Morphological Cladistic Analysis of the Cordaitean Cones and Im Plications for Plant Lineages

Total Page:16

File Type:pdf, Size:1020Kb

Morphological Cladistic Analysis of the Cordaitean Cones and Im Plications for Plant Lineages MORPHOLOGICAL CLADISTIC ANALYSIS OF THE CORDAITEAN CONES AND IM PLICATIONS FOR PLANT LINEAGES A Thesis by JULIAN EDUARDO CORREA Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Anne Raymond Committee Members, Thomas Olszewski James Woolley Head of Department, Rick Giardino August 2015 Major Subject: Geology Copyright 2015 Julian Eduardo Correa ABSTRACT The cordaiteans were a group of Carboniferous and Permian woody plants, which thrived in wetlands and terra firma habitats. Cordaitean cones from wetland habitats are exquisitely well preserved and contain a suit of characters that make their fossils prime candidates for cladistic analysis; historically, there are more male cones than female cone. Cordaitean morphological characteristics make this clade a possible precursor lineage of modern conifer and gnetalean lineages. However, the exact relation between fossil seed- plant clades and modern gymnosperm groups remains enigmatic. The resent discovery of a bisexual cordaitean cone calls into question the relationship between cordaiteans, gnetaleans and angiosperms. This study performs three cladistic analyses in order to find the relations of taxa within the cordaitean clade and other early plant lineages using primarily PAUP* and TNT. An analysis of male only cones provides a phylogram for the relations between the cordaitean taxa; the results also suggest a bisexual ancestry for the clade. A second analysis attempted to introduce the morphologically distinct female cones; the results produce a similar strict consensus tree. However, many of the female cones do not pair with their associated male cones identified in ‘whole-plant’ reconstructions of cordaitean lineages. Instead, female cones formed separate lineages. A final analysis incorporated other plant lineages and assigned traits associated with seeds and pollen to both male and female cones. The results support an early bisexual ancestry to the cordaiteans, and suggests that the cordaiteans are a polyphyletic clade, which gave rise to the voltzialean-conifer lineage. Including more fossil taxa lineages may prove useful, as well as establishing other criteria to compare characters to taxa in cladistic analysis. ii ACKNOWLEDGEMENTS Through this endeavor, I could not have completed anything without the continued su pport of Dr. Anne Raymond; thank you so much for everything. I would also extend my deep est gratitude toDr. James Woolley and Dr. Tom Olszewski who helped me properly run progr ams, discuss and interpret my results. Another round of thanks to all my colleagues in Geology and Geophysics who made s ure I never stopped working, including (but not limited to) Jenn Hendricks, Robert Grajeda a nd Jonathan Sneed. Thank you all so much. Lasly, I would like to thank my family. Their encoragment was invaluable in this path and without their help I would not have reached it to begin with. iii TABLE OF CONTENTS Page ABSTRACT .............................................................................................................................. ii ACKNOWLEDGEMENTS ..................................................................................................... iii TABLE OF CONTENTS ......................................................................................................... iv LIST OF FIGURES ................................................................................................................. vi LIST OF TABLES ................................................................................................................. vii INTRODUCTION .....................................................................................................................1 MATERIALS AND METHODS .............................................................................................10 Taxa..............................................................................................................................10 Cordaites ................................................................................................................10 Gothania .................................................................................................................11 Cordaianthus ..........................................................................................................12 Cathayanthus ..........................................................................................................17 The undescribed bisexual cone ....................................................................................17 Callistophytaleans ........................................................................................................18 Thucydialeans ..............................................................................................................19 Gnetaleasns – Welwitschia mirabilis ...........................................................................21 Angiosperms – Archaeofructaceans ............................................................................22 Archaeopteridaceans ....................................................................................................23 Programs and Parameters .............................................................................................26 RESULTS ................................................................................................................................30 Male only results ..........................................................................................................30 