Species of the Medullosan Ovule Stephanospermum from the Lopingian (Late Permian) floras of China ⇑ Alan R.T

Total Page:16

File Type:pdf, Size:1020Kb

Species of the Medullosan Ovule Stephanospermum from the Lopingian (Late Permian) floras of China ⇑ Alan R.T Journal of Asian Earth Sciences 76 (2013) 59–69 Contents lists available at ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes Species of the medullosan ovule Stephanospermum from the Lopingian (late Permian) floras of China ⇑ Alan R.T. Spencer a, , Shi-Jun Wang b,c, Michael T. Dunn d, Jason Hilton e a Department of Earth Sciences and Engineering, Imperial College London, London SW7 2BP, UK b State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China c State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China d Department of Biological Sciences, Cameron University, Lawton, OK 73505, USA e School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK article info abstract Article history: The medullosan pteridosperm ovule Stephanospermum Brongniart is a well-known component of Carbon- Received 18 April 2013 iferous aged coal-ball and siderite nodule floras from North America and Europe but also occurs in the Received in revised form 3 July 2013 Permian floras of Cathaysia where it is represented by the Lopingian (late Permian) aged species Stephan- Accepted 22 July 2013 ospermum trunctatum (Li) Wang et al. (2009) from coal-balls in the Wangjiazhai Formation in Southern Available online 7 August 2013 China. We provide a detailed emendation of S. trunctatum and illustrate it comprehensively for the first time, and document an additional specimen from the Wangjiazhai Formation coal-ball assemblage that Keywords: we assign to Stephanospermum shuichengensis sp. nov. S. shuichengensis is distinguished from S. truncta- Gymnosperm tum by the absence of apical teeth in the sclerotesta and non-obovate base. The two species of Stephan- Medullosales Trigonocarp ospermum from the Wangjiazhai Formation are important as they extend the stratigraphic and Coal-ball geographical range of the genus from the Pennsylvanian of Euramerica into the Lopingian of Southern Wangjiazhai Formation China, and demonstrate that the genus persisted in wetland, peat forming environments in the run up Shuicheng to the end-Permian mass extinction event. The 44 MY stratigraphic discontinuity between the Euramer- ican and the Cathaysian species, here named the Stephanospermum gap, leads us to infer that the genus was likely to have occurred in the Pennsylvanian–Permian successions of southern Russia and northern China that are geographically and stratigraphically intermediate to the known occurrences but from which the genus has yet to be discovered. Medullosan pteridosperms appear to have become extinct at or immediately prior to the Permian–Triassic boundary that coincides with the Permo–Trias mass extinction event; although the exact causes of this loss in plant diversity remains unknown, a response to regional climatic drying is likely to have been a contributing factor. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction conform to the traditionally circumscribed trigonocarpalean concept (senus Seward, 1917) and are large, radially symmetrical, Medullosans are a comparatively well characterised group of have the nucellus attached to the integument at the chalaza only, Late Palaeozoic pteridosperms that were widespread in wetland and possess a domed or campanulate pollen chamber (Serbet and and moister parts of seasonal wetland settings in the Pennsylva- Rothwell, 1995; Spencer et al., 2013). In the compression/impres- nian of Europe and North America (DiMichele et al., 2006) and sion record, medullosan ovules are typically placed in the genus the Permian of China (Wang et al., 2009). As a group they exhibit Trigonocarpus Brongniart 1828, whereas those known with ana- a range of growth architectures including trees, vines and liana- tomical preservation are variously assigned to the genera Pachytes- like plants. In addition DiMichele et al. (2006) suggest that some ta Brongiart 1874, Stephanospermum Brongniart 1874, medullosans may have been cormose, acaulescent plants. How- Hexapterospermum Brongniart 1874, Polypterospermum Brongniart ever, currently the evidence is lacking for an evolutionary frame- 1874, Codonospermum Brongniart 1874, Rhynchosperma Taylor work in which to determine the relationships between taxa with and Eggert 1967, and Hexaloba Dunn et al. 2002. different growth architectures (DiMichele et al., 2006; Hilton and The genus Stephanospermum at present includes eight species Bateman, 2006). Where known, ovules produced by medullosans from the Pennsylvanian to earliest Permian floras of Euramerica plus a single species from the Permian of China (see Wang et al., ⇑ Corresponding author. Tel.: +44 07824325531. 