if there are R independent dimensions, then there are N-R independent dimensionless groups, denoted Π", …, Π%&'. -
Appendix A: Symbols and Prefixes
Appendix A: Symbols and Prefixes (Appendix A last revised November 2020) This appendix of the Author's Kit provides recommendations on prefixes, unit symbols and abbreviations, and factors for conversion into units of the International System. Prefixes Recommended prefixes indicating decimal multiples or submultiples of units and their symbols are as follows: Multiple Prefix Abbreviation 1024 yotta Y 1021 zetta Z 1018 exa E 1015 peta P 1012 tera T 109 giga G 106 mega M 103 kilo k 102 hecto h 10 deka da 10-1 deci d 10-2 centi c 10-3 milli m 10-6 micro μ 10-9 nano n 10-12 pico p 10-15 femto f 10-18 atto a 10-21 zepto z 10-24 yocto y Avoid using compound prefixes, such as micromicro for pico and kilomega for giga. The abbreviation of a prefix is considered to be combined with the abbreviation/symbol to which it is directly attached, forming with it a new unit symbol, which can be raised to a positive or negative power and which can be combined with other unit abbreviations/symbols to form abbreviations/symbols for compound units. For example: 1 cm3 = (10-2 m)3 = 10-6 m3 1 μs-1 = (10-6 s)-1 = 106 s-1 1 mm2/s = (10-3 m)2/s = 10-6 m2/s Abbreviations and Symbols Whenever possible, avoid using abbreviations and symbols in paragraph text; however, when it is deemed necessary to use such, define all but the most common at first use. The following is a recommended list of abbreviations/symbols for some important units. -
Quantity Symbol Value One Astronomical Unit 1 AU 1.50 × 10
Quantity Symbol Value One Astronomical Unit 1 AU 1:50 × 1011 m Speed of Light c 3:0 × 108 m=s One parsec 1 pc 3.26 Light Years One year 1 y ' π × 107 s One Light Year 1 ly 9:5 × 1015 m 6 Radius of Earth RE 6:4 × 10 m Radius of Sun R 6:95 × 108 m Gravitational Constant G 6:67 × 10−11m3=(kg s3) Part I. 1. Describe qualitatively the funny way that the planets move in the sky relative to the stars. Give a qualitative explanation as to why they move this way. 2. Draw a set of pictures approximately to scale showing the sun, the earth, the moon, α-centauri, and the milky way and the spacing between these objects. Give an ap- proximate size for all the objects you draw (for example example next to the moon put Rmoon ∼ 1700 km) and the distances between the objects that you draw. Indicate many times is one picture magnified relative to another. Important: More important than the size of these objects is the relative distance between these objects. Thus for instance you may wish to show the sun and the earth on the same graph, with the circles for the sun and the earth having the correct ratios relative to to the spacing between the sun and the earth. 3. A common unit of distance in Astronomy is a parsec. 1 pc ' 3:1 × 1016m ' 3:3 ly (a) Explain how such a curious unit of measure came to be defined. Why is it called parsec? (b) What is the distance to the nearest stars and how was this distance measured? 4. -
Representation of Derived Units in Unitsml (Revised December 8, 2006)
Representation of Derived Units in UnitsML (revised December 8, 2006) Peter J. Linstrom∗ December 8, 2006 ∗phone: (301) 975-5422,DRAFT e-mail: [email protected] 1 INTRODUCTION 12/8/06 Contents 1 Introduction 1 2 Why this convention is needed 2 3 Information needed to define a unit 3 4 Proposed XML encoding 4 5 Important conventions 7 6 Potential problems 8 7 Possible alternatives 10 A Multiplicative prefixes 12 B SI units and units acceptable for use with the SI 14 C non-SI Units 19 1 Introduction This document describes a proposed convention for defining derived units in terms of their base units. This convention is intended for use in the UnitsML markup language to allow a precise definition of a wide range of units. The goal of this convention is to improve interoperability among applications and databases which use derived units based on commonly encountered base units. It is understoodDRAFT that not all units can be represented using this convention. It is, however, Representation of Derived Units in UnitsML (revised December 8, 2006) Page 1 2 WHY THIS CONVENTION IS NEEDED 12/8/06 anticipated that a wide range of scientific and engineering units of measure can be represented with this convention. The convention consists of representing the unit in terms of multiplicative combinations of base units. For example the unit centimeter per second squared would be represented in terms of the following: 1. The unit meter with the prefix centi raised to the power 1. 2. The unit second raised to the power −2. -
Astm Metric Practice Guide
National Bureau of Standards Library, E-01 Admrn. Bldg. A111DO cmfl4S - m 2 0 1967 METRIC PRACTICE GUIDE NATL INST OF STANDARDS & TECH R.I.C. All100991845 /NBS handbook QC1 .U51 V102;1967 C.1 NBS-PUB-C 1934 U. S. DEPARTMENT OF COMMERCE NATIONAL OUREAU OF STANDARDS HANDBOOK 102 THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards 1 provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation’s scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services: THE INSTITUTE FOR BASIC STANDARDS . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scientific com¬ munity, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area: —Applied Mathematics — Electricity—Metrology — Mechanics — Heat — Atomic Physics—Physical Chemistry—Radiation Physics—Laboratory Astrophysics2—Radio Standards Laboratory,2 which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Reference Data. THE INSTITUTE FOR MATERIALS RESEARCH . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of materials. Beyond its direct interest to the Nation’s scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce. -