Male-female analysis ...................................................................................................32 Plant lineage analysis ...................................................................................................36 Multivariate analysis ....................................................................................................43 DISCUSSION ..........................................................................................................................46 Bootstrap and Bremer suppor values in phylogenetic studies of ancient land plants ..46 Phylogenetic implications of cordaitean lineages ........................................................46 Coding of male and female cones ................................................................................51 Pollen evolution and implications for voltxialean conifer phylogeny ........................52 Flowers and cone bisexuality .......................................................................................54 CONCLUSIONS......................................................................................................................59 iv REFERENCES ........................................................................................................................61 APPENDIX 1 ...........................................................................................................................72 APPENDIX 2 ...........................................................................................................................75 APPENDIX 3 ...........................................................................................................................78 APPENDIX 4 .........................................................................................................................112 APPENDIX 5 .........................................................................................................................121 APPENDIX 6 .........................................................................................................................138 v LIST OF FIGURES Page Figure 1 Cordaitean Morphology...............................................................................................2 Figure 2 Cordaitean Geologic Age Range .................................................................................5 Figure 3 Plant Phylogeny Hypotheses .......................................................................................6 Figure 4 Cordaitean Seed Phylogeny (Hilton, 2003) .................................................................8 Figure 5 Welwitschia ...............................................................................................................22 Figure 6 Male Only Phylogeny ................................................................................................32 Figure 7 Male Female Phylogeny ............................................................................................34 Figure 8 Plant Lineage Phylogeny ...........................................................................................38 Figure 9 Exploratory Phylogeny of Plant Lineages .................................................................40 Figure 10 Synapomorphies of Plant Lineage Phylogeny .........................................................42 Figure 11 Taxa and Character Heat Map .................................................................................45 Figure 12 Plant Phylogeny (Doyle, 2012) ...............................................................................55 vi LIST OF TABLES Page Table 1 Whole Plant Taxa ..........................................................................................................3 Table 2 Funciton of Seeds vs Cones ..........................................................................................9
Recommended publications
  • A Comparative Study of the Primary Vascular System Of
    Amer. J. Bot. 55(4): 464-472. 1!16'>. A COMPARATIVE STUDY OF THE PRIMARY VASCULAR SYSTE~1 OF CONIFERS. III. STELAR EVOLUTION IN GYMNOSPERMS 1 KADAMBARI K. NAMBOODIRI2 AND CHARLES B. BECK Department of Botany, University of Michigan, Ann Arbor ABST RAe T This paper includes a survey of the nature of the primary vascular system in a large number of extinct gymnosperms and progymnosperms. The vascular system of a majority of these plants resembles closely that of living conifers, being characterized, except in the most primitive forms which are protostelic, by a eustele consisting of axial sympodial bundles from which leaf traces diverge. The vascular supply to a leaf originates as a single trace with very few exceptions. It is proposed that the eustele in the gyrr.nosperms has evolved directly from the protostele by gradual medullation and concurrent separation of the peripheral conducting tissue into longitudinal sympodial bundles from which traces diverge radially. A subsequent modification results in divergence of traces in a tangential plane, The closed vascular system of conifers with opposite and whorled phyllotaxis, in which the vascular supply to a leaf originates as two traces which subsequently fuse, is considered to be derived from the open sympodial system characteristic of most gymnosperms. This hypothesis of stelar evolution is at variance with that of Jeffrey which suggests that the eustele of seed plants is derived by the lengthening and overlapping of leaf gaps in a siphonostele followed by further reduction in the resultant vascular bundles. This study suggests strongly that the "leaf gap" of conifers and other extant gymnosperms is not homologous with that of siphonostelic ferns and strengthens the validity of the view that Pterop­ sida is an unnatural group.
