Lord Rutherford (1871–1937): the Newton of the Atom and the Winner

Total Page:16

File Type:pdf, Size:1020Kb

Lord Rutherford (1871–1937): the Newton of the Atom and the Winner Essays DOI: 10.1002/anie.200803876 History of Science Lord Rutherford (1871–1937): The Newton of the Atom and the Winner of the Nobel Prize for Chemistry, 1908 John Meurig Thomas* atomic physics · history of science · radiochemistry · Rutherford, Ernest 1. Introduction three towering achievements associated was largely his “boys”—a term which he with his name—the theory of nuclear used affectionately to describe his stu- When Ernest Rutherford, later disintegration (with Frederick Soddy, dents and collaborators—who had de- known as Lord Rutherford of Nelson, 1902–1903), his model of the nuclear veloped radar and other devices of died unexpectedly in 1937, the New atom (1911), and the discovery of the strategic military significance. It was York Times stated: “…It is given to but artificial disintegration of the nucleus his assistants Chadwick and Cockcroft few men to achieve immortality, still less (1919)—the first two, while based on (later Nobel Prize winners each in their to achieve Olympian rank, during their experimental evidence, were theoretical own right) who built the UK Atomic own lifetime. Lord Rutherford achieved concepts. Even more ironic is that Energy Authority. both. In a generation that witnessed one Rutherford was awarded the Nobel of the greatest revolutions in the entire Prize in Chemistry (not Physics) in history of science he was universally 1908. When news of this award reached 2. The Trajectory of Rutherford’s acknowledged as the leading explorer of him he laughingly commented that he Life the vast infinitely complex universe with- had observed many rapid transforma- in the atom, a universe that he was first to tions among radioelements, but none as This section deals first with his place penetrate.” rapid as his transformation from a of birth, New Zealand, then his period And when Sir Mark Oliphant, a physicist into a chemist.[2] as a researcher at Cambridge (1895– fellow Antipodean and student, collea- Distinctions between physics and 1898), followed by his professorships at gue, and friend of Rutherford in Cam- chemistry are often arbitrarily drawn; McGill University, Montreal (1898– bridge, who, along with Paul Harteck, and it is futile pedantically to emphasize 1907) and Manchester (1907–1919), discovered tritium, wrote a foreword to them, especially where great scientists and his position as the Cavendish Pro- a definitive work[1] on Rutherford in like Faraday and Rutherford are con- fessor of Physics at Cambridge (1919– 1999 he described him as “the greatest cerned. In this regard the comments 1937). experimental scientist since Faraday”. made by Rutherford in August 1931, Oliphant also recalled that “Max Born, when the centenary of Faradays discov- whose own contributions to theoretical ery of electromagnetic induction was 2.1. New Zealand (1871–1895) physics were formidable, told me that celebrated, are worth repeating:[3] “The Rutherford was the greatest scientist he more we study the work of Faraday, with The New Zealand of the Ruther- had ever known, including even Ein- the perspective of time, the more we are fords youth was an agrarian society that stein.” impressed by his unrivalled genius as an had been settled by Europeans for only Historians of science the world over, experimenter and a natural philosopher. a few generations. Yet they brought to not to mention active scientists them- When we consider the magnitude and the Antipodes their English and Scottish selves, generally argue that Rutherford extent of his discoveries and their influ- values of hard work, thrift, and a respect was the most accomplished experimen- ence on the progress of science and of for education, and endeavored to create tal physicist since Faraday. Yet the case industry, there is no honour too large to the institutions that would reward their can be made (see Section 2.3) that of the pay to the memory of Michael Faraday— pioneering activities. Rutherford absor- one of the greatest scientific discoverers bed these qualities, and throughout his of all time.” life he exhibited the energy and re- Rutherford, like Faraday, took out sourcefulness of his father and the thirst [*] Prof. Sir J. M. Thomas no patents even though he possessed the for knowledge of his mother, a former Department of Materials Science skills and made discoveries, especially teacher.