2009; Spencer et al., 2013, for a recent review). The species from E-mail address: [email protected] (A.R.T. Spencer). China occurs in Changhsingian (late Permian) aged coal-balls from 1367-9120/$ - see front matter Ó 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.jseaes.2013.07.030 60 A.R.T. Spencer et al. / Journal of Asian Earth Sciences 76 (2013) 59–69 the Wangjiazhai Formation and was first documented and partially available, and have the drawback of often forming peels of unequal illustrated by Li (1988) as part of an unpublished PhD thesis. This thickness from which photography of uneven surfaces may be account was subsequently published by Li (1991) who assigned challenging. These limiting factors in addition to non-sequential it to Stephanospermum cf. akenioides noting its similarity with Step- slides, uneven spacing between the peels/film pulls, and with hanospermum akenioides Brongniart 1874 from the Pennsylvanian one specimen only having two peels it has not been possible to of Europe. Li’s (1988, 1991) account was based on a single speci- reconstruct the 3D organisation of the seeds in full. men exposed on the external surface of a coal-ball that was then Mounted slides were photographed with a Cannon EOS 40D cut longitudinally and from which acetate peels were subsequently mounted on a Zeiss Tessovar macro system with illumination pro- made. The same specimen was later included and illustrated with- vided by twin fibre-optic light guides and a ring light. The resulting in an atlas of fossil plant anatomy in China (Li and Cui, 1995, pg. images where processed (cropped, rotated, edge enhanced and 62), although in this account it was erroneously illustrated up- equalised for hue and brightness) in GIMP 2, ImageJ (Abràmoff side-down. In 2009, as part of their revision of the coal-ball floras et al., 2004) and Corel Paint Shop Pro Photo X2 with figures con- of China, Wang et al. reinvestigated the species based on the peels structed in Adobe Illustrator CS4/5 and Inkscape (see Spencer from Li’s earlier investigation, concluding that it was distinct from et al., 2013, for an overview on the software packages used). S. akenioides in having 4 short, triangular apical teeth rather than possessing a conspicuous crown characteristic of S. akenioides 3. Geological information and age (Wang et al., 2009). These distinctions led Wang et al. (2009) to transfer the species into S. trunctatum Wang et al., but other than Specimens occur in coal-balls from the Wangjiazhai Formation the systematic section of that account, the remaining text was pub- in Guizhou Province in South China (Wang et al., 2009). Although lished in the Chinese language so is not available to non-Chinese the full flora has yet to be studied in detail, previous investigations scientists. Furthermore, only key features of S. trunctatum were demonstrate it to include lycopsids (Wang et al., 2009), marattia- emended and illustrated. Here we provide a full systematic ac- lean (He et al., 2006) and osmundalean ferns (Li, 1993; Wang count of S. trunctatum, illustrate it comprehensively and compare et al., 2013), pteridosperms (Seyfullah et al., 2009; Wang et al., it with other species of the genus for the first time. 2009) and cycads (Wang et al., 2011b). In the Wangjiazhai Forma- During the course of our investigation we have also identified tion, peat forming wetland plant communities developed in low- another specimen from the coal-ball assemblage in the Wangjiaz- lying coastal settings with peat formation ceasing with marine hai Formation that conforms to the generic circumscription of Step- incursion, with the onset of marine conditions facilitating the for- hanospermum but is distinct from Stephanospermum trunctatum. mation of coal-balls (Wang et al., 2011a). Coal-balls in these set- This specimen is described and illustrated here for the first time, tings were permineralized by an early diagenetic calcium and comparisons demonstrate it to represent a new species with carbonate cement, but pyritization is also abundant within the a close affinity to species of Stephanospermum from the Pennsylva- coal-balls where presumably it was triggered by early decay of soft nian of Euramerica. We name the new species Stephanospermum tissues in reaction with saline water prior to carbonate mineraliza- shuichengensis Spencer et al. Evolutionary and environmental tion (for overview of coal-ball formation see Scott et al., 1996). implications of the presence of two species of Stephanospermum Wang et al. (2011a) presented a regional stratigraphic correla- in the Lopingian flora of southern China are considered. tion of the Guadalupian–Lopingian aged sedimentary successions in Guizhou Province and