    [Show full text]
  • Fossils and Plant Phylogeny1
    American Journal of Botany 91(10): 1683±1699. 2004. FOSSILS AND PLANT PHYLOGENY1 PETER R. CRANE,2,5 PATRICK HERENDEEN,3 AND ELSE MARIE FRIIS4 2Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; 3Department of Biological Sciences, The George Washington University, Washington DC 20052 USA; 4Department of Palaeobotany, Swedish Museum of Natural History, Box 50007, S-104 05 Stockholm, Sweden Developing a detailed estimate of plant phylogeny is the key ®rst step toward a more sophisticated and particularized understanding of plant evolution. At many levels in the hierarchy of plant life, it will be impossible to develop an adequate understanding of plant phylogeny without taking into account the additional diversity provided by fossil plants. This is especially the case for relatively deep divergences among extant lineages that have a long evolutionary history and in which much of the relevant diversity has been lost by extinction. In such circumstances, attempts to integrate data and interpretations from extant and fossil plants stand the best chance of success. For this to be possible, what will be required is meticulous and thorough descriptions of fossil material, thoughtful and rigorous analysis of characters, and careful comparison of extant and fossil taxa, as a basis for determining their systematic relationships. Key words: angiosperms; fossils; paleobotany; phylogeny; spermatophytes; tracheophytes. Most biological processes, such as reproduction or growth distic context, neither fossils nor their stratigraphic position and development, can only be studied directly or manipulated have any special role in inferring phylogeny, and although experimentally using living organisms. Nevertheless, much of more complex models have been developed (see Fisher, 1994; what we have inferred about the large-scale processes of plant Huelsenbeck, 1994), these have not been widely adopted.
    [Show full text]
  • Prepared in Cooperation with the Lllinois State Museum, Springfield
    Prepared in cooperation with the lllinois State Museum, Springfield Richard 1. Leary' and Hermann W. Pfefferkorn2 ABSTRACT The Spencer Farm Flora is a compression-impression flora of early Pennsylvanian age (Namurian B, or possibly Namurian C) from Brown County, west-central Illinois. The plant fossils occur in argillaceous siltstones and sand- stones of the Caseyville Formation that were deposited in a ravine eroded in Mississippian carbonate rocks. The plant-bearing beds are the oldest deposits of Pennsylva- nian age yet discovered in Illinois. They were formed be- fore extensive Pennsylvanian coal swamps developed. The flora consists of 29 species and a few prob- lematical forms. It represents an unusual biofacies, in which the generally rare genera Megalopteris, Lesleya, Palaeopteridium, and Lacoea are quite common. Noegger- athiales, which are seldom present in roof-shale floras, make up over 20 percent of the specimens. The Spencer Farm Flora is an extrabasinal (= "upland1') flora that was grow- ing on the calcareous soils in the vicinity of the ravine in which they were deposited. It is suggested here that the Noeggerathiales may belong to the Progymnosperms and that Noeggerathialian cones might be derived from Archaeopteris-like fructifica- tions. The cone genus Lacoea is intermediate between Noeggerathiostrobus and Discini tes in its morphology. Two new species, Lesleya cheimarosa and Rhodeop- teridi urn phillipsii , are described, and Gulpenia limbur- gensis is reported from North America for the first time. INTRODUCTION The Spencer Farm Flora (table 1) differs from other Pennsylvanian floras of the Illinois Basin. Many genera and species in the Spencer Farm Flora either have not been found elsewhere in the basin or are very l~uratorof Geology, Illinois State Museum, Springfield.