[2] A bright student, he won a University of Cambridge early in his career, that would have scholarship to Nelson College (situated Pembroke Street Cambridge, CB2 3QZ (UK) interested businessmen. Rutherford at the tip of the South Island). Another Fax : (+44)1223-334-567 himself did not see his discoveries as competitive scholarship allowed him in E-mail: [email protected] opening the era of atomic energy. But it 1890 to enter Canterbury College in 9392 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2008, 47, 9392 – 9401 Angewandte Chemie Christchurch, where he expanded his horizons culturally and intellectually. After completing his BA degree in 1892 he proceeded to take his MA (in mathematics and mathematical phys- ics), and in 1894 he began his first independent research. But he had fur- ther cause to remain in Christchurch, for his heart was captivated by Mary New- ton, his landladys daughter. (He was to marry her in 1900). His research cen- tered on the magnetization of iron by high-frequency discharge, work which enabled him to devise a sensitive meth- od of detecting radio waves. He had recognized that an already magnetized needle would lose some of the strength, in an alternating magnetic field, making it a suitable detector for wireless signals and a device of potential commercial Figure 1. J. J. Thomson’s research group in the Cavendish Laboratory, Cambridge, 1898. Rutherford is fourth from the left in the middle row; to his right is C. T. R. Wilson, of cloud- applicability. He published two papers chamber fame, who won the Nobel Prize in Physics in 1927. Of him, P. M. S. Blackett, another on this topic in the Transactions of the Cavendish physicist to win the Nobel Prize (1948), said: “Of the great scientists of his age, he was [4] New Zealand Institute. perhaps the most gentle and serene, and the most indifferent to prestige and honours.” The Rutherford applied for an 1851 Ex- polymathic Paul Langevin (1872–1946) was also a member of the Cavendish Research group at hibition Scholarship in 1894; the rules that time (bottom row, third from the left, next to J. J. Thomson). had just been changed to allow candi- dates from the British Commonwealth to apply for such prestigious awards. In addition, Cambridge University had al- tion of different gases, and other rele- 2.3. Montreal (1898–1907) so just changed its statutes and now vant characteristics. permitted graduates from other univer- In 1896 radioactivity was discovered By the time Rutherford found his sities to pursue research there. Enrolling by Becquerel, and soon both Marie feet in McGill University, the omens in 1895, Rutherford was the first re- Curie, in Paris, and Rutherford, in Cam- were particularly good. First, the labo- search student under the new regula- bridge, pursued quantitative studies of ratories of the Department of Physics tions. He joined the Cavendish Labora- the phenomenon. The attention of the there were exceptionally well equipped: tory, whose Director was J. J. Thomson worlds scientific community, especially they were arguably the best in North (Figure 1).[5] after Pierre and Marie Curie (and Gus- America at the time. This was because tave Bmont) discovered polonium, was of the munificence of Sir William Mac- now riveted to radioactivity. For the Donald, a rich benefactor who had said 2.2. Cambridge (1895–1898) next four decades Rutherford and his that he wanted McGill to have the colleagues focused on radioactivity resources in physics comparable to Two months after Rutherfords ar- through its connections with atomic those of the Cavendish Laboratory in rival in Cambridge, X-rays were discov- physics, nuclear physics, and nuclear Cambridge. Not only was there the most ered (in November 1895) by Wilhelm chemistry. advanced equipment, even the stores Conrad Rntgen. And since this new In his work on uranium, using ab- had chemicals that hardly a department radiation exerted a marked effect upon sorption experiments (with rays imping- of physics or chemistry anywhere in the the discharge of electricity in gases (a ing on foils of various thicknesses) he world could rival, there being a good topic of great interest to Thomson),[6] observed that one type of radiation was supply of the then very costly radium Rutherford was quick to seize the op- readily stopped, another penetrated fur- bromide, for example. Second, the 21- portunity of collaborating with “J.J”. ther. He named the two types of radia- year-old Frederick Soddy, a former The collaboration yielded a classic pa- tion alpha and beta, because, he ex- student of Aberystwyth in Wales and per in 1896 on the theory of ionization.[7] claimed, he was a simple man and liked Merton College, Oxford, and a brilliant X-rays generate the positive and nega- simple experiments and explanations! experimentalist, had just been appoint- tive ions, which are attracted to electro- A physics professorship at McGill ed lecturer in chemistry at McGill. des, so that he could readily measure University in Montreal fell vacant in Rutherford and Soddy entered into a currents. Work of this kind continued for 1898. Thomsons advice was sought, and most rewarding eighteen-month collab- much of 1896 and 1897, with Rutherford he gave a glowing reference for Ruth- oration from October 1901 to April examining the ions velocities, their erford.[8] 1903, during which time they produced rates of recombination, the electrifica- nine major papers laying the founda- Angew. Chem.