Recommended publications
  • International Organisation of Palaeobotany IOP NEWSLETTER
    INTERNATIONAL UNION OF BIOLOGIC A L S C IENC ES S ECTION FOR P A L A EOBOTANY International Organisation of Palaeobotany IOP NEWSLETTER 110 August 2016 CONTENTS FROM THE SECRETARY/TREASURER IPC XIV/IOPC X 2016 IOPC 2020 IOP MEMBERSHIP IOP EXECUTIVE COMMITTEE ELECTIONS IOP WEBMASTER POSITION WHAT HAPPENED TO THE OUPH COLLECTIONS? THE PALAEOBOTANY OF ITALY UPCOMING MEETINGS CALL FOR NEWS and NOTES The views expressed in the newsletter are those of its correspondents, and do not necessarily reflect the policy of IOP. Please send us your contributions for the next edition of our newsletter (June 2016) by M ay 30th, 2016. President: Johanna Eder-Kovar (G ermany) Vice Presidents: Bob Spicer (Great Britain), Harufumi Nishida (Japan), M ihai Popa (Romania) M embers at Large: Jun W ang (China), Hans Kerp (Germany), Alexej Herman (Russia) Secretary/Treasurer/Newsletter editor: M ike Dunn (USA) Conference/Congress Chair: Francisco de Assis Ribeiro dos Santos IOP Logo: The evolution of plant architecture (© by A. R. Hemsley) I OP 110 2 August 2016 FROM THE In addition, please send any issues that you think need to be addressed at the Business SECRETARY/TREASURER meeting. I will add those to the Agenda. Dear IOP Members, Respectfully, Mike I am happy to report, that IOP seems to be on track and ready for a new Executive Council to take over. The elections are IPC XIV/IOPC X 2016 progressing nicely and I will report the results in the September/October Newsletter. The one area that is still problematic is the webmaster position. We really to talk amongst ourselves, and find someone who is willing and able to do the job.
    [Show full text]
  • A New Microsporangiate Organ from the Lower Carboniferous of the Novgorod Region, Russia O
    ISSN 0031-0301, Paleontological Journal, 2009, Vol. 43, No. 10, pp. 1316–1329. © Pleiades Publishing, Ltd., 2009. A New Microsporangiate Organ from the Lower Carboniferous of the Novgorod Region, Russia O. A. Orlovaa, N. R. Meyer-Melikian†,a, and N. E. Zavialovab a Moscow State University (MGU), Leninskie gory 1, Moscow, 119991 Russia b Borissiak Paleontological Institute of the Russian Academy of Sciences, ul. Profsoyuznaya 123, Moscow, 117997 Russia e-mail: [email protected] Received February 5, 2008 Abstract—A new species of the genus Telangiopsis, T. nonnae O. Orlova et Zavialova, was described on the basis of a microsporangiate organ from the Lower Carboniferous deposits of the Novgorod Region. The mor- phology of branching fertile axes, synangia, and sporangia was thoroughly studied. The three-dimensional sys- tem of fertile axes branches monopodially; ultimate axes bear numerous connivent bunches of synangia, which consist of three to six basally fused elongated ovate sporangia. The morphology and ultrastructure of prepollen grains were studied, which were extracted from the rock matrix surrounding the sporangia. The two-layered exine includes a well-developed endexine and an alveolate ectexine, with one–three rows of large thin-walled alveolae. The new species was compared with other Early Carboniferous microsporangiate organs. Key words: Early Carboniferous, Novgorod Region, fertile axis, synangia, Lyginopteridales, trilete prepollen, exine ultrastructure. DOI: 10.1134/S003103010910013X INTRODUCTION synangia and numerous casts and imprints of detached synangia were found in yellow ferruginous sandstone. During the three last decades, the interest of bota- In addition to the fertile axes, sterile remains of Lygi- nists dealing with fossil and modern plants to Carbon- nopteridales, Medullosales, and Calamopytiales were iferous synangiate pollen organs has considerably found (Orlova and Snigirevskii, 2003, 2004).