    [Show full text]
  • New Paleobotanical Data on the Portuguese Pennsylvanian (Douro Carboniferous Basin, NW Portugal)
    Versão online: http://www.lneg.pt/iedt/unidades/16/paginas/26/30/185 Comunicações Geológicas (2014) 101, Especial I, 409-414 IX CNG/2º CoGePLiP, Porto 2014 ISSN: 0873-948X; e-ISSN: 1647-581X New paleobotanical data on the Portuguese Pennsylvanian (Douro Carboniferous Basin, NW Portugal) Novos dados paleobotânicos do Pensilvaniano português (Bacia Carbonífera do Douro, NW Portugal) P. Correia1*, Z. Šimůnek2, J. Pšenička3, A. A. Sá4,5, R. Domingos6, A. Carneiro7, D. Flores1,7 Artigo Curto Short Article © 2014 LNEG – Laboratório Nacional de Geologia e Energia IP Abstract: This paper describes nine new macrofloral taxa from 1. Introduction Douro Carboniferous Basin (lower Gzhelian) of Portugal. The plant assemblage is mainly composed by pteridophylls (Sphenopteriss The fossil flora of Carboniferous of Portugal is still little arberi Kidston, Sphenopteris fayoli Zeiller, Sphenopteris tenuis known. The new megafloral occurrences recently found in Schenk, Odontopteris schlotheimii Brongniart), sphenopsids the Upper Pennsylvanian strata of Douro Carboniferous (Annularia spicata Gutbier, Stellotheca robusta (Feistmantel) Basin (DCB) provide new and important data about Surange and Prakash, Calamostachys grandis Zeiller (Jongmans) and Calamostachys calathifera Sterzel) besides the gymnosperm paleobotanical richness and diversity of the Paleozoic Cordaites foliolatus Grand`Eury. The new data provide a better floras of Portugal offering more information to previous understating of the knowledge of Late Carboniferous floras of researches reported from diverse localities and by different Portugal, showing the high plant diversity of Gzhelian floras, when authors (e.g. Wenceslau de Lima, Bernardino António considerable changes in paleogeography and climate dynamics are Gomes, Carlos Ribeiro, Carríngton da Costa, Carlos evidenced in Euramerican floristic assemblages.
    [Show full text]
  • Landscape Plants
    2021 Landscape@ Special Effects e s b t u o Species Approx Approx .Wi t p Height in dth in m cm m 14 Common Name Meters Meters Description 70 Shrubs A small tree ideal for screens and hedges, Acmena Smithii Minor Small Leaf Dwarf Lily Pily 3-4m 2m producing purple edible berries x x flowers with bright yellow balls, growing into Acacia glaucoptera Clay Wattle 1-1.5m 2m an attractive small shrub with blue -green x leaves with maroon new growth. A rainforest tree with shiny green leaves and Acronychia acidula Lemon Aspen 4-5m 3m lemon flavoured fruit x An attractive low shrub with cream flowers, red Austromyrtus dulcis Midyim Berry .5-1m 1-.5m new growth while produces tasty edible x berries. fast growing ,suitable for hedges or screans, Atriplex nummularia Oldman saltbush 2-3m 1-2m used as a buah food or grazing livestock. x A great shrub for the cut flower market flowering for many weeks in early spring. The Chamelaucium uncinatum Geraldton Wax 1-3m 1-2m leaf tips are also used a native herb for a citrus x type flavour. A fine leaf understory shrub also growns in full Coprosma Quadrifida Prickly currant bush 2-3m 2-3m sun , producing sweet edble berries x Attractive grey-green foliage with white star Correa alba White Correa 2m 2m like flowers, makes a great coastal plant. x x A compact form of the Correa Alba ideal for Correa alba compact .7m 1m borders and small hedges. x x The dusky pink flowers over winter with rich Correa reflexa Xpulchella Correa Dusky Bells .7m 2.5m green foliage that forms a dense ground cover.