Recommended publications
  • Cathode Rays 89 Cathode Rays
    Cathode Rays 89 Cathode Rays Theodore Arabatzis C The detection of cathode rays was a by-product of the investigation of the discharge of electricity through rarefied gases. The latter phenomenon had been studied since the early eighteenth century. By the middle of the nineteenth century it was known that the passage of electricity through a partly evacuated tube produced a glow in the gas, whose color depended on its chemical composition and its pressure. Below a certain pressure the glow assumed a stratified pattern of bright and dark bands. During the second half of the nineteenth century the discharge of electricity through gases became a topic of intense exploratory experimentation, primarily in Germany [21]. In 1855 the German instrument maker Heinrich Geißler (1815– 1879) manufactured improved vacuum tubes, which made possible the isolation and investigation of cathode rays [23]. In 1857 Geissler’s tubes were employed by Julius Pl¨ucker (1801–1868) to study the influence of a magnet on the electrical dis- charge. He observed various complex and striking phenomena associated with the discharge. Among those phenomena were a “light which appears about the negative electrode” and a fluorescence in the glass of the tube ([9], pp. 122, 130). The understanding of those phenomena was advanced by Pl¨ucker’s student and collaborator, Johann Wilhelm Hittorf (1824–1914), who observed that “if any ob- ject is interposed in the space filled with glow-light [emanating from the negative electrode], it throws a sharp shadow on the fluorescent side” ([5], p. 117). This effect implied that the “rays” emanating from the cathode followed a straight path.
    [Show full text]
  • Rutherford's Nuclear World: the Story of the Discovery of the Nuc
    Rutherford's Nuclear World: The Story of the Discovery of the Nuc... http://www.aip.org/history/exhibits/rutherford/sections/atop-physic... HOME SECTIONS CREDITS EXHIBIT HALL ABOUT US rutherford's explore the atom learn more more history of learn about aip's nuclear world with rutherford about this site physics exhibits history programs Atop the Physics Wave ShareShareShareShareShareMore 9 RUTHERFORD BACK IN CAMBRIDGE, 1919–1937 Sections ← Prev 1 2 3 4 5 Next → In 1962, John Cockcroft (1897–1967) reflected back on the “Miraculous Year” ( Annus mirabilis ) of 1932 in the Cavendish Laboratory: “One month it was the neutron, another month the transmutation of the light elements; in another the creation of radiation of matter in the form of pairs of positive and negative electrons was made visible to us by Professor Blackett's cloud chamber, with its tracks curled some to the left and some to the right by powerful magnetic fields.” Rutherford reigned over the Cavendish Lab from 1919 until his death in 1937. The Cavendish Lab in the 1920s and 30s is often cited as the beginning of modern “big science.” Dozens of researchers worked in teams on interrelated problems. Yet much of the work there used simple, inexpensive devices — the sort of thing Rutherford is famous for. And the lab had many competitors: in Paris, Berlin, and even in the U.S. Rutherford became Cavendish Professor and director of the Cavendish Laboratory in 1919, following the It is tempting to simplify a complicated story. Rutherford directed the Cavendish Lab footsteps of J.J. Thomson. Rutherford died in 1937, having led a first wave of discovery of the atom.