    [Show full text]
  • Dr. Sahanaj Jamil Associate Professor of Botany M.L.S.M. College, Darbhanga
    Subject BOTANY Paper No V Paper Code BOT521 Topic Taxonomy and Diversity of Seed Plant: Gymnosperms & Angiosperms Dr. Sahanaj Jamil Associate Professor of Botany M.L.S.M. College, Darbhanga BOTANY PG SEMESTER – II, PAPER –V BOT521: Taxonomy and Diversity of seed plants UNIT- I BOTANY PG SEMESTER – II, PAPER –V BOT521: Taxonomy and Diversity of seed plants Classification of Gymnosperms. # Robert Brown (1827) for the first time recognized Gymnosperm as a group distinct from angiosperm due to the presence of naked ovules. BENTHAM and HOOKSER (1862-1883) consider them equivalent to dicotyledons and monocotyledons and placed between these two groups of angiosperm. They recognized three classes of gymnosperm, Cyacadaceae, coniferac and gnetaceae. Later ENGLER (1889) created a group Gnikgoales to accommodate the genus giankgo. Van Tieghem (1898) treated Gymnosperm as one of the two subdivision of spermatophyte. To accommodate the fossil members three more classes- Pteridospermae, Cordaitales, and Bennettitales where created. Coulter and chamberlain (1919), Engler and Prantl (1926), Rendle (1926) and other considered Gymnosperm as a division of spermatophyta, Phanerogamia or Embryoptyta and they further divided them into seven orders: - i) Cycadofilicales ii) Cycadales iii) Bennettitales iv) Ginkgoales v) Coniferales vi) Corditales vii) Gnetales On the basis of wood structure steward (1919) divided Gymnosperm into two classes: - i) Manoxylic ii) Pycnoxylic The various classification of Gymnosperm proposed by various workers are as follows: - i) Sahni (1920): - He recognized two sub-divison in gymnosperm: - a) Phylospermae b) Stachyospermae BOTANY PG SEMESTER – II, PAPER –V BOT521: Taxonomy and Diversity of seed plants ii) Classification proposed by chamber lain (1934): - He divided Gymnosperm into two divisions: - a) Cycadophyta b) Coniterophyta iii) Classification proposed by Tippo (1942):- He considered Gymnosperm as a class of the sub- phylum pteropsida and divided them into two sub classes:- a) Cycadophyta b) Coniferophyta iv) D.