    [Show full text]
  • Transmission of Bee-Like Vibrations in Buzz-Pollinated Plants with Different
    www.nature.com/scientificreports OPEN Transmission of bee‑like vibrations in buzz‑pollinated plants with diferent stamen architectures Lucy Nevard1*, Avery L. Russell2, Karl Foord3 & Mario Vallejo‑Marín1 In buzz‑pollinated plants, bees apply thoracic vibrations to the fower, causing pollen release from anthers, often through apical pores. Bees grasp one or more anthers with their mandibles, and vibrations are transmitted to this focal anther(s), adjacent anthers, and the whole fower. Pollen release depends on anther vibration, and thus it should be afected by vibration transmission through fowers with distinct morphologies, as found among buzz‑pollinated taxa. We compare vibration transmission between focal and non‑focal anthers in four species with contrasting stamen architectures: Cyclamen persicum, Exacum afne, Solanum dulcamara and S. houstonii. We used a mechanical transducer to apply bee‑like vibrations to focal anthers, measuring the vibration frequency and displacement amplitude at focal and non‑focal anther tips simultaneously using high‑speed video analysis (6000 frames per second). In fowers in which anthers are tightly arranged (C. persicum and S. dulcamara), vibrations in focal and non‑focal anthers are indistinguishable in both frequency and displacement amplitude. In contrast, fowers with loosely arranged anthers (E. afne) including those with diferentiated stamens (heterantherous S. houstonii), show the same frequency but higher displacement amplitude in non‑focal anthers compared to focal anthers. We suggest that stamen architecture modulates vibration transmission, potentially afecting pollen release and bee behaviour. Insects use substrate-borne vibrations in a range of ecological contexts, including conspecifc communication and the detection of prey and predators1,2. Tese vibrations are ofen produced and detected on plant material, and the physical properties of the plant substrate, such as stem stifness or leaf thickness, ofen afect vibration propagation3–5.
    [Show full text]
  • Correa Study Group ISSN 1039-6926 ABN 56 654 053 676 Leader: Cherree Densley 9 Koroit-Port Fairy Road, Killarney, Vic, 3283 [email protected] Ph 03 5568 7226
    ANPSA Correa Study Group ISSN 1039-6926 ABN 56 654 053 676 Leader: Cherree Densley 9 Koroit-Port Fairy Road, Killarney, Vic, 3283 [email protected] Ph 03 5568 7226 Admin & Editor: Russell Dahms 13 Everest Avenue, Athelstone, S.A. 5076 [email protected] Ph. 08 8336 5275 Membership fees: normal $10.00 Newsletter No.47 December 2012 electronic $6.00 EDITOR ’S COMMENTS This spring has brought with it very tough conditions here in South Australia with virtually Hello everyone, no rain for over two months now. I would like to introduce myself as the new One of the reasons for joining the correa group newsletter officer, membership officer and was that as a grower for the APS SA plant treasurer for the Correa Study Group. sales I have recently expanded the range of This has been my first year as a member of the correas I propagate – all from cuttings. ANPSA Correa Study Group. I have adopted I now have 20-30 species of correa and many the roles of membership officer, treasurer and of them are planted in my garden which is in newsletter editor while Cherree Densley the foothills east of Adelaide. The soil is remains the study group leader. predominantly clay with some topsoil added. My first main interaction with the study group Due to the lack of rain I have been giving any was the correa crawl which was held at Mt. of the correas that look like they are struggling Gambier this year. through their first summer additional deep watering. This was a wonderful opportunity to meet fellow study group members as well as experience firsthand many correa species new to me in Contents their natural habitat.
    [Show full text]
  • System Klasyfikacji Organizmów
    1 SYSTEM KLASYFIKACJI ORGANIZMÓW Nie ma dziś ogólnie przyjętego systemu klasyfikacji organizmów. Nie udaje się osiągnąć zgodności nie tylko w odniesieniu do zakresów i rang poszczególnych taksonów, ale nawet co do zasad metodologicznych, na których klasyfikacja powinna być oparta. Zespołowe dzieła przeglądowe z reguły prezentują odmienne i wzajemnie sprzeczne podejścia poszczególnych autorów, bez nadziei na consensus. Nie ma więc mowy o skompilowaniu jednolitego schematu klasyfikacji z literatury i system przedstawiony poniżej nie daje nadziei na zaakceptowanie przez kogokolwiek poza kompilatorem. Przygotowany został w oparciu o kilka zasad (skądinąd bardzo kontrowersyjnych): (1) Identyfikowanie ga- tunków i ich klasyfikowanie w jednostki rodzajowe, rodzinowe czy rzędy jest zadaniem specjalistów i bez