    [Show full text]
  • Former Fellows Biographical Index Part
    Former Fellows of The Royal Society of Edinburgh 1783 – 2002 Biographical Index Part Two ISBN 0 902198 84 X Published July 2006 © The Royal Society of Edinburgh 22-26 George Street, Edinburgh, EH2 2PQ BIOGRAPHICAL INDEX OF FORMER FELLOWS OF THE ROYAL SOCIETY OF EDINBURGH 1783 – 2002 PART II K-Z C D Waterston and A Macmillan Shearer This is a print-out of the biographical index of over 4000 former Fellows of the Royal Society of Edinburgh as held on the Society’s computer system in October 2005. It lists former Fellows from the foundation of the Society in 1783 to October 2002. Most are deceased Fellows up to and including the list given in the RSE Directory 2003 (Session 2002-3) but some former Fellows who left the Society by resignation or were removed from the roll are still living. HISTORY OF THE PROJECT Information on the Fellowship has been kept by the Society in many ways – unpublished sources include Council and Committee Minutes, Card Indices, and correspondence; published sources such as Transactions, Proceedings, Year Books, Billets, Candidates Lists, etc. All have been examined by the compilers, who have found the Minutes, particularly Committee Minutes, to be of variable quality, and it is to be regretted that the Society’s holdings of published billets and candidates lists are incomplete. The late Professor Neil Campbell prepared from these sources a loose-leaf list of some 1500 Ordinary Fellows elected during the Society’s first hundred years. He listed name and forenames, title where applicable and national honours, profession or discipline, position held, some information on membership of the other societies, dates of birth, election to the Society and death or resignation from the Society and reference to a printed biography.
    [Show full text]
  • Front Matter (PDF)
    PROCEEDINGS OF THE OYAL SOCIETY OF LONDON Series A CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER. VOL. LXXXV. LONDON: P rinted for THE ROYAL SOCIETY and S old by HARRISON AND SONS, ST. MARTIN’S LANE, PRINTERS IN ORDINARY TO HIS MAJESTY. N ovember, 1911. LONDON: HARRISON AND SONS, PRINTERS IN ORDINARY TO HTS MAJESTY, ST. MARTIN’S LANE. CONTENTS --- 0 0 ^ 0 0 ----- SERIES A. VOL. LXXXV. No. A 575.—March 14, 1911. P AG-E The Chemical Physics involved in the Precipitation of Free Carbon from the Alloys of the Iron-Carbon System. By W. H. Hatfield, B. Met. (Sheffield University). Communicated by Prof. W. M. Hicks, F.R.S. (Plates 1—5) ................... .......... 1 On the Fourier Constants of a Function. By W. H. Young, Se.D., F.R.S................. 14 The Charges on Ions in Gases, and some Effects that Influence the Motion of Negative Ions. By Prof. John S. Townsend, F.R.S............................................... 25 On the Energy and Distribution of Scattered Rontgen Radiation. By J. A. Crowtlier, M.A., Fellow of St. John's College, Cambridge. Com­ municated by Prof. Sir J. J. Thomson, F.R.S...........................*.............................. 29 The Origin of Magnetic Storms. By Arthur Schuster, F.R.S...................................... 44 On the Periodicity of Sun-spots. By Arthur Schuster, F.R.S..................................... 50 The Absorption Spectx*a of Lithium and Caesium. By Prof. P. V. Bevan, M.A., Royal Holloway College. Communicated by Sir J. J. Thomson, F.R.S.............. 54 Dispersion in Vapours of the Alkali Metals. By Prof. P. V. Bevan, M.A., Royal Holloway College.
    [Show full text]
  • 1 Ethers, Religion and Politics In
    ORE Open Research Exeter TITLE Ethers, religion and politics in late-Victorian physics: beyond the Wynne thesis AUTHORS Noakes, Richard JOURNAL History of Science DEPOSITED IN ORE 16 June 2008 This version available at http://hdl.handle.net/10036/30065 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication ETHERS, RELIGION AND POLITICS IN LATE-VICTORIAN PHYSICS: BEYOND THE WYNNE THESIS RICHARD NOAKES 1. INTRODUCTION In the past thirty years historians have demonstrated that the ether of physics was one of the most flexible of all concepts in the natural sciences. Cantor and Hodge’s seminal collection of essays of 1981 showed how during the eighteenth and nineteenth centuries British and European natural philosophers invented a range of ethers to fulfil diverse functions from the chemical and physiological to the physical and theological.1 In religious discourse, for example, Cantor identified “animate” and spiritual ethers invented by neo-Platonists, mystics and some Anglicans to provide a mechanism for supporting their belief in Divine immanence in the cosmos; material, mechanistic and contact-action ethers which appealed to atheists and Low Churchmen because such media enabled activity in the universe without constant and direct Divine intervention; and semi-spiritual/semi-material ethers that appealed to dualists seeking a mechanism for understanding the interaction of mind and matter. 2 The third type proved especially attractive to Oliver Lodge and several other late-Victorian physicists who claimed that the extraordinary physical properties of the ether made it a possible mediator between matter and spirit, and a weapon in their fight against materialistic conceptions of the cosmos.