    [Show full text]
  • Retallack 2021 Coal Balls
    Palaeogeography, Palaeoclimatology, Palaeoecology 564 (2021) 110185 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Modern analogs reveal the origin of Carboniferous coal balls Gregory Retallack * Department of Earth Science, University of Oregon, Eugene, Oregon 97403-1272, USA ARTICLE INFO ABSTRACT Keywords: Coal balls are calcareous peats with cellular permineralization invaluable for understanding the anatomy of Coal ball Pennsylvanian and Permian fossil plants. Two distinct kinds of coal balls are here recognized in both Holocene Histosol and Pennsylvanian calcareous Histosols. Respirogenic calcite coal balls have arrays of calcite δ18O and δ13C like Carbon isotopes those of desert soil calcic horizons reflecting isotopic composition of CO2 gas from an aerobic microbiome. Permineralization Methanogenic calcite coal balls in contrast have invariant δ18O for a range of δ13C, and formed with anaerobic microbiomes in soil solutions with bicarbonate formed by methane oxidation and sugar fermentation. Respiro­ genic coal balls are described from Holocene peats in Eight Mile Creek South Australia, and noted from Carboniferous coals near Penistone, Yorkshire. Methanogenic coal balls are described from Carboniferous coals at Berryville (Illinois) and Steubenville (Ohio), Paleocene lignites of Sutton (Alaska), Eocene lignites of Axel Heiberg Island (Nunavut), Pleistocene peats of Konya (Turkey), and Holocene peats of Gramigne di Bando (Italy). Soils and paleosols with coal balls are neither common nor extinct, but were formed by two distinct soil microbiomes. 1. Introduction and Royer, 2019). Although best known from Euramerican coal mea­ sures of Pennsylvanian age (Greb et al., 1999; Raymond et al., 2012, Coal balls were best defined by Seward (1895, p.
    [Show full text]
  • Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation
    i1 Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation William A. DiMichele, William E. Stein, and Richard M. Bateman DiMichele, W.A., Stein, W.E., and Bateman, R.M. 2001. Ecological sorting of vascular plant classes during the Paleozoic evolutionary radiation. In: W.D. Allmon and D.J. Bottjer, eds. Evolutionary Paleoecology: The Ecological Context of Macroevolutionary Change. Columbia University Press, New York. pp. 285-335 THE DISTINCTIVE BODY PLANS of vascular plants (lycopsids, ferns, sphenopsids, seed plants), corresponding roughly to traditional Linnean classes, originated in a radiation that began in the late Middle Devonian and ended in the Early Carboniferous. This relatively brief radiation followed a long period in the Silurian and Early Devonian during wrhich morphological complexity accrued slowly and preceded evolutionary diversifications con- fined within major body-plan themes during the Carboniferous. During the Middle Devonian-Early Carboniferous morphological radiation, the major class-level clades also became differentiated ecologically: Lycopsids were cen- tered in wetlands, seed plants in terra firma environments, sphenopsids in aggradational habitats, and ferns in disturbed environments. The strong con- gruence of phylogenetic pattern, morphological differentiation, and clade- level ecological distributions characterizes plant ecological and evolutionary dynamics throughout much of the late Paleozoic. In this study, we explore the phylogenetic relationships and realized ecomorphospace of reconstructed whole plants (or composite whole plants), representing each of the major body-plan clades, and examine the degree of overlap of these patterns with each other and with patterns of environmental distribution. We conclude that 285 286 EVOLUTIONARY PALEOECOLOGY ecological incumbency was a major factor circumscribing and channeling the course of early diversification events: events that profoundly affected the structure and composition of modern plant communities.
    [Show full text]
  • A Physiologically Explicit Morphospace for Tracheid-Based Water Transport in Modern and Extinct Seed Plants
    A Physiologically Explicit Morphospace for Tracheid-based Water Transport in Modern and Extinct Seed Plants The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Wilson, Jonathan P., and Andrew H. Knoll. 2010. A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants. Paleobiology 36(2): 335-355. Published Version doi:10.1666/08071.1 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4795216 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Wilson - 1 A Physiologically Explicit Morphospace for Tracheid-Based Water Transport in Modern and Extinct Seed Plants Jonathan P. Wilson* Andrew H. Knoll September 7, 2009 RRH: PHYSIOLOGICALLY EXPLICIT MORPHOSPACE LRH: JONATHAN P. WILSON AND ANDREW H. KNOLL Wilson - 2 Abstract We present a morphometric analysis of water transport cells within a physiologically explicit three-dimensional space. Previous work has shown that cell length, diameter, and pit resistance govern the hydraulic resistance of individual conducting cells; thus, we use these three parameters as axes for our morphospace. We compare living and extinct plants within this space to investigate how patterns of plant conductivity have changed over evolutionary time. Extinct coniferophytes fall within the range of living conifers, despite differences in tracheid-level anatomy. Living cycads, Ginkgo biloba, the Miocene fossil Ginkgo beckii, and extinct cycadeoids overlap with both conifers and vesselless angiosperms.