szcze- gółowych samodzielnych studiów nie można kwestionować wyników takich badań. (2) Podział świata żywego na królestwa, typy, gromady i rzędy jest natomiast domeną ewolucjonistów i dydaktyków. Powody, które posłużyły do wydzielenia jednostek powinny być jasno przedstawialne i zrozumiałe również dla niespecjalistów, albowiem (3) podstawowym zadaniem systematyki jest ułatwianie laikom i początkującym badaczom poruszanie się w obezwładniającej złożoności świata żywego. Wątpliwe jednak, by wystarczyło to do stworzenia zadowalającej klasyfikacji. W takiej sytuacji można jedynie przypomnieć, że lepszy ułomny system, niż żaden. Królestwo PROKARYOTA Chatton, 1938 DNA wyłącznie w postaci kolistej (genoforów), transkrypcja nie rozdzielona przestrzennie od translacji – rybosomy w tym samym przedzia- le komórki, co DNA. Oddział CYANOPHYTA Smith, 1938 (Myxophyta Cohn, 1875, Cyanobacteria Stanier, 1973) Stosunkowo duże komórki, dwuwarstwowa błona (Gram-ujemne), wewnętrzna warstwa mureinowa. Klasa CYANOPHYCEAE Sachs, 1874 Rząd Stigonematales Geitler, 1925; zigen – dziś Chlorofil a na pojedynczych tylakoidach. Nitkowate, rozgałęziające się, cytoplazmatyczne połączenia mię- Rząd Chroococcales Wettstein, 1924; 2,1 Ga – dziś dzy komórkami, miewają heterocysty.
    [Show full text]
  • Evolution of the Female Conifer Cone Fossils, Morphology and Phylogenetics
    DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES EVOLUTION OF THE FEMALE CONIFER CONE FOSSILS, MORPHOLOGY AND PHYLOGENETICS Daniel Bäck Degree project for Bachelor of Science with a major in Biology BIO602, Biologi: Examensarbete – kandidatexamen, 15 hp First cycle Semester/year: Spring 2020 Supervisor: Åslög Dahl, Department of Biological and Environmental Sciences Examiner: Claes Persson, Department of Biological and Environmental Sciences Front page: Abies koreana (immature seed cones), Gothenburg Botanical Garden, Sweden Table of contents 1 Abstract ............................................................................................................................... 2 2 Introduction ......................................................................................................................... 3 2.1 Brief history of Florin’s research ............................................................................... 3 2.2 Progress in conifer phylogenetics .............................................................................. 4 3 Aims .................................................................................................................................... 4 4 Materials and Methods ........................................................................................................ 4 4.1 Literature: ................................................................................................................... 4 4.2 RStudio: .....................................................................................................................
    [Show full text]
  • A Comparative Study of the Primary Vascular System Of
    ArneI'. J. Bot. 5.5(4): 447-457. 1968. A COMPARATIVE STUDY OF THE PRIMARY VASCULAR SYSTElVI OF CONIFERS. 1. GENERA WITH HELICAL PHYLLOTAXISl KADAMBARI K. N AMBOODIRI2 AND CHARLES B. BECK Department of Botany, University of Michigan, Ann Arbor ABSTRACT The primary vascular system of 23 species belonging to 18 genera of conifers with helical phyllotaxis has been investigated with the intent of determining the architecture .f the system. Special attention has been given to nodal and subnodal relations of the vascular bundles. The vascular system seems to be composed solely of relatively discrete sympodia, that is, axial vascu­ lar bundles from which leaf traces branch unilaterally. Although the discreteness of the syrn­ podia is not immediately apparent because of their undulation and lateral contacts with neigh­ boring ones, close examination, including a statistical analysis of the tangential contacts, seems to reveal that each sympodium maintains its identity throughout. Although two traces may be apparent at nodal levels, the trace supply to a leaf originates, in all species, as a single bundle. An analysis is made of the relationship between the vasculature and the phyllotaxis. It is ob­ served that the direction of trace divergence can be accurately predicted when the direction of the ontogenetic spiral, the angle of divergence of leaf traces, and the number of syrnpodia are known. THE ORIGIN and evolution of gymnosperms that of the ferns by reduction (Jeffrey, 1902, are significant problems that deserve increased 1917). Consequently, he considered the leaf gap attention. There have been few modern compara­ of seed plants to be homologous with that of tive studies of extant gymnosperms, and most the ferns.