    [Show full text]
  • Front Matter (PDF)
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON Series A CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER. VOL. G LONDON: P rinted for THE ROYAL SOCIETY and Sold by HARRISON AND SONS, Ltd., ST. MARTIN’S LANE,. PRINTERS in ordinary to h is m a jesty . March, 1922. LONDON : HARRISON AND SONS, LTD., PRINTERS IN ORDINARY TO HIS MAJESTY, ST. MARTIN^ LANE. CONTENTS ---------------- SERIES A. VOL. C. i PAGE Minutes of Meetings, November 3, 1021—February 23, 1922 .................................. i No. A 702.—October 4, 1921. On the Velocity of Sound in Gases at High Temperatures, and the Ratio of the Specific Heats. By Harold B. Dixon, C.B.E., F.R.S., Colin Campbell, D.Sc., and A. Parker, D.Sc....................................................................................................... 1 The Ratio of the Specific Heats of Air and of Carbon Dioxide. By J. R. Partington, D.Sc. Communicated by Dr. J. A. Harker, F.R.S............................ 27 On the Currents induced in a Conductor by the Passage of a Mass of Magnetic Material over it. By E. S. Bieler, M.Sc., 1851 Scholar of McGill University. Communicated by Sir E. Rutherford, F.R.S. (Plate 1 ) ............. ................ 1.......... 50 On some New Formuke for the Numerical Calculation of the Mutual Induction of Coaxial Circles. By Louis V. King, D.Sc., Macdonald Professor of Physics, McGill University, Montreal. Communicated by Prof. A. S. Eve, F.R.S......... 60 Gaseous Combustion at High Pressures. Part II.—The Explosion of Hydrogen-Air and Carbon Monoxide-Air Mixtures. By William A rthur Bone, D.Sc., Ph.D., F.R.S.,'and the late William Arthur Haward, M.Sc., Salters’Research Fellow..
    [Show full text]
  • Guides to the Royal Institution of Great Britain: 1 HISTORY
    Guides to the Royal Institution of Great Britain: 1 HISTORY Theo James presenting a bouquet to HM The Queen on the occasion of her bicentenary visit, 7 December 1999. by Frank A.J.L. James The Director, Susan Greenfield, looks on Front page: Façade of the Royal Institution added in 1837. Watercolour by T.H. Shepherd or more than two hundred years the Royal Institution of Great The Royal Institution was founded at a meeting on 7 March 1799 at FBritain has been at the centre of scientific research and the the Soho Square house of the President of the Royal Society, Joseph popularisation of science in this country. Within its walls some of the Banks (1743-1820). A list of fifty-eight names was read of gentlemen major scientific discoveries of the last two centuries have been made. who had agreed to contribute fifty guineas each to be a Proprietor of Chemists and physicists - such as Humphry Davy, Michael Faraday, a new John Tyndall, James Dewar, Lord Rayleigh, William Henry Bragg, INSTITUTION FOR DIFFUSING THE KNOWLEDGE, AND FACILITATING Henry Dale, Eric Rideal, William Lawrence Bragg and George Porter THE GENERAL INTRODUCTION, OF USEFUL MECHANICAL - carried out much of their major research here. The technological INVENTIONS AND IMPROVEMENTS; AND FOR TEACHING, BY COURSES applications of some of this research has transformed the way we OF PHILOSOPHICAL LECTURES AND EXPERIMENTS, THE APPLICATION live. Furthermore, most of these scientists were first rate OF SCIENCE TO THE COMMON PURPOSES OF LIFE. communicators who were able to inspire their audiences with an appreciation of science.