    [Show full text]
  • Syllabus for Post Graduate Course in Botany (2016 – 2017 Onward)
    Syllabus for Post Graduate Course in Botany (2016 – 2017 onward) Department of Botany Sidho-Kanho-Birsha University Paper Theory / Subjects Credit / Total Practical Paper Credit Semester-I Theoretical: Full Marks = 50 for each paper (20% of FM for internal assessment, attendance etc.) MBOTCCT - 101 Theory (Core) Microbiology (2), Phycology (2) 4 MBOTCCT - 102 Theory (Core) Mycology (2), Plant Pathology (2) 4 MBOTCCT - 103 Theory (Core) Bryology (2), Pteridology (2) 4 MBOTCCT - 104 Theory (Core) Biomolecules (2), Cell and Molecular Biology (2) 4 24 Practical = 50, 30 (Practical work - continuous evaluation and attendance); 20 (Viva-voce and submission) MBOTCCS - 105 Practical (Core) Phycology (1), Mycology (1), Bryology (1), Pteridology (1). 4 MBOTCCS - 106 Practical (Core) Microbiology (1.5), Plant Pathology (1), Cell and Molecular 4 Biology (1.5). Semester-II Theoretical: Full Marks = 50 for each paper (20% of FM for internal assessment, attendance etc.) MBOTCCT - 201 Theory (Core) Gymnosperms (2), Paleobotany and Palynology (2) 4 MBOTCCT - 202 Theory (Core) Plant Anatomy and Developmental Biology (2) Pharmacognosy (2) 4 MBOTCCT - 203 Theory (Core) Genetics and Genomics (2), Plant Biotechnology(2) 4 24 MBOTCCT - 204 Theory (Core) Taxonomy of Angiosperms and Biosystematics (2), Ecology (2) 4 Practical = 50, 30 (Practical work - continuous evaluation and attendance); 20 (Viva-voce and submission) MBOTCCS - 205 Practical (Core) Gymnosperms (1), Palaeobotany and Palynology (1), Plant 4 Anatomy & Developmental Biology (1), Pharmacognosy (1). MBOTCCS - 206 Practical (Core) Genetics and Genomics (1.5), Taxonomy (1.5), Ecology (1). 4 Semester-III Theoretical: Full Marks = 50 for each paper (20% of FM for internal assessment, attendance etc.) MBOTCCT - 301 Theory (Core) Plant Physiology (2), Plant Biochemistry (2) 4 MBOTCCT - 302 Theory (Core) Economic Botany (2), Bioinformatics (2) 4 MBOTCCT - 303 Theory (Core) Elements of Forestry (2), Seed Technology (2).