Units, Conversations, and Scaling Giving Numbers Meaning and Context Author: Meagan White; Sean S
Units, Conversations, and Scaling Giving numbers meaning and context Author: Meagan White; Sean S. Lindsay Version 1.3 created August 2019 Learning Goals In this lab, students will • Learn about the metric system • Learn about the units used in science and astronomy • Learn about the units used to measure angles • Learn the two sky coordinate systems used by astronomers • Learn how to perform unit conversions • Learn how to use a spreadsheet for repeated calculations • Measure lengths to collect data used in next week’s lab: Scienctific Measurement Materials • Calculator • Microsoft Excel • String as a crude length measurement tool Pre-lab Questions 1. What is the celestial analog of latitude and longitude? 2. What quantity do the following metric prefixes indicate: Giga-, Mega-, kilo-, centi-, milli-, µicro-, and nano? 3. How many degrees is a Right Ascension “hour”; How many degrees are in an arcmin? Arcsec? 4. Use the “train-track” method to convert 20 ft to inches. 1. Background In any science class, including astronomy, there are important skills and concepts that students will need to use and understand before engaging in experiments and other lab exercises. A broad list of fundamental skills developed in today’s exercise includes: • Scientific units used throughout the international science community, as well as units specific to astronomy. • Unit conversion methods to convert between units for calculations, communication, and conceptualization. • Angular measurements and their use in astronomy. How they are measured, and the angular measurements specific to astronomy. This is important for astronomers coordinate systems, i.e., equatorial coordinates on the celestial sphere. • Familiarity with spreadsheet programs, such as Microsoft Excel, Google Sheets, or OpenOffice. -
Weights and Measures Standards of the United States: a Brief History
1 .0 11 8 1.25 1.4 I 6_ DOCUMENT RESUME ED 142 418 SE 022 719 AUTHOE Judson, Lewis V. TITLE Weights and Measures Standards of the United States: A Brief History. Updated Edition. INSTITUTION National Bureau of Standards (DOC) ,Washington, D.C. REPORT NO NBS-SP-447 PUB DATE Mar 76 NOTE 42p.; Contains occasional small print; Photographs may not reproduce well AVAILABLE FROM Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Stock Number 003-0O3-01654-3, $1.00) EDRS PRICE MF-$0.83 HC-$2.06 Plus Postage. DESCRIPTORS Government Publications; History; *Mathematics Education; *Measurement; *Metric System; *Science History; *Standards ABSTRACT This document was published by the National Bureau of Standards to meet the current demand for information on the history of weights and measures in the United States. It includes an illustrated discussion of this history through 1962 followed by an addendum covering the period 1963-1975. Appendices provide a bibliography and photographic copies of eight documents important to the development of official standards of measurement. (SD) *********************************************************************** Documents acquired by ERIC include many informal unpublished * materials not available from other sources. ERIC makes every effort * * -to obtain the best copy available. Nevertheless, items of marginal * * reproducibility are often encountered and this affects the quality * * of the microfiche and hardcopy reproductions ERIC makes available * via the ERIC Document Reproduction Service (EDRS). EDRS is not * responsible for the quality of the original document. Reproductions * * supplied by EDRS are the best that can be made from the original. *********************************************************************** U.S. DEPARTMENT OF HEALTH. -
Calculating Board Feet Board Feet Linear Feet Z "Board Feet" Is a Measurement of Lumber Square Feet Volume
Calculating Board Feet board Feet linear feet z "Board Feet" is a measurement of lumber square feet volume. z A board foot is equal to 144 cubic inches of wood. TED 126 Spring 2007 z Actually it's easy to calculate using the following formula: Bd. Ft. = T (inches) x W (inches) x L (feet) / 12 2 Board Feet Board Feet z When you are figuring up board feet, keep in mind a waste factor. Bd. Ft. = T (inches) x W (inches) x L (feet) / 12 z If you purchase good clear material add about 15% for waste, Bd. Ft. = T (inches) x W (inches) x L (inches) / 144 z if you elect to use lower grade material you will have to allow for defects and more wasted material ---add about 30%. 3 4 Board Feet and Linear feet Board Feet and Linear feet z A linear foot is a measure of length 12 inches z To convert linear feet to board feet: long and a Thickness” x Width” x Length’ ÷ 12 z board foot is a number calculated by determining the volume of a board that is 12 z To convert board feet to linear feet: inches wide and 1 inch thick. • In other words, a 1" x 6" board that measures 24" 12 ÷ Thickness” x Width” x Board Foot long is exactly one board foot. (width" x thickness" x length' / 12) 5 6 1 Linear feet and Square Feet The math…. z It is not possible to convert linear footage into z A Linear Feet is just a measurement of square footage because a linear foot is only one length and does not take into account its dimension and a square foot is two dimensions, width or thickness. -