    [Show full text]
  • December 4, 1954 NATURE 1037
    No. 4440 December 4, 1954 NATURE 1037 COPLEY MEDALLISTS, 1915-54 is that he never ventured far into interpretation or 1915 I. P. Pavlov 1934 Prof. J. S. Haldane prediction after his early studies in fungi. Here his 1916 Sir James Dewar 1935 Prof. C. T. R. Wilson interpretation was unfortunate in that he tied' the 1917 Emile Roux 1936 Sir Arthur Evans word sex to the property of incompatibility and 1918 H. A. Lorentz 1937 Sir Henry Dale thereby led his successors astray right down to the 1919 M. Bayliss W. 1938 Prof. Niels Bohr present day. In a sense the style of his work is best 1920 H. T. Brown 1939 Prof. T. H. Morgan 1921 Sir Joseph Larmor 1940 Prof. P. Langevin represented by his diagrams of Datura chromosomes 1922 Lord Rutherford 1941 Sir Thomas Lewis as packets. These diagrams were useful in a popular 1923 Sir Horace Lamb 1942 Sir Robert Robinson sense so long as one did not take them too seriously. 1924 Sir Edward Sharpey- 1943 Sir Joseph Bancroft Unfortunately, it seems that Blakeslee did take them Schafer 1944 Sir Geoffrey Taylor seriously. To him they were the real and final thing. 1925 A. Einstein 1945 Dr. 0. T. Avery By his alertness and ingenuity and his practical 1926 Sir Frederick Gow­ 1946 Dr. E. D. Adrian sense in organizing the Station for Experimental land Hopkins 1947 Prof. G. H. Hardy Evolution at Cold Spring Harbor (where he worked 1927 Sir Charles Sherring- 1948 . A. V. Hill Prof in 1942), ton 1949 Prof. G.
    [Show full text]
  • THE ETHICAL DILEMMA of SCIENCE and OTHER WRITINGS the Rockefeller Institute Press
    THE ETHICAL DILEMMA OF SCIENCE AND OTHER WRITINGS The Rockefeller Institute Press IN ASSOCIATION WITH OXFORD UNIVERSITY PRESS NEW YORK 1960 @ 1960 BY THE ROCKEFELLER INSTITUTE PRESS ALL RIGHTS RESERVED BY THE ROCKEFELLER INSTITUTE PRESS IN ASSOCIATION WITH OXFORD UNIVERSITY PRESS Library of Congress Catalogue Card Number 60-13207 PRINTED IN THE UNITED STATES OF AMERICA CONTENTS CHAPTER ONE The Ethical Dilemma of Science Living mechanism 5 The present tendencies and the future compass of physiological science 7 Experiments on frogs and men 24 Scepticism and faith 39 Science, national and international, and the basis of co-operation 45 The use and misuse of science in government 57 Science in Parliament 67 The ethical dilemma of science 72 Science and witchcraft, or, the nature of a university 90 CHAPTER TWO Trailing One's Coat Enemies of knowledge 105 The University of London Council for Psychical Investigation 118 "Hypothecate" versus "Assume" 120 Pharmacy and Medicines Bill (House of Commons) 121 The social sciences 12 5 The useful guinea-pig 127 The Pure Politician 129 Mugwumps 131 The Communists' new weapon- germ warfare 132 Independence in publication 135 ~ CONTENTS CHAPTER THREE About People Bertram Hopkinson 1 39 Hartley Lupton 142 Willem Einthoven 144 The Donnan-Hill Effect (The Mystery of Life) 148 F. W. Lamb 156 Another Englishman's "Thank you" 159 Ivan P. Pavlov 160 E. D. Adrian in the Chair of Physiology at Cambridge 165 Louis Lapicque 168 E. J. Allen 171 William Hartree 173 R. H. Fowler 179 Joseph Barcroft 180 Sir Henry Dale, the Chairman of the Science Committee of the British Council 184 August Krogh 187 Otto Meyerhof 192 Hans Sloane 195 On A.