    [Show full text]
  • The Upper Carboniferous-Lower Permian Flora of Zöbing, Lower Austria
    The upper Carboniferous-Lower Permian flora of Zöbing, Lower Austria Utrecht University Master Thesis Earth, Life and Climate By Koen Paalman 3470423 [email protected] 1 Contents page Abstract 3 1. Introduction 4 2. Geography, Geology and Lithology 6 3. Vegetation types 8 4. Different taxonomic groups 8 4.1 Calamites and other sphenopsids 8 4.2 Tree ferns 8 4.3 Cordaites 8 4.4 Pteridosperms 9 4.5 The medullosan pteridosperms 9 4.6 The peltaspermalean pteridosperms 9 5. Methods 10 6. Results 10 7. Correlation, comparison and interpretation 11 8. Discussion and conclusion 13 9. Acknowledgements 13 10. Appendix 14 10.1 Species list 14 10.2 Reference 16 11. Plates 19 2 Abstract During the Late Carboniferous and early Permian, a major floristic change took place in Euramerica. Gymnosperms replaced the previously dominant pteridophytes. This reflects a climatic change, i.e. from wetland-dominated to more arid conditions. Extensive studies on the vegetation during this time interval have recently been carried out in the Czech Republic. The Zöbing formation in Austria, is of the same age of these Czech formations, but has not yet been compared to them. Material from the Zöbing formation has been examined and compared to Czech floras. A clear transition can be seen in the flora of the Zöbing formation, from a Stephanian tree fern and Alethopteris zeilleri dominated flora, to a Asselian flora dominated by peltasperms and conifers. There are clear similarities between the floras of the Zöbing formation and the different Czechian formations, despite notable differences in species composition and abundance between Zöbing and the Czech formations.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE ORCID ID: 0000-0003-0186-6546 Gar W. Rothwell Edwin and Ruth Kennedy Distinguished Professor Emeritus Department of Environmental and Plant Biology Porter Hall 401E T: 740 593 1129 Ohio University F: 740 593 1130 Athens, OH 45701 E: [email protected] also Courtesy Professor Department of Botany and PlantPathology Oregon State University T: 541 737- 5252 Corvallis, OR 97331 E: [email protected] Education Ph.D.,1973 University of Alberta (Botany) M.S., 1969 University of Illinois, Chicago (Biology) B.A., 1966 Central Washington University (Biology) Academic Awards and Honors 2018 International Organisation of Palaeobotany lifetime Honorary Membership 2014 Fellow of the Paleontological Society 2009 Distinguished Fellow of the Botanical Society of America 2004 Ohio University Distinguished Professor 2002 Michael A. Cichan Award, Botanical Society of America 1999-2004 Ohio University Presidential Research Scholar in Biomedical and Life Sciences 1993 Edgar T. Wherry Award, Botanical Society of America 1991-1992 Outstanding Graduate Faculty Award, Ohio University 1982-1983 Chairman, Paleobotanical Section, Botanical Society of America 1972-1973 University of Alberta Dissertation Fellow 1971 Paleobotanical (Isabel Cookson) Award, Botanical Society of America Positions Held 2011-present Courtesy Professor of Botany and Plant Pathology, Oregon State University 2008-2009 Visiting Senior Researcher, University of Alberta 2004-present Edwin and Ruth Kennedy Distinguished Professor of Environmental and Plant Biology, Ohio
    [Show full text]
  • Transformative Paleobotany
    Chapter 6 Lower Permian Flora of the Sanzenbacher Ranch, Clay County, Texas William A. DiMichele1, Robert W. Hook2, Hans Kerp3, Carol L. Hotton1,4, Cindy V. Looy5 and Dan S. Chaney1 1NMNH Smithsonian Institution, Washington, DC, United States; 2The University of Texas at Austin, Austin, TX, United States; 3Westfälische Wilhelms-Universität Münster, Münster, Germany; 4National Institutes of Health, Bethesda, MD, United States; 5University of California Berkeley, Berkeley, CA, United States 1. INTRODUCTION 1985; Broutin, 1986; Popa, 1999; Steyer et al., 2000; Wagner and Mayoral, 2007; Bercovici and Broutin, 2008; Since 1989, field parties supported by the U.S. National Barthel, 2009; Wagner and Álvarez-Vázquez, 2010; Museum of Natural History have obtained large collections Barthel and Brauner, 2015). Furthermore, because this of mainly Permian plant fossils from north central Texas. locality was collected on three occasions over a time period This work was undertaken to study known localities and to of 50 years and by different parties, comparative analysis of find new fossiliferous deposits that would contribute to a the Sanzenbacher collections provides a basis for assessing better understanding of floral and paleoenvironmental sites that have comparable histories. changes within the region during the early Permian. From the outset, the effort was interdisciplinary and grew, through the contributions of nearly 20 paleobotanists, 2. GEOLOGY palynologists, invertebrate and vertebrate paleontologists, Clay County is the only county in the Permo-Carboniferous and sedimentary geologists of several subdisciplines, to be outcrop belt of north central Texas that lacks marine rocks. quite comprehensive. Our reporting of results, however, has These alluvial sediments accumulated east of a broad been influenced by unexpected developments, including the coastal plain that bordered the Eastern Shelf of the Midland discovery of new plant-fossil assemblages in areas once Basin.