Distances in the Solar System Are Often Measured in Astronomical Units (AU). One Astronomical Unit Is Defined As the Distance from Earth to the Sun
Distances in the solar system are often measured in astronomical units (AU). One astronomical unit is defined as the distance from Earth to the Sun. 1 AU equals about 150 million km (93 million miles). Table below shows the distance from the Sun to each planet in AU. The table shows how long it takes each planet to spin on its axis. It also shows how long it takes each planet to complete an orbit. Notice how slowly Venus rotates! A day on Venus is actually longer than a year on Venus! Distances to the Planets and Properties of Orbits Relative to Earth's Orbit Average Distance Length of Day (In Earth Length of Year (In Earth Planet from Sun (AU) Days) Years) Mercury 0.39 AU 56.84 days 0.24 years Venus 0.72 243.02 0.62 Earth 1.00 1.00 1.00 Mars 1.52 1.03 1.88 Jupiter 5.20 0.41 11.86 Saturn 9.54 0.43 29.46 Uranus 19.22 0.72 84.01 Neptune 30.06 0.67 164.8 The Role of Gravity Planets are held in their orbits by the force of gravity. What would happen without gravity? Imagine that you are swinging a ball on a string in a circular motion. Now let go of the string. The ball will fly away from you in a straight line. It was the string pulling on the ball that kept the ball moving in a circle. The motion of a planet is very similar to the ball on a strong. -
Paul Hertz Astrophysics Subcommittee
Paul Hertz Astrophysics Subcommittee February 23, 2012 Agenda • Science Highlights • Organizational Changes • Program Update • President’s FY13 Budget Request • Addressing Decadal Survey Priorities 2 Chandra Finds Milky Way’s Black Hole Grazing on Asteroids • The giant black hole at the center of the Milky Way may be vaporizing and devouring asteroids, which could explain the frequent flares observed, according to astronomers using data from NASA's Chandra X-ray Observatory. For several years Chandra has detected X-ray flares about once a day from the supermassive black hole known as Sagittarius A*, or "Sgr A*" for short. The flares last a few hours with brightness ranging from a few times to nearly one hundred times that of the black hole's regular output. The flares also have been seen in infrared data from ESO's Very Large Telescope in Chile. • Scientists suggest there is a cloud around Sgr A* containing trillions of asteroids and comets, stripped from their parent stars. Asteroids passing within about 100 million miles of the black hole, roughly the distance between the Earth and the sun, would be torn into pieces by the tidal forces from the black hole. • These fragments then would be vaporized by friction as they pass through the hot, thin gas flowing onto Sgr A*, similar to a meteor heating up and glowing as it falls through Earth's atmosphere. A flare is produced and the remains of the asteroid are eventually swallowed by the black hole. • The authors estimate that it would take asteroids larger than about six miles in radius to generate the flares observed by Chandra. -
Feasibility Analysis of a Small Log Sawmill in Southeast Alaska
1 Feasibility analysis of a small log sawmill in Southeast Alaska Executive Summary Unlike most Southern Yellow Pine sawmills, a small log mill in Southeast Alaska that manufactured lumber from 60-year old trees, would not be profitable. There are many additional operating costs in the remote forests of Southeast Alaska that the Southern Yellow Pine sawmills do not incur. The two most costly disadvantages are; 1. An additional $SO per thousand board feet of lumber that is required to transport lumber from Southeast Alaska to the Pacific Northwest and, 2. The lack ofany reasonable economy of scale. The small timber sale volume projected to be available to the manufacturing industry in Southeast Alaska is inadequate to support more than a single mid-size sawmill. Consequently the regions sawmills will not produce any income from the residual products - chips, sawdust and bark. The chips are currently barged to pulp mills in the Pacific Northwest and Canada, while the Yellow Pine sawmills can deliver chips to nearby pulp mills at a much lower cost than the Alaska sawmills. Similarly, there are no fiberboard plants to utilize the sawdust from Southeast Alaska sawmills and there is no market for the bark in Southeast Alaska. Instead, most ofthe sawdust and bark must be disposed of in landfills. Introduction The purpose of this analysis is to compare several financial estimates of the feasibility of manufacturing lumber from immature young growth timber in Southeast Alaska. Four sawmill proformas are 1 examined : 1. A summary of five actual Southern Yellow Pine sawmills. This proforma was used because much of the rhetoric surrounding the Secretary of Agriculture unilateral decision to transition to 60+ year old Alaska young growth was based on assertions that Yellow Pine sawmills harvest their 2 timber before age 60 • Other than the obvious difference in tree species, the yellow pine region has much different logistic issues than Southeast Alaska. -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.