    [Show full text]
  • Center for History of Physics Newsletter, Spring 2008
    One Physics Ellipse, College Park, MD 20740-3843, CENTER FOR HISTORY OF PHYSICS NIELS BOHR LIBRARY & ARCHIVES Tel. 301-209-3165 Vol. XL, Number 1 Spring 2008 AAS Working Group Acts to Preserve Astronomical Heritage By Stephen McCluskey mong the physical sciences, astronomy has a long tradition A of constructing centers of teaching and research–in a word, observatories. The heritage of these centers survives in their physical structures and instruments; in the scientific data recorded in their observing logs, photographic plates, and instrumental records of various kinds; and more commonly in the published and unpublished records of astronomers and of the observatories at which they worked. These records have continuing value for both historical and scientific research. In January 2007 the American Astronomical Society (AAS) formed a working group to develop and disseminate procedures, criteria, and priorities for identifying, designating, and preserving structures, instruments, and records so that they will continue to be available for astronomical and historical research, for the teaching of astronomy, and for outreach to the general public. The scope of this charge is quite broad, encompassing astronomical structures ranging from archaeoastronomical sites to modern observatories; papers of individual astronomers, observatories and professional journals; observing records; and astronomical instruments themselves. Reflecting this wide scope, the members of the working group include historians of astronomy, practicing astronomers and observatory directors, and specialists Oak Ridge National Laboratory; Santa encounters tight security during in astronomical instruments, archives, and archaeology. a wartime visit to Oak Ridge. Many more images recently donated by the Digital Photo Archive, Department of Energy appear on page 13 and The first item on the working group’s agenda was to determine through out this newsletter.
    [Show full text]
  • Walls of Resonance: Institutional History and the Buildings of the University of Manchester
    Walls of resonance: institutional history and the buildings of the University of Manchester James Sumner Corrected pre-print draft, October 2012. Lacks images which appeared in the final version. If citing this work formally, please use the version published: Studies in History and Philosophy of Science, Part A, 44(4), December 2013, 700-715, doi 10.1016/j.shpsa.2013.07.014. Why talk about walls? A wide range of research since the 1990s has focused on the material and spatial character of laboratories, museums, hospitals and other sites of science. Historians, geographers, ethnographers and others have traced how spatial arrangement and presentation have been influenced by, and have themselves influenced, the character of research, teaching, and communication with external audiences of various kinds.1 This paper addresses specifically how these insights may be used to let buildings stand for ideas – how the history of an institution or a discipline (known, for the most part, from established documentary sources) may be articulated through its material fabric. Over the past few years, I have led walking tours around the University of Manchester campus for a variety of audiences including undergraduate and graduate students, adult learners enrolled on the University’s former Courses for the Public programme, and members of the public attending events advertised as part of the annual Manchester Science Festival. Related work, developed with my colleagues at the Centre for the History of Science, Technology and Medicine, includes site-based historical survey articles for resources such as the British Society for the History of Science Travel Guide.2 The University has recently endorsed activity in this area through the appointment of Professor John Pickstone as advisor to the institution on its history and heritage.
    [Show full text]
  • How Liquid Helium and Superconductivity Came to Us
    IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (ESNF), No. 16, April 2011 Heike Kamerlingh Onnes and the Road to Liquid Helium Dirk van Delft, Museum Boerhaave – Leiden University e-mail: [email protected] Abstract – I sketch here the scientific biography of Heike Kamerlingh Onnes, who in 1908 was the first to liquefy helium and in 1911 discovered superconductivity. A son of a factory owner, he grew familiar with industrial approaches, which he adopted and implemented in his scientific career. This, together with a great talent for physics, solid education in the modern sense (unifying experiment and theory) proved indispensable for his ultimate successes. Received April 11, 2011; accepted in final form April 19, 2011. Reference No. RN19, Category 11. Keywords – Heike Kamerligh Onnes, helium, liquefaction, scientific biography I. INTRODUCTION This paper is based on my talk about Heike Kamerlingh Onnes (HKO) and his cryogenic laboratory, which I gave in Leiden at the Symposium “Hundred Years of Superconductivity”, held on April 8th, 2011, the centennial anniversary of the discovery. Figure 1 is a painting of HKO from 1905, by his brother Menso, while Figure 2 shows his historically first helium liquefier, now on display in Museum Boerhaave of Leiden University. Fig. 1. Heike Kamerling Onnes (HKO), 1905 painting by his brother Menso. 1 IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (ESNF), No. 16, April 2011 Fig. 2. HKO’s historical helium liquefier (last stage), now in Museum Boerhaave, Leiden. I will address HKO’s formative years, his scientific mission, the buiding up of a cryogenic laboratory as a direct consequence of this mission, add some words about the famous Leiden school of instrument makers, the role of the Leiden physics laboratory as an international centre of low temperature research, to end with a conclusion.
    [Show full text]