    [Show full text]
  • Pollination Drop in Relation to Cone Morphology in Podocarpaceae: a Novel Reproductive Mechanism Author(S): P
    Pollination Drop in Relation to Cone Morphology in Podocarpaceae: A Novel Reproductive Mechanism Author(s): P. B. Tomlinson, J. E. Braggins, J. A. Rattenbury Source: American Journal of Botany, Vol. 78, No. 9 (Sep., 1991), pp. 1289-1303 Published by: Botanical Society of America Stable URL: http://www.jstor.org/stable/2444932 . Accessed: 23/08/2011 15:47 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Botanical Society of America is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Botany. http://www.jstor.org AmericanJournal of Botany 78(9): 1289-1303. 1991. POLLINATION DROP IN RELATION TO CONE MORPHOLOGY IN PODOCARPACEAE: A NOVEL REPRODUCTIVE MECHANISM' P. B. TOMLINSON,2'4 J. E. BRAGGINS,3 AND J. A. RATTENBURY3 2HarvardForest, Petersham, Massachusetts 01366; and 3Departmentof Botany, University of Auckland, Auckland, New Zealand Observationof ovulatecones at thetime of pollinationin the southernconiferous family Podocarpaceaedemonstrates a distinctivemethod of pollencapture, involving an extended pollinationdrop. Ovules in all generaof the family are orthotropousand singlewithin the axil of each fertilebract. In Microstrobusand Phyllocladusovules are-erect (i.e., the micropyle directedaway from the cone axis) and are notassociated with an ovule-supportingstructure (epimatium).Pollen in thesetwo genera must land directly on thepollination drop in theway usualfor gymnosperms, as observed in Phyllocladus.In all othergenera, the ovule is inverted (i.e., the micropyleis directedtoward the cone axis) and supportedby a specializedovule- supportingstructure (epimatium).
    [Show full text]
  • Retallack 2021 Coal Balls
    Palaeogeography, Palaeoclimatology, Palaeoecology 564 (2021) 110185 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Modern analogs reveal the origin of Carboniferous coal balls Gregory Retallack * Department of Earth Science, University of Oregon, Eugene, Oregon 97403-1272, USA ARTICLE INFO ABSTRACT Keywords: Coal balls are calcareous peats with cellular permineralization invaluable for understanding the anatomy of Coal ball Pennsylvanian and Permian fossil plants. Two distinct kinds of coal balls are here recognized in both Holocene Histosol and Pennsylvanian calcareous Histosols. Respirogenic calcite coal balls have arrays of calcite δ18O and δ13C like Carbon isotopes those of desert soil calcic horizons reflecting isotopic composition of CO2 gas from an aerobic microbiome. Permineralization Methanogenic calcite coal balls in contrast have invariant δ18O for a range of δ13C, and formed with anaerobic microbiomes in soil solutions with bicarbonate formed by methane oxidation and sugar fermentation. Respiro­ genic coal balls are described from Holocene peats in Eight Mile Creek South Australia, and noted from Carboniferous coals near Penistone, Yorkshire. Methanogenic coal balls are described from Carboniferous coals at Berryville (Illinois) and Steubenville (Ohio), Paleocene lignites of Sutton (Alaska), Eocene lignites of Axel Heiberg Island (Nunavut), Pleistocene peats of Konya (Turkey), and Holocene peats of Gramigne di Bando (Italy). Soils and paleosols with coal balls are neither common nor extinct, but were formed by two distinct soil microbiomes. 1. Introduction and Royer, 2019). Although best known from Euramerican coal mea­ sures of Pennsylvanian age (Greb et al., 1999; Raymond et al., 2012, Coal balls were best defined by Seward (1895, p.
    [Show full text]