    [Show full text]
  • Diversity and Evolution of the Megaphyll in Euphyllophytes
    G Model PALEVO-665; No. of Pages 16 ARTICLE IN PRESS C. R. Palevol xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Comptes Rendus Palevol w ww.sciencedirect.com General palaeontology, systematics and evolution (Palaeobotany) Diversity and evolution of the megaphyll in Euphyllophytes: Phylogenetic hypotheses and the problem of foliar organ definition Diversité et évolution de la mégaphylle chez les Euphyllophytes : hypothèses phylogénétiques et le problème de la définition de l’organe foliaire ∗ Adèle Corvez , Véronique Barriel , Jean-Yves Dubuisson UMR 7207 CNRS-MNHN-UPMC, centre de recherches en paléobiodiversité et paléoenvironnements, 57, rue Cuvier, CP 48, 75005 Paris, France a r t i c l e i n f o a b s t r a c t Article history: Recent paleobotanical studies suggest that megaphylls evolved several times in land plant st Received 1 February 2012 evolution, implying that behind the single word “megaphyll” are hidden very differ- Accepted after revision 23 May 2012 ent notions and concepts. We therefore review current knowledge about diverse foliar Available online xxx organs and related characters observed in fossil and living plants, using one phylogenetic hypothesis to infer their origins and evolution. Four foliar organs and one lateral axis are Presented by Philippe Taquet described in detail and differ by the different combination of four main characters: lateral organ symmetry, abdaxity, planation and webbing. Phylogenetic analyses show that the Keywords: “true” megaphyll appeared at least twice in Euphyllophytes, and that the history of the Euphyllophytes Megaphyll four main characters is different in each case. The current definition of the megaphyll is questioned; we propose a clear and accurate terminology in order to remove ambiguities Bilateral symmetry Abdaxity of the current vocabulary.
    [Show full text]
  • Petrified Pennsylvanian Age Plants of Eastern Ohio1
    PETRIFIED PENNSYLVANIAN AGE PLANTS OF EASTERN OHIO1 GAR W. ROTHWELL, Department of Botany, Ohio University, Athens, Ohio 45701 Abstract. The recent (1975) discovery of coal-ball petrifactions in the Duquesne and Ames coals of the Conemaugh Group provides an opportunity to make detailed studies of abundant and well preserved Pennsylvanian age fossil plants. Material from these beds was collected at a single location west of Steubenville, Ohio. Remains assignable to all the major groups of coal swamp plants were present, with the psaroniaceous tree ferns and medullosan seed ferns most abundantly represented. To date, 50 distinct taxa of plant remains have been discovered. OHIO J. SCI. 76(3): 128, 1976 Pennsylvanian age plants, preserved by calcareous cellular permineralization (coal balls), are among the most valuable of Paleozoic fossils. At localities where Duquesne large quantities of material are available for study, features such as anatomical structure and plant habit can often be thoroughly examined (e.g. Dennis, 1974). In instances where preservation is espe- cially good, developmental sequences and even reproductive mechanisms sometimes can be interpreted (e.g. Millay and Eg- gert, 1974). Unfortunately, known col- lecting localities of coal balls are few in number. In the Appalachian Basin only six discoveries have thus far been re- ported (Cross, 1967; Schopf, 1961); in- cluding two in Ohio (Good, personal communication; Good and Taylor, 1974). It is therefore of considerable importance that two new Ohio coal-ball localities are described. LOCALITIES AND STRATIGRAPHY Two coal seams were exposed in a road cut on the south side of Ohio Route 22 (NE M SE K SE 14, Sec.
    [